1
|
Lemay G, Boudreault S. The reovirus μ2 protein, an enigmatic multifunctional protein with numerous secrets yet to be uncovered. Virology 2025; 601:110275. [PMID: 39515007 DOI: 10.1016/j.virol.2024.110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Viruses as obligate intracellular parasites are limited by their small genome. They have thus developed various strategies to maximize viral fitness with a limited amount of coding information. Among these strategies is the use of the same viral protein for multiple functions. The μ2 protein of mammalian reovirus is one such example of a multifunctional protein. We will present recent progress in our understanding of some functions and properties of this protein that have been revealed in the last two or three decades, such as its impact on the formation of viral factories or the control of the interferon response. We will also examine the recently established structure of the protein and the most recent data on the protein's enzymatic activities in the context of viral RNA synthesis. Finally, the impact of μ2 in the regulation of host-cell alternative mRNA splicing will be presented and future avenues of research discussed.
Collapse
Affiliation(s)
- Guy Lemay
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal (Qc.) Canada.
| | - Simon Boudreault
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia (PA), United States.
| |
Collapse
|
2
|
Lee WS, Lee SJ, Lee HJ, Yang H, Go EJ, Gansukh E, Song KH, Xiang X, Park DG, Alain T, Chon HJ, Kim C. Oral reovirus reshapes the gut microbiome and enhances antitumor immunity in colon cancer. Nat Commun 2024; 15:9092. [PMID: 39438458 PMCID: PMC11496807 DOI: 10.1038/s41467-024-53347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
The route of oncolytic virotherapy is pivotal for immunotherapeutic efficacy in advanced cancers. In this preclinical study, an oncolytic reovirus (RC402) is orally administered to induce antitumor immunity. Oral reovirus treatment shows no gross toxicities and effectively suppresses multifocal tumor lesions. Orally administered reovirus interacts with the host immune system in the Peyer's patch of the terminal ileum, increases IgA+ antibody-secreting cells in the lamina propria through MAdCAM-1+ blood vessels, and reshapes the gut microbiome. Oral reovirus promotes antigen presentation, type I/II interferons, and T cell activation within distant tumors, but does not reach or directly infect tumor cells beyond the gastrointestinal tract. In contrast to intratumoral reovirus injection, the presence of the gut microbiome, Batf3+ dendritic cells, type I interferons, and CD8+ T cells are indispensable for orally administered reovirus-induced antitumor immunity. Oral reovirus treatment is most effective when combined with αPD-1(L1) and/or αCTLA-4, leading to complete colon tumor regression and protective immune memory. Collectively, oral reovirus virotherapy is a feasible and effective immunotherapeutic strategy in preclinical studies.
Collapse
Affiliation(s)
- Won Suk Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Seung Joon Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hye Jin Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hannah Yang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Eun-Jin Go
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | | | | | - Xiao Xiang
- Department of Biochemistry, Microbiology, and Immunology, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Dong Guk Park
- Virocure Inc., Seoul, Republic of Korea
- Department of Surgery, School of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tommy Alain
- Department of Biochemistry, Microbiology, and Immunology, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Hong Jae Chon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
| | - Chan Kim
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Tariq A, Piontkivska H. Reovirus infection induces transcriptome-wide unique A-to-I editing changes in the murine fibroblasts. Virus Res 2024; 346:199413. [PMID: 38848818 PMCID: PMC11225029 DOI: 10.1016/j.virusres.2024.199413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The conversion of Adenosine (A) to Inosine (I), by Adenosine Deaminases Acting on RNA or ADARs, is an essential post-transcriptional modification that contributes to proteome diversity and regulation in metazoans including humans. In addition to its transcriptome-regulating role, ADARs also play a major part in immune response to viral infection, where an interferon response activates interferon-stimulated genes, such as ADARp150, in turn dynamically regulating host-virus interactions. A previous report has shown that infection from reoviruses, despite strong activation of ADARp150, does not influence the editing of some of the major known editing targets, while likely editing others, suggesting a potentially nuanced editing pattern that may depend on different factors. However, the results were based on a handful of selected editing sites and did not cover the entire transcriptome. Thus, to determine whether and how reovirus infection specifically affects host ADAR editing patterns, we analyzed a publicly available deep-sequenced RNA-seq dataset, from murine fibroblasts infected with wild-type and mutant reovirus strains that allowed us to examine changes in editing patterns on a transcriptome-wide scale. To the best of our knowledge, this is the first transcriptome-wide report on host editing changes after reovirus infection. Our results demonstrate that reovirus infection induces unique nuanced editing changes in the host, including introducing sites uniquely edited in infected samples. Genes with edited sites are overrepresented in pathways related to immune regulation, cellular signaling, metabolism, and growth. Moreover, a shift in editing targets has also been observed, where the same genes are edited in infection and control conditions but at different sites, or where the editing rate is increased for some and decreased for other differential targets, supporting the hypothesis of dynamic and condition-specific editing by ADARs.
