1
|
Kurosawa N, Takeda Y, Ichimaru Y, Jamsransuren D, Matsuda S, Ishikawa Y, Yamaguchi M, Ogawa H, Sasaki K, Murata T. Chemical constituents of five Saxifraga species and their virucidal activities. Fitoterapia 2024; 179:106215. [PMID: 39278420 DOI: 10.1016/j.fitote.2024.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
The chemical constituents of Saxifraga stolonifera, S. fortunei, S. nipponica, S. cortusifolia, and S. rebunshirensis were investigated for structure and virucidal activity. In addition to the Saxifraga species-derived tannins, 30 compounds (1-30) were isolated from the five species. 5-Hydroxy-4-methoxy-3-O-(6-O-caffeoyl)-β-D-glucopyranosyl benzoic acid (1) and kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-β-D-xylopyranoside (2) were identified as undescribed compounds. Although 1 was isolated as the (E)-isomer of its caffeoyl moiety, under light it became over time a mixture of the (Z)-isomer (1a) and (E)-isomer (1). Kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-β-D-glucopyranoside (3) was an analog of 2 and a known compound, whose NMR assignment was reconsidered and described. 6-Isopropyl-5,5-dimethyldihydropyrimidine-2,4(1H,3H)-dione (30) was expected to be a racemic mixture based on its optical rotation and X-ray crystallography data. The virucidal activities of the isolated compounds (1-30) against influenza A virus, severe acute respiratory syndrome coronavirus 2, feline calicivirus, and murine norovirus were evaluated to identify the presence of compounds other than the Saxifraga species-derived tannins, which exhibited virucidal activities. Although the isolated compound activities were relatively weak compared to those of Saxifraga species-derived tannins, the potential virucidal activity of the compounds with galloyl groups was confirmed.
Collapse
Affiliation(s)
- Nanami Kurosawa
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yohei Takeda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| | - Yoshimi Ichimaru
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-10 Kamishinano, Totsuka-ku, Yoko-hama 244-0806, Japan
| | - Dulamjav Jamsransuren
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sachiko Matsuda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yoshinobu Ishikawa
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-10 Kamishinano, Totsuka-ku, Yoko-hama 244-0806, Japan
| | - Minori Yamaguchi
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kenroh Sasaki
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Abilkassymova A, Aldana-Mejía JA, Katragunta K, Kozykeyeva R, Omarbekova A, Avula B, Turgumbayeva A, Datkhayev UM, Khan IA, Ross SA. Phytochemical Screening Using LC-MS to Study Antioxidant and Toxicity Potential of Methanolic Extracts of Atraphaxis pyrifolia Bunge. Molecules 2024; 29:4478. [PMID: 39339473 PMCID: PMC11434437 DOI: 10.3390/molecules29184478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Atraphaxis pyrifolia, a native medicinal plant of Central Asia, has a long history of traditional medicinal use; however, scientific research on its phytochemical and biological properties remains scarce. This paper aims to elucidate its chemical profile and assess its pharmacological potential through a comprehensive investigation of the phytochemical composition of stems and leaves using Liquid Chromatography-Mass Spectrometry (LC-MS), in conjunction with the assessment of its antioxidant (DPPH and ABTS) and cytotoxicity test on Artemia salina. Predominantly, glycosylated flavonoids were detected in stems and leaves extracts, notably including 8-Acetoxy-3',4',5,5'-tetrahydroxy-7-methoxy-3-α-L-rhamno-pyranosyloxyflavone, pyrifolin, and dehydroxypyrifolin. While the latter compound is exclusive to A. pyrifolia, the former compounds serve as shared chemical markers with other Atraphaxis species. The methanolic extracts of A. pyrifolia leaves exhibited significant antioxidant capacity without toxicity against Artemia salina. This study contributes to current research through providing valuable insights into the chemical diversity and potential medicinal properties of this plant species.
Collapse
Affiliation(s)
- Alima Abilkassymova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (A.A.); (A.T.)
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.O.); (U.M.D.)
