1
|
Obadia T, Gutierrez-Bugallo G, Duong V, Nuñez AI, Fernandes RS, Kamgang B, Hery L, Gomard Y, Abbo SR, Jiolle D, Glavinic U, Dupont-Rouzeyrol M, Atyame CM, Pocquet N, Boyer S, Dauga C, Vazeille M, Yébakima A, White MT, Koenraadt CJM, Mavingui P, Vega-Rua A, Veronesi E, Pijlman GP, Paupy C, Busquets N, Lourenço-de-Oliveira R, De Lamballerie X, Failloux AB. Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project. Nat Commun 2022; 13:4490. [PMID: 35918360 PMCID: PMC9345287 DOI: 10.1038/s41467-022-32234-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika. Zika virus (ZIKV), the causative agent of virus-induced brain damage in newborns, is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus. Here, Obadia et al. characterize ZIKV vector competence of 50 mosquito populations from six species collected in 12 different countries to inform about epidemic risk. They find that African ZIKV strain shows higher transmission efficiency compared to American and Asian ZIKV strains and that Ae. aegypti mosquitoes have highest susceptibility to infections, while Culexmosquitoes are largely non-susceptible.
Collapse
Affiliation(s)
- Thomas Obadia
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France.,Institut Pasteur, Université Paris Cité, G5 Infectious Disease Epidemiology and Analytics, F-75015, Paris, France
| | - Gladys Gutierrez-Bugallo
- Department of Vector Control, Center for Research, Diagnostic, and Reference, Institute of Tropical Medicine Pedro Kouri, Havana, Cuba.,Institut Pasteur of Guadeloupe, Laboratory of Vector Control Research, Unit Transmission Reservoir and Pathogens Diversity, Les Abymes, Guadeloupe
| | - Veasna Duong
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Ana I Nuñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Rosilainy S Fernandes
- Laboratorio de Mosquitos Transmissores de Hematozoarios, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, Department of Medical Entomology, Yaoundé, Cameroon
| | - Liza Hery
- Institut Pasteur of Guadeloupe, Laboratory of Vector Control Research, Unit Transmission Reservoir and Pathogens Diversity, Les Abymes, Guadeloupe
| | - Yann Gomard
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), Sainte-Clotilde, La Réunion, France
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Davy Jiolle
- IRD, MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Uros Glavinic
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | | | - Célestine M Atyame
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), Sainte-Clotilde, La Réunion, France
| | - Nicolas Pocquet
- Institut Pasteur de Nouvelle-Calédonie, URE Entomologie Médicale, Nouméa, New Caledonia
| | - Sébastien Boyer
- Institut Pasteur du Cambodge, Medical Entomology Unit, Phnom Penh, Cambodia
| | - Catherine Dauga
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, F-75015, Paris, France
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, F-75015, Paris, France
| | | | - Michael T White
- Institut Pasteur, Université Paris Cité, G5 Infectious Disease Epidemiology and Analytics, F-75015, Paris, France
| | | | - Patrick Mavingui
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), Sainte-Clotilde, La Réunion, France
| | - Anubis Vega-Rua
- Institut Pasteur of Guadeloupe, Laboratory of Vector Control Research, Unit Transmission Reservoir and Pathogens Diversity, Les Abymes, Guadeloupe
| | - Eva Veronesi
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Christophe Paupy
- IRD, MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Núria Busquets
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ricardo Lourenço-de-Oliveira
- Laboratorio de Mosquitos Transmissores de Hematozoarios, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Xavier De Lamballerie
- Unité des Virus Emergents (UVE), Aix Marseille Université, IHU Méditerranée Infection, Marseille, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, F-75015, Paris, France.
| |
Collapse
|
2
|
Abbo SR, Visser TM, Koenraadt CJM, Pijlman GP, Wang H. Effect of blood source on vector competence of Culex pipiens biotypes for Usutu virus. Parasit Vectors 2021; 14:194. [PMID: 33832527 PMCID: PMC8028107 DOI: 10.1186/s13071-021-04686-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background Infectious blood meal experiments have been frequently performed with different virus-vector combinations to assess the transmission potential of arthropod-borne (arbo)viruses. A wide variety of host blood sources have been used to deliver arboviruses to their arthropod vectors in laboratory studies. The type of blood used during vector competence experiments does not always reflect the blood from the viremic vertebrate hosts in the field, but little is known about the effect of blood source on the experimental outcome of vector competence studies. Here we investigated the effect of avian versus human blood on the infection and transmission rates of the zoonotic Usutu virus (USUV) in its primary mosquito vector Culex pipiens. Methods Cx. pipiens biotypes (pipiens and molestus) were orally infected with USUV through infectious blood meals containing either chicken or human whole blood. The USUV infection and transmission rates were determined by checking mosquito bodies and saliva for USUV presence after 14 days of incubation at 28 °C. In addition, viral titers were determined for USUV-positive mosquito bodies and saliva. Results Human and chicken blood lead to similar USUV transmission rates for Cx. pipiens biotype pipiens (18% and 15%, respectively), while human blood moderately but not significantly increased the transmission rate (30%) compared to chicken blood (17%) for biotype molestus. USUV infection rates with human blood were consistently higher in both Cx. pipiens biotypes compared to chicken blood. In virus-positive mosquitoes, USUV body and saliva titers did not differ between mosquitoes taking either human or chicken blood. Importantly, biotype molestus had much lower USUV saliva titers compared to biotype pipiens, regardless of which blood was offered. Conclusions Infection of mosquitoes with human blood led to higher USUV infection rates as compared to chicken blood. However, the blood source had no effect on the vector competence for USUV. Interestingly, biotype molestus is less likely to transmit USUV compared to biotype pipiens due to very low virus titers in the saliva. ![]()
Collapse
Affiliation(s)
- Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Tessa M Visser
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Haidong Wang
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Benzarti E, Garigliany M. In Vitro and In Vivo Models to Study the Zoonotic Mosquito-Borne Usutu Virus. Viruses 2020; 12:E1116. [PMID: 33008141 PMCID: PMC7599730 DOI: 10.3390/v12101116] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Usutu virus (USUV), a mosquito-borne zoonotic flavivirus discovered in South Africa in 1959, has spread to many European countries over the last 20 years. The virus is currently a major concern for animal health due to its expanding host range and the growing number of avian mass mortality events. Although human infections with USUV are often asymptomatic, they are occasionally accompanied by neurological complications reminiscent of those due to West Nile virus (another flavivirus closely related to USUV). Whilst USUV actually appears less threatening than some other emergent arboviruses, the lessons learned from Chikungunya, Dengue, and Zika viruses during the past few years should not be ignored. Further, it would not be surprising if, with time, USUV disperses further eastwards towards Asia and possibly westwards to the Americas, which may result in more pathogenic USUV strains to humans and/or animals. These observations, inviting the scientific community to be more vigilant about the spread and genetic evolution of USUV, have prompted the use of experimental systems to understand USUV pathogenesis and to boost the development of vaccines and antivirals. This review is the first to provide comprehensive coverage of existing in vitro and in vivo models for USUV infection and to discuss their contribution in advancing data concerning this neurotropic virus. We believe that this paper is a helpful tool for scientists to identify gaps in the knowledge about USUV and to design their future experiments to study the virus.
Collapse
Affiliation(s)
| | - Mutien Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium;
| |
Collapse
|