Collapse
Affiliation(s)
- Ayesha Tariq
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA; Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
4
|
Wu B, Li D, Bai H, Mo R, Li H, Xie J, Zhang X, Yang Y, Li H, Idris A, Li X, Feng R. Mammalian reovirus µ1 protein attenuates RIG-I and MDA5-mediated signaling transduction by blocking IRF3 phosphorylation and nuclear translocation. Mol Immunol 2024; 170:131-143. [PMID: 38663254 DOI: 10.1016/j.molimm.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous μ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV μ1 protein expression by shRNA could impair MRV proliferation. Specifically, μ1 protein inhibited MRV or poly(I:C)-induced IFN-β expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that μ1 protein significantly decreased IFN-β mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that μ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein μ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.
Collapse
Affiliation(s)
- Bei Wu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Huisheng Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Rongqian Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hongshan Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yanmei Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Herston, Queensland University of Technology, China; Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| |
Collapse
|
5
|
Yue Z, Zhang X, Gu Y, Liu Y, Lan LM, Liu Y, Li Y, Yang G, Wan P, Chen X. Regulation and functions of the NLRP3 inflammasome in RNA virus infection. Front Cell Infect Microbiol 2024; 13:1309128. [PMID: 38249297 PMCID: PMC10796458 DOI: 10.3389/fcimb.2023.1309128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Virus infection is one of the greatest threats to human life and health. In response to viral infection, the host's innate immune system triggers an antiviral immune response mostly mediated by inflammatory processes. Among the many pathways involved, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has received wide attention in the context of viral infection. The NLRP3 inflammasome is an intracellular sensor composed of three components, including the innate immune receptor NLRP3, adaptor apoptosis-associated speck-like protein containing CARD (ASC), and the cysteine protease caspase-1. After being assembled, the NLRP3 inflammasome can trigger caspase-1 to induce gasdermin D (GSDMD)-dependent pyroptosis, promoting the maturation and secretion of proinflammatory cytokines such as interleukin-1 (IL-1β) and interleukin-18 (IL-18). Recent studies have revealed that a variety of viruses activate or inhibit the NLRP3 inflammasome via viral particles, proteins, and nucleic acids. In this review, we present a variety of regulatory mechanisms and functions of the NLRP3 inflammasome upon RNA viral infection and demonstrate multiple therapeutic strategies that target the NLRP3 inflammasome for anti-inflammatory effects in viral infection.
Collapse
Affiliation(s)
- Zhaoyang Yue
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Xuelong Zhang
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yu Gu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ying Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Lin-Miaoshen Lan
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yilin Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yongkui Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xin Chen
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
6
|
Khaleafi R, Zeleznjak J, Cordela S, Drucker S, Rovis TL, Jonjic S, Bar-On Y. Reovirus infection of tumor cells reduces the expression of NKG2D ligands, leading to impaired NK-cell cytotoxicity and functionality. Front Immunol 2023; 14:1231782. [PMID: 37753084 PMCID: PMC10518469 DOI: 10.3389/fimmu.2023.1231782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, reoviruses have been of major interest in immunotherapy because of their oncolytic properties. Preclinical and clinical trials, in which reovirus was used for the treatment of melanoma and glioblastoma, have paved the way for future clinical use of reovirus. However, little is known about how reovirus infection affects the tumor microenvironment and immune response towards infected tumor cells. Studies have shown that reovirus can directly stimulate natural killer (NK) cells, but how reovirus affects cellular ligands on tumor cells, which are ultimately key to tumor recognition and elimination by NK cells, has not been investigated. We tested how reovirus infection affects the binding of the NK Group-2 member D (NKG2D) receptor, which is a dominant mediator of NK cell anti-tumor activity. Using models of human-derived melanoma and glioblastoma tumors, we demonstrated that NKG2D ligands are downregulated in tumor cells post-reovirus-infection due to the impaired translation of these ligands in reovirus-infected cells. Moreover, we showed that downregulation of NKG2D ligands significantly impaired the binding of NKG2D to infected tumor cells. We further demonstrated that reduced recognition of NKG2D ligands significantly alters NK cell anti-tumor cytotoxicity in human primary NK cells and in the NK cell line NK-92. Thus, this study provides novel insights into reovirus-host interactions and could lead to the development of novel reovirus-based therapeutics that enhance the anti-tumor immune response.