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
| | - Jennyfer A. Aldana-Mejía
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
| | - Kumar Katragunta
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
| | - Raushan Kozykeyeva
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
- Faculty of Pharmacy, South Kazakhstan Medical Academy, Shymkent 160019, Kazakhstan
| | - Ardak Omarbekova
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.O.); (U.M.D.)
- Faculty of Pharmacy, South Kazakhstan Medical Academy, Shymkent 160019, Kazakhstan
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (A.A.); (A.T.)
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.O.); (U.M.D.)
| | - Ubaidilla M. Datkhayev
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.O.); (U.M.D.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
- Department of Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Samir A. Ross
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.O.); (U.M.D.)
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
- Department of Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
3
|
Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA, Onyeaka H, Hessien M. A study on the effect of natural products against the transmission of B.1.1.529 Omicron. Virol J 2023; 20:191. [PMID: 37626376 PMCID: PMC10464336 DOI: 10.1186/s12985-023-02160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud Abdo
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, 66050, General Escobedo, Nuevo León, Mexico
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Murata T, Jamsransuren D, Matsuda S, Ogawa H, Takeda Y. Rapid Virucidal Activity of Japanese Saxifraga Species-Derived Condensed Tannins against SARS-CoV-2, Influenza A Virus, and Human Norovirus Surrogate Viruses. Appl Environ Microbiol 2023:e0023723. [PMID: 37184410 DOI: 10.1128/aem.00237-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and norovirus are global threats to human health. The application of effective virucidal agents, which contribute to the inactivation of viruses on hands and environmental surfaces, is important to facilitate robust virus infection control measures. Naturally derived virucidal disinfectants have attracted attention owing to their safety and eco-friendly properties. In this study, we showed that multiple Japanese Saxifraga species-derived fractions demonstrated rapid, potent virucidal activity against the SARS-CoV-2 ancestral strain and multiple variant strains, IAV, and two human norovirus surrogates: feline calicivirus (FCV) and murine norovirus (MNV). Condensed tannins were identified as active chemical constituents that play a central role in the virucidal activities of these fractions. At a concentration of 25 μg/mL, the purified condensed tannin fraction Sst-2R induced significant reductions in the viral titers of the SARS-CoV-2 ancestral strain, IAV, and FCV (reductions of ≥3.13, ≥3.00, and 2.50 log10 50% tissue culture infective doses [TCID50]/mL, respectively) within 10 s of reaction time. Furthermore, at a concentration of 100 μg/mL, Sst-2R induced a reduction of 1.75 log10 TCID50/mL in the viral titers of MNV within 1 min. Western blotting and transmission electron microscopy analyses revealed that Sst-2R produced structural abnormalities in viral structural proteins and envelopes, resulting in the destruction of viral particles. Furthermore, Saxifraga species-derived fraction-containing cream showed virucidal activity against multiple viruses within 10 min. Our findings indicate that Saxifraga species-derived fractions containing condensed tannins can be used as disinfectants against multiple viruses on hands and environmental surfaces. IMPORTANCE SARS-CoV-2, IAV, and norovirus are highly contagious pathogens. The use of naturally derived components as novel virucidal/antiviral agents is currently attracting attention. We showed that fractions from extracts of Saxifraga species, in the form of a solution as well as a cream, exerted potent, rapid virucidal activities against SARS-CoV-2, IAV, and surrogates of human norovirus. Condensed tannins were found to play a central role in this activity. The in vitro cytotoxicity of the purified condensed tannin fraction at a concentration that exhibited some extent of virucidal activity was lower than that of 70% ethanol or 2,000 ppm sodium hypochlorite solution, which are popular virucidal disinfectants. Our study suggests that Saxifraga species-derived fractions containing condensed tannins can be used on hands and environmental surfaces as safe virucidal agents against multiple viruses.