Collapse
Affiliation(s)
- Raghad Khaleafi
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jelena Zeleznjak
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sapir Cordela
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shani Drucker
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tihana Lenac Rovis
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Yotam Bar-On
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Wang M, Wang X, Jin X, Zhou J, Zhang Y, Yang Y, Liu Y, Zhang J. Cell-based and cell-free immunotherapies for glioblastoma: current status and future directions. Front Immunol 2023; 14:1175118. [PMID: 37304305 PMCID: PMC10248152 DOI: 10.3389/fimmu.2023.1175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Glioblastoma (GBM) is among the most fatal and recurring malignant solid tumors. It arises from the GBM stem cell population. Conventional neurosurgical resection, temozolomide (TMZ)-dependent chemotherapy and radiotherapy have rendered the prognosis of patients unsatisfactory. Radiotherapy and chemotherapy can frequently induce non-specific damage to healthy brain and other tissues, which can be extremely hazardous. There is therefore a pressing need for a more effective treatment strategy for GBM to complement or replace existing treatment options. Cell-based and cell-free immunotherapies are currently being investigated to develop new treatment modalities against cancer. These treatments have the potential to be both selective and successful in minimizing off-target collateral harm in the normal brain. In this review, several aspects of cell-based and cell-free immunotherapies related to GBM will be discussed.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiaojie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jingjing Zhou
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yiyuan Yang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
8
|
Dai J, Yi G, Philip AA, Patton JT. Rotavirus NSP1 Subverts the Antiviral Oligoadenylate Synthetase-RNase L Pathway by Inducing RNase L Degradation. mBio 2022; 13:e0299522. [PMID: 36413023 PMCID: PMC9765674 DOI: 10.1128/mbio.02995-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
The interferon (IFN)-inducible 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway plays a critical role in antiviral immunity. Group A rotaviruses, including the simian SA11 strain, inhibit this pathway through two activities: an E3-ligase related activity of NSP1 that degrades proteins necessary for IFN signaling, and a phosphodiesterase (PDE) activity of VP3 that hydrolyzes the RNase L-activator 2',5'-oligoadenylate. Unexpectedly, we found that a recombinant (r) SA11 double mutant virus deficient in both activities (rSA11-VP3H797R-NSP1ΔC17) retained the ability to prevent RNase L activation. Mass spectrometry led to the discovery that NSP1 interacts with RNase L in rSA11-infected HT29 cells. This interaction was confirmed through copulldown assay of cells transiently expressing NSP1 and RNase L. Immunoblot analysis showed that infection with wild-type rSA11 virus, rSA11-VP3H797R-NSP1ΔC17 double mutant virus, or single mutant forms of the latter virus all resulted in the depletion of endogenous RNase L. The loss of RNase L was reversed by addition of the neddylation inhibitor MLN4924, but not the proteasome inhibitor MG132. Analysis of additional mutant forms of rSA11 showed that RNase L degradation no longer occurred when either the N-terminal RING domain of NSP1 was mutated or the C-terminal 98 amino acids of NSP1 were deleted. The C-terminal RNase L degradation domain is positioned upstream and is functionally independent of the NSP1 domain necessary for inhibiting IFN expression. Our studies reveal a new role for NSP1 and its E3-ligase related activity as an antagonist of RNase L and uncover a novel virus-mediated strategy of inhibiting the OAS-RNase L pathway. IMPORTANCE For productive infection, rotavirus and other RNA viruses must suppress interferon (IFN) signaling and the expression of IFN-stimulated antiviral gene products. Particularly important is inhibiting the interferon (IFN)-inducible 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway, as activated RNase L can direct the nonspecific degradation of viral and cellular RNAs, thereby blocking viral replication and triggering cell death pathways. In this study, we have discovered that the simian SA11 strain of rotavirus employs a novel strategy of inhibiting the OAS-RNase L pathway. This strategy is mediated by SA11 NSP1, a nonstructural protein that hijacks E3 cullin-RING ligases, causing the ubiquitination and degradation of host proteins essential for IFN induction. Our analysis shows that SA11 NSP1 also recognizes and causes the ubiquitination of RNase L, an activity resulting in depletion of endogenous RNase L. These data raise the possibility of using therapeutics targeting cellular E3 ligases to control rotavirus infections.