Collapse
Affiliation(s)
- Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yohei Takeda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
5
|
Impact of Theaflavins-Enriched Tea Leaf Extract TY-1 against Surrogate Viruses of Human Norovirus: In Vitro Virucidal Study. Pathogens 2022; 11:pathogens11050533. [PMID: 35631054 PMCID: PMC9147082 DOI: 10.3390/pathogens11050533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Using an effective natural virucidal substance may be a feasible approach for preventing food-borne viral contamination. Here, the virucidal efficacy of theaflavins (TFs)-enriched tea leaf extract (TY-1) against feline calicivirus (FCV) and murine norovirus (MNV), surrogates of human norovirus (HuNoV), was evaluated. The virus solutions were mixed with various dosages of TY-1 and incubated at 25 °C for different contact times. TY-1 reduced the viral titer of both surrogate viruses in a time- and dosage-dependent manner. A statistically significant reduction in the viral titer of FCV by 5.0 mg/mL TY-1 and MNV by 25.0 mg/mL TY-1 was observed in 10 s and 1 min, respectively. Furthermore, TY-1 reduced the viral titer of FCV and MNV on the dry surface in 10 min. The multiple compounds in TY-1, including TFs and catechins, contributed to its overall virucidal activity. Furthermore, the effect of TY-1 on viral proteins and genome was analyzed using Western blotting, RT-PCR, and transmission electron microscopy. TY-1 was found to promote the profound disruption of virion structures, including the capsid proteins and genome. Our finding demonstrates the potential of using TY-1 as a nature-derived disinfectant in food processing facilities and healthcare settings to reduce viral load and HuNoV transmission.
Collapse
|
6
|
Singla RK, He X, Chopra H, Tsagkaris C, Shen L, Kamal MA, Shen B. Natural Products for the Prevention and Control of the COVID-19 Pandemic: Sustainable Bioresources. Front Pharmacol 2021; 12:758159. [PMID: 34925017 PMCID: PMC8671886 DOI: 10.3389/fphar.2021.758159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The world has been unprecedentedly hit by a global pandemic which broke the record of deadly pandemics that faced humanity ever since its existence. Even kids are well-versed in the terminologies and basics of the SARS-CoV-2 virus and COVID-19 now. The vaccination program has been successfully launched in various countries, given that the huge global population of concern is still far behind to be vaccinated. Furthermore, the scarcity of any potential drug against the COVID-19-causing virus forces scientists and clinicians to search for alternative and complementary medicines on a war-footing basis. Aims and Objectives: The present review aims to cover and analyze the etiology and epidemiology of COVID-19, the role of intestinal microbiota and pro-inflammatory markers, and most importantly, the natural products to combat this deadly SARS-CoV-2 virus. Methods: A primary literature search was conducted through PubMed and Google Scholar using relevant keywords. Natural products were searched from January 2020 to November 2020. No timeline limit has been imposed on the search for the biological sources of those phytochemicals. Interactive mapping has been done to analyze the multi-modal and multi-target sources. Results and Discussion: The intestinal microbiota and the pro-inflammatory markers that can serve the prognosis, diagnosis, and treatment of COVID-19 were discussed. The literature search resulted in yielding 70 phytochemicals and ten polyherbal formulations which were scientifically analyzed against the SARS-CoV-2 virus and its targets and found significant. Retrospective analyses led to provide information about 165 biological sources that can also be screened if not done earlier. Conclusion: The interactive analysis mapping of biological sources with phytochemicals and targets as well as that of phytochemical class with phytochemicals and COVID-19 targets yielded insights into the multitarget and multimodal evidence-based complementary medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | | | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Sabrin MS, Selenge E, Takeda Y, Batkhuu J, Ogawa H, Jamsransuren D, Suganuma K, Murata T. Isolation and evaluation of virucidal activities of flavanone glycosides and rosmarinic acid derivatives from Dracocephalum spp. against feline calicivirus. PHYTOCHEMISTRY 2021; 191:112896. [PMID: 34371301 DOI: 10.1016/j.phytochem.2021.112896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Feline calicivirus is one of the surrogate viruses of human norovirus. This study aimed to identify virucidal compounds, chemical constituents of plants from the genus Dracocephalum, which are rich in flavonoids and phenylpropanoid oligomers. Four undescribed compounds, including a flavanone glucoside, two stilbenoid glycosides, and a phenylpropanoid amide glycoside, as well as 17 known compounds, were isolated from the Mongolian plants Dracocephalum fruticulosum Stephan ex Willd., and D. nutans L. belonging to the family Lamiaceae. The structures of the compounds were determined based on NMR, MS, and electronic CD spectroscopic data. In addition to these 21 compounds, 15 previously reported compounds from D. foetidum Bunge in C.F. von Ledebour were included, and a total of 36 compounds were evaluated for their virucidal activities against feline calicivirus. Some of the flavanone glycosides and phenylpropanoid oligomers showed virucidal activities, and their structural features are discussed. The findings suggest that isosakuranetin glycosides and phenylpropanoid oligomers may have the potential for norovirus inactivation.
Collapse
Affiliation(s)
- Mirza Synthia Sabrin
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan; Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | | | - Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Javzan Batkhuu
- School of Engineering and Applied Sciences, National University of Mongolia, POB-617/46A, Ulaanbaatar 14201, Mongolia
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Keisuke Suganuma
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome Aoba-ku, Sendai, 981-8558, Japan.
| |
Collapse
|
8
|
Mohamed IMA, Ogawa H, Takeda Y. In vitro virucidal activity of the theaflavin-concentrated tea extract TY-1 against influenza A virus. J Nat Med 2021; 76:152-160. [PMID: 34550554 PMCID: PMC8456404 DOI: 10.1007/s11418-021-01568-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/08/2021] [Indexed: 01/25/2023]
Abstract
The annual spread of influenza A virus (IAV) infection is a global concern. We examined the IAV-inactivating potential of theaflavin-concentrated tea extract TY-1, which contains abundant polyphenols, including concentrated theaflavins and catechins. TY-1 exhibited concentration- and time-dependent virucidal activity against IAV. Specifically, 5.0 mg/mL TY-1 induced a 1.33 and ≥ 5.17 log10 50% tissue culture infective dose/mL reduction of the viral titer compared with dextrin as the diluent control within 30 min and 6 h reaction time, respectively. The high virucidal activity of TY-1 was attributed to the combined additive activities of multiple virucidal components, including theaflavins, which led to an investigation of the virucidal mechanism of action of TY-1. Western blotting revealed that TY-1 treatment reduced the band intensity of hemagglutinin and induced the appearance of additional high molecular mass bands/ladders. In addition, TY-1 treatment also reduced the band intensity of neuraminidase (NA). A hemagglutination assay revealed that TY-1 reduced hemagglutination activity, and an NA assay revealed reduced NA activity. These results indicated that TY-1 caused structural abnormalities in IAV spike proteins, possibly leading to their destruction. Reverse transcription polymerase chain reaction (PCR) targeting the IAV genome and electron microscopic observation of viral particles revealed that upon application of TY-1, the PCR products dissipated, which indicates that TY-1 destroyed the IAV genome, and the number of viral particles reduced. Overall, TY-1 exhibited multiple modes of IAV-inactivating activity. Our findings support the possible future practical use of TY-1 as a virucidal supplemental agent that can contribute to IAV infection control.