Collapse
Affiliation(s)
- Jin Dai
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Guanghui Yi
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Asha A. Philip
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
9
|
Després GD, Ngo K, Lemay G. The μ2 and λ1 Proteins of Mammalian Reovirus Modulate Early Events Leading to Induction of the Interferon Signaling Network. Viruses 2022; 14:v14122638. [PMID: 36560642 PMCID: PMC9780918 DOI: 10.3390/v14122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
It has been previously shown that amino acid polymorphisms in reovirus proteins μ2 and λ1 are associated with differing levels of interferon induction. In the present study, viruses carrying these polymorphisms in either or both proteins, were further studied. The two viral determinants exert a synergistic effect on the control of β-interferon induction at the protein and mRNA level, with a concomitant increase in RIG-I. In contrast, levels of phospho-Stat1 and interferon-stimulated genes are increased in singly substituted viruses but with no further increase when both substitutions were present. This suggests that the viral determinants are acting during initial events of viral recognition. Accordingly, difference between viruses was reduced when infection was performed with partially uncoated virions (ISVPs) and transfection of RNA recovered from early-infected cells recapitulates the differences between viruses harboring the different polymorphisms. Altogether, the data are consistent with a redundant or complementary role of μ2 and λ1, affecting either early disassembly or the nature of the viral RNA in the incoming viral particle. Proteins involved in viral RNA synthesis are thus involved in this likely critical aspect of the ability of different reovirus variants to infect various cell types, and to discriminate between parental and transformed/cancer cells.
Collapse
|
10
|
Abstract
Mammalian orthoreovirus (reovirus) is a double-stranded RNA (dsRNA) virus which encapsidates its 10 genome segments within a double-layered viral particle. Reovirus infection triggers an antiviral response in host cells which serves to limit viral replication. This antiviral response is initiated by recognition of the incoming viral genome by host sensors present in the cytoplasm. However, how host sensors gain access to the reovirus genome is unclear, as this dsRNA is protected by the viral particle proteins throughout infection. To initiate infection, reovirus particles are endocytosed and the outer viral particle layer is disassembled through the action of host proteases. This disassembly event is required for viral escape into the cytoplasm to begin replication. We show that endosomal proteases are required even late in infection, when disassembly is complete, to induce an immune response to reovirus. Additionally, counter to dogma, our data demonstrate that at least some viral dsRNA genome is exposed and detectable during entry. We hypothesize that some proportion of reovirus particles remain trapped within endosomes, allowing for the breakdown of these particles and release of their genome. We show that rapidly uncoating mutants escape the endosome more rapidly and induce a diminished immune response. Further, we show that particles entering through dynamin-independent pathways evade detection by host sensors. Overall, our data provide new insight into how genomes from entering reovirus particles are detected by host cells. IMPORTANCE Viruses must infect host cells to replicate, often killing the host cell in the process. However, hosts can activate defenses to limit viral replication and protect the organism. To trigger these host defenses to viral infections, host cells must first recognize that they are infected. Mammalian orthoreovirus (reovirus) is a model system used to study host-virus interactions. This study identifies aspects of host and virus biology which determine the capacity of host cells to detect infection. Notably, entry of reovirus into host cells plays a critical role in determining the magnitude of immune response triggered during infection. Mutants of reovirus which can enter cells more rapidly are better at avoiding detection by the host. Additionally, reovirus can enter cells through multiple routes. Entry through some of these routes also helps reovirus evade detection.
Collapse
|
11
|
DeAntoneo C, Danthi P, Balachandran S. Reovirus Activated Cell Death Pathways. Cells 2022; 11:cells11111757. [PMID: 35681452 PMCID: PMC9179526 DOI: 10.3390/cells11111757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mammalian orthoreoviruses (ReoV) are non-enveloped viruses with segmented double-stranded RNA genomes. In humans, ReoV are generally considered non-pathogenic, although members of this family have been proven to cause mild gastroenteritis in young children and may contribute to the development of inflammatory conditions, including Celiac disease. Because of its low pathogenic potential and its ability to efficiently infect and kill transformed cells, the ReoV strain Type 3 Dearing (T3D) is clinical trials as an oncolytic agent. ReoV manifests its oncolytic effects in large part by infecting tumor cells and activating programmed cell death pathways (PCDs). It was previously believed that apoptosis was the dominant PCD pathway triggered by ReoV infection. However, new studies suggest that ReoV also activates other PCD pathways, such as autophagy, pyroptosis, and necroptosis. Necroptosis is a caspase-independent form of PCD reliant on receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and its substrate, the pseudokinase mixed-lineage kinase domain-like protein (MLKL). As necroptosis is highly inflammatory, ReoV-induced necroptosis may contribute to the oncolytic potential of this virus, not only by promoting necrotic lysis of the infected cell, but also by inflaming the surrounding tumor microenvironment and provoking beneficial anti-tumor immune responses. In this review, we summarize our current understanding of the ReoV replication cycle, the known and potential mechanisms by which ReoV induces PCD, and discuss the consequences of non-apoptotic cell death—particularly necroptosis—to ReoV pathogenesis and oncolysis.
Collapse
Affiliation(s)
- Carly DeAntoneo
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
- Molecular and Cellular Biology and Genetics, Drexel University, Philadelphia, PA 19102, USA
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
- Correspondence:
| |
Collapse
|
12
|
Brown M. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treat Res 2022; 183:91-129. [PMID: 35551657 DOI: 10.1007/978-3-030-96376-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant tumors frequently exploit innate immunity to evade immune surveillance. The priming, function, and polarization of antitumor immunity fundamentally depends upon context provided by the innate immune system, particularly antigen presenting cells. Such context is determined in large part by sensing of pathogen specific and damage associated features by pathogen recognition receptors (PRRs). PRR activation induces the delivery of T cell priming cues (e.g. chemokines, co-stimulatory ligands, and cytokines) from antigen presenting cells, playing a decisive role in the cancer immunity cycle. Indeed, endogenous PRR activation within the tumor microenvironment (TME) has been shown to generate spontaneous antitumor T cell immunity, e.g., cGAS-STING mediated activation of antigen presenting cells after release of DNA from dying tumor cells. Thus, instigating intratumor PRR activation, particularly with the goal of generating Th1-promoting inflammation that stokes endogenous priming of antitumor CD8+ T cells, is a growing area of clinical investigation. This approach is analogous to in situ vaccination, ultimately providing a personalized antitumor response against relevant tumor associated antigens. Here I discuss clinical stage intratumor modalities that function via activation of PRRs. These approaches are being tested in various solid tumor contexts including melanoma, colorectal cancer, glioblastoma, head and neck squamous cell carcinoma, bladder cancer, and pancreatic cancer. Their mechanism (s) of action relative to other immunotherapy approaches (e.g., antigen-defined cancer vaccines, CAR T cells, dendritic cell vaccines, and immune checkpoint blockade), as well as their potential to complement these approaches are also discussed. Examples to be reviewed include TLR agonists, STING agonists, RIG-I agonists, and attenuated or engineered viruses and bacterium. I also review common key requirements for effective in situ immune activation, discuss differences between various strategies inclusive of mechanisms that may ultimately limit or preclude antitumor efficacy, and provide a summary of relevant clinical data.
Collapse
Affiliation(s)
- Michael Brown
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
The Reovirus σ3 Protein Inhibits NF-κB-Dependent Antiviral Signaling. J Virol 2022; 96:e0051522. [PMID: 35416720 PMCID: PMC9093121 DOI: 10.1128/jvi.00515-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viral antagonism of innate immune pathways is a common mechanism by which viruses evade immune surveillance. Infection of host cells with reovirus leads to the blockade of NF-κB, a key transcriptional regulator of the hosts' innate immune response. One mechanism by which reovirus infection results in inhibition of NF-κB is through a diminishment in levels of upstream activators, IKKβ and NEMO. Here, we demonstrate a second, distinct mechanism by which reovirus blocks NF-κB. We report that expression of a single viral protein, σ3, is sufficient to inhibit expression of NF-κB target genes. Further, σ3-mediated blockade of NF-κB occurs without changes to IκB kinase (IKK) levels or activity. Among NF-κB targets, the expression of type I interferon is significantly diminished by σ3 expression. Expression of NF-κB target genes varies following infection with closely related reovirus strains. Our genetic analysis identifies that these differences are controlled by polymorphisms in the amino acid sequence of σ3. This work identifies a new role for reovirus σ3 as a viral antagonist of NF-κB-dependent antiviral pathways. IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-κB family of proteins is important for the cell to mediate this response. In this study, we show that a single protein, σ3, produced by mammalian reovirus, impairs the function of NF-κB. We demonstrate that by blocking NF-κB, σ3 diminishes the hosts' response to infection to promote viral replication. This work identifies a second, previously unknown, mechanism by which reovirus blocks this aspect of the host cell response.
Collapse
|
14
|
Chen YG, Hur S. Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol 2022; 23:286-301. [PMID: 34815573 PMCID: PMC8969093 DOI: 10.1038/s41580-021-00430-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 01/02/2023]
Abstract
Double-stranded RNA (dsRNA) is associated with most viral infections - it either constitutes the viral genome (in the case of dsRNA viruses) or is generated in host cells during viral replication. Hence, nearly all organisms have the capability of recognizing dsRNA and mounting a response, the primary aim of which is to mitigate the potential infection. In vertebrates, a set of innate immune receptors for dsRNA induce a multitude of cell-intrinsic and cell-extrinsic immune responses upon dsRNA recognition. Notably, recent studies showed that vertebrate cells can accumulate self-derived dsRNAs or dsRNA-like species upon dysregulation of several cellular processes, activating the very same immune pathways as in infected cells. On the one hand, such aberrant immune activation in the absence of infection can lead to pathogenesis of immune disorders, such as Aicardi-Goutières syndrome. On the other hand, the same innate immune reaction can be induced in a controlled setting for a therapeutic benefit, as occurs in immunotherapies. In this Review, we describe mechanisms by which immunostimulatory dsRNAs are generated in mammalian cells, either by viruses or by the host cells, and how cells respond to them, with the focus on recent developments regarding the role of cellular dsRNAs in immune modulation.
Collapse
Affiliation(s)
- Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Sun Hur
- Harvard Medical School & Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Oosenbrug T, van den Wollenberg DJM, Duits EW, Hoeben RC, Ressing ME. Induction of Robust Type I Interferon Levels by Oncolytic Reovirus Requires Both Viral Replication and Interferon-α/β Receptor Signaling. Hum Gene Ther 2021; 32:1171-1185. [PMID: 34405701 DOI: 10.1089/hum.2021.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncolytic viruses are promising agents for cancer therapy because they selectively infect and kill tumor cells, and because they trigger immune responses that can boost anticancer immunity. Key to the latter process is the production of type I interferons (IFN-Is) that can turn noninflamed "cold" tumors into "hot" ones. Besides this desired anticancer effect, IFN-Is are antiviral and successful oncolytic virotherapy thus relies on tightly controlled IFN-I levels. This requires a profound understanding of when and how tumor cells induce IFN-I in response to specific viruses. In this study, we uncovered two key factors that augment IFN-I production in transformed human myeloid cells infected with a tumor-selective reovirus. Viral replication and IFN-α/β receptor (IFNAR) signaling progressively reinforced the levels of IFN-I expressed by infected cells. Mechanistically, both augmented the activation of interferon regulatory factor 3, a key transcription factor for IFNβ expression. Our findings imply that reovirus-permissive tumor cells themselves are a major source of IFN-I expression. As tumors can perturb the IFNAR pathway for their own survival, reovirus-exposed IFNAR-unresponsive tumors may need additional therapeutic intervention to promote the secretion of sufficient IFN-I into the tumor microenvironment. Our increased understanding of the parameters that affect reovirus-induced IFN-I levels could aid in the design of tailored virus-based cancer therapies.
Collapse
Affiliation(s)
- Timo Oosenbrug
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Eline W Duits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Rojas JM, Avia M, Martín V, Sevilla N. Inhibition of the IFN Response by Bluetongue Virus: The Story So Far. Front Microbiol 2021; 12:692069. [PMID: 34168637 PMCID: PMC8217435 DOI: 10.3389/fmicb.2021.692069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Bluetongue virus (BTV) is the prototypical orbivirus that belongs to the Reoviridae family. BTV infection produces a disease in ruminants, particularly in sheep, that results in economic losses through reduced productivity. BTV is transmitted by the bite of Culicoides spp. midges and is nowadays distributed globally throughout subtropical and even temperate regions. As most viruses, BTV is susceptible to the IFN response, the first line of defense employed by the immune system to combat viral infections. In turn, BTV has evolved strategies to counter the IFN response and promote its replication. The present review we will revise the works describing how BTV interferes with the IFN response.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
17
|
Oncolytic reovirus induces ovarian cancer cell apoptosis in a TLR3-dependent manner. Virus Res 2021; 301:198440. [PMID: 33940002 DOI: 10.1016/j.virusres.2021.198440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023]
Abstract
Globally, ovarian cancer is the seventh most common cancer and the eighth-most common cause of cancer death among women with a five-year survival rate of less than 45%. Although reovirus is known to be effective for treating ovarian cancer, some types of tumor cells still exhibit resistance to reovirus. In order to solve this resistance problem in the treatment of ovarian cancer, we selected the reovirus-resistant OV-90 ovarian cancer cells to study reovirus oncolytic effects. We found that the viability of OV-90 cells decreased after reovirus double-stranded RNA (dsRNA) genome transfection. Interestingly, we observed that chemical blockage of the Toll-like receptor 3 (TLR3)-dsRNA binding complex in OV-90 cells and the inhibition of downstream TLR3 signaling disrupted OV-90 apoptosis triggered by reovirus dsRNA. Together, these results demonstrate that reovirus dsRNA induces reovirus-resistant tumor cell apoptosis through the TLR3 signaling pathway.
Collapse
|
18
|
Glover KKM, Sutherland DM, Dermody TS, Coombs KM. A Single Point Mutation, Asn 16→Lys, Dictates the Temperature-Sensitivity of the Reovirus tsG453 Mutant. Viruses 2021; 13:v13020289. [PMID: 33673179 PMCID: PMC7917769 DOI: 10.3390/v13020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Studies of conditionally lethal mutants can help delineate the structure-function relationships of biomolecules. Temperature-sensitive (ts) mammalian reovirus (MRV) mutants were isolated and characterized many years ago. Two of the most well-defined MRV ts mutants are tsC447, which contains mutations in the S2 gene encoding viral core protein σ2, and tsG453, which contains mutations in the S4 gene encoding major outer-capsid protein σ3. Because many MRV ts mutants, including both tsC447 and tsG453, encode multiple amino acid substitutions, the specific amino acid substitutions responsible for the ts phenotype are unknown. We used reverse genetics to recover recombinant reoviruses containing the single amino acid polymorphisms present in ts mutants tsC447 and tsG453 and assessed the recombinant viruses for temperature-sensitivity by efficiency-of-plating assays. Of the three amino acid substitutions in the tsG453 S4 gene, Asn16-Lys was solely responsible for the tsG453ts phenotype. Additionally, the mutant tsC447 Ala188-Val mutation did not induce a temperature-sensitive phenotype. This study is the first to employ reverse genetics to identify the dominant amino acid substitutions responsible for the tsC447 and tsG453 mutations and relate these substitutions to respective phenotypes. Further studies of other MRV ts mutants are warranted to define the sequence polymorphisms responsible for temperature sensitivity.
Collapse
Affiliation(s)
- Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, University of Manitoba, Winnipeg, MB R3E OJ9, Canada;
| | - Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; (D.M.S.); (T.S.D.)
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; (D.M.S.); (T.S.D.)
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, University of Manitoba, Winnipeg, MB R3E OJ9, Canada;
- Manitoba Centre for Proteomics and Systems Biology, 715 McDermot Avenue, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3976
| |
Collapse
|