Collapse
Affiliation(s)
- Israa M A Mohamed
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Yohei Takeda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
9
|
Takeda Y, Tamura K, Jamsransuren D, Matsuda S, Ogawa H. Severe Acute Respiratory Syndrome Coronavirus-2 Inactivation Activity of the Polyphenol-Rich Tea Leaf Extract with Concentrated Theaflavins and Other Virucidal Catechins. Molecules 2021; 26:molecules26164803. [PMID: 34443390 PMCID: PMC8402090 DOI: 10.3390/molecules26164803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022] Open
Abstract
Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is producing a large number of infections and deaths globally, the development of supportive and auxiliary treatments is attracting increasing attention. Here, we evaluated SARS-CoV-2-inactivation activity of the polyphenol-rich tea leaf extract TY-1 containing concentrated theaflavins and other virucidal catechins. The TY-1 was mixed with SARS-CoV-2 solution, and its virucidal activity was evaluated. To evaluate the inhibition activity of TY-1 in SARS-CoV-2 infection, TY-1 was co-added with SARS-CoV-2 into cell culture media. After 1 h of incubation, the cell culture medium was replaced, and the cells were further incubated in the absence of TY-1. The viral titers were then evaluated. To evaluate the impacts of TY-1 on viral proteins and genome, TY-1-treated SARS-CoV-2 structural proteins and viral RNA were analyzed using western blotting and real-time RT-PCR, respectively. TY-1 showed time- and concentration-dependent virucidal activity. TY-1 inhibited SARS-CoV-2 infection of cells. The results of western blotting and real-time RT-PCR suggested that TY-1 induced structural change in the S2 subunit of the S protein and viral genome destruction, respectively. Our findings provided basic insights in vitro into the possible value of TY-1 as a virucidal agent, which could enhance the current SARS-CoV-2 control measures.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan;
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Kyohei Tamura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
- Correspondence: ; Tel.: +81-155-49-5893
| |
Collapse
|
10
|
Murata T, Batkhuu J. Biological activity evaluations of chemical constituents derived from Mongolian medicinal forage plants and their applications in combating infectious diseases and addressing health problems in humans and livestock. J Nat Med 2021; 75:729-740. [PMID: 34018093 PMCID: PMC8137442 DOI: 10.1007/s11418-021-01529-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Mongolian nomadic people possess traditional knowledge of wild plants that grow in their areas of habitation. Many of these are forage plants in nature and are consumed by livestock. However, these plants are known to have medicinal and/or toxic properties. To establish a scientific understanding of the plants, and in turn, offer sound knowledge on their applications and effective use, it is essential to collect data pertaining to the chemical constituents of each plant. Therefore, the first objective of this study was to identify and determine the structural constituents of the forage plants that were available to our research group. Furthermore, in an attempt to demonstrate the biological activities of the isolated chemical compounds, we focused on solving some of the social issues affecting Mongolian communities, including protozoan diseases affecting livestock, vectors of infectious diseases, and the general health of humans and their livestock. The results of the chemical constituents derived from Mongolian medicinal plants and their biological activities that were studied in the recent decade are also described herein.
Collapse
Affiliation(s)
- Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome, Aoba-ku, Sendai, 981-8558, Japan.
| | - Javzan Batkhuu
- School of Engineering and Applied Sciences, National University of Mongolia, POB-617/46A, Ulaanbaatar, 14201, Mongolia
| |
Collapse
|
11
|
Bedrosian N, Mitchell E, Rohm E, Rothe M, Kelly C, String G, Lantagne D. A Systematic Review of Surface Contamination, Stability, and Disinfection Data on SARS-CoV-2 (Through July 10, 2020). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4162-4173. [PMID: 33227206 DOI: 10.1021/acs.est.0c05651] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We conducted a systematic review of hygiene intervention effectiveness against SARS-CoV-2, including developing inclusion criteria, conducting the search, selecting articles for inclusion, and summarizing included articles. Overall, 96 268 articles were screened and 78 articles met inclusion criteria with outcomes in surface contamination, stability, and disinfection. Surface contamination was assessed on 3343 surfaces using presence/absence methods. Laboratories had the highest percent positive surfaces (21%, n = 83), followed by patient-room healthcare facility surfaces (17%, n = 1170), non-COVID-patient-room healthcare facility surfaces (12%, n = 1429), and household surfaces (3%, n = 161). Surface stability was assessed using infectivity, SARS-CoV-2 survived on stainless steel, plastic, and nitrile for half-life 2.3-17.9 h. Half-life decreased with temperature and humidity increases, and was unvaried by surface type. Ten surface disinfection tests with SARS-CoV-2, and 15 tests with surrogates, indicated sunlight, ultraviolet light, ethanol, hydrogen peroxide, and hypochlorite attain 99.9% reduction. Overall there was (1) an inability to align SARS-CoV-2 contaminated surfaces with survivability data and effective surface disinfection methods for these surfaces; (2) a knowledge gap on fomite contribution to SARS-COV-2 transmission; (3) a need for testing method standardization to ensure data comparability; and (4) a need for research on hygiene interventions besides surfaces, particularly handwashing, to continue developing recommendations for interrupting SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Noah Bedrosian
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Elizabeth Mitchell
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Elsa Rohm
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Miguel Rothe
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Christine Kelly
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Gabrielle String
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Daniele Lantagne
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| |
Collapse
|
12
|
The Hydroalcoholic Extract of Uncaria tomentosa (Cat's Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6679761. [PMID: 33680061 PMCID: PMC7929665 DOI: 10.1155/2021/6679761] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 2019 (COVID-19) has become a serious problem for public health since it was identified in the province of Wuhan (China) and spread around the world producing high mortality rates and economic losses. Nowadays, the WHO recognizes traditional, complementary, and alternative medicine for treating COVID-19 symptoms. Therefore, we investigated the antiviral potential of the hydroalcoholic extract of Uncaria tomentosa stem bark from Peru against SARS-CoV-2 in vitro. The antiviral activity of U. tomentosa against SARS-CoV-2 in vitro was assessed in Vero E6 cells using cytopathic effect (CPE) and plaque reduction assay. After 48 h of treatment, U. tomentosa showed an inhibition of 92.7% of SARS-CoV-2 at 25.0 μg/mL (p < 0.0001) by plaque reduction assay on Vero E6 cells. In addition, U. tomentosa induced a reduction of 98.6% (p=0.02) and 92.7% (p=0.03) in the CPE caused by SARS-CoV-2 on Vero E6 cells at 25 μg/mL and 12.5 μg/mL, respectively. The EC50 calculated for the U. tomentosa extract by plaque reduction assay was 6.6 μg/mL (4.89–8.85 μg/mL) for a selectivity index of 4.1. The EC50 calculated for the U. tomentosa extract by TCID50 assay was 2.57 μg/mL (1.05–3.75 μg/mL) for a selectivity index of 10.54. These results showed that U. tomentosa, known as cat's claw, has an antiviral effect against SARS-CoV-2, which was observed as a reduction in the viral titer and CPE after 48 h of treatment on Vero E6 cells. Therefore, we hypothesized that U. tomentosa stem bark could be promising in the development of new therapeutic strategies against SARS-CoV-2.
Collapse
|
13
|
The SARS-CoV-2-Inactivating Activity of Hydroxytyrosol-Rich Aqueous Olive Pulp Extract (HIDROX ®) and Its Use as a Virucidal Cream for Topical Application. Viruses 2021; 13:v13020232. [PMID: 33540713 PMCID: PMC7913061 DOI: 10.3390/v13020232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally. Although measures to control SARS-CoV-2, namely, vaccination, medication, and chemical disinfectants are being investigated, there is an increase in the demand for auxiliary antiviral approaches using natural compounds. Here we have focused on hydroxytyrosol (HT)-rich aqueous olive pulp extract (HIDROX®) and evaluated its SARS-CoV-2-inactivating activity in vitro. We showed that the HIDROX solution exhibits time- and concentration-dependent SARS-CoV-2-inactivating activities, and that HIDROX has more potent virucidal activity than pure HT. The evaluation of the mechanism of action suggested that both HIDROX and HT induced structural changes in SARS-CoV-2, which changed the molecular weight of the spike proteins. Even though the spike protein is highly glycosylated, this change was induced regardless of the glycosylation status. In addition, HIDROX or HT treatment disrupted the viral genome. Moreover, the HIDROX-containing cream applied on film showed time- and concentration-dependent SARS-CoV-2-inactivating activities. Thus, the HIDROX-containing cream can be applied topically as an antiviral hand cream. Our findings suggest that HIDROX contributes to improving SARS-CoV-2 control measures.
Collapse
|
14
|
Shoji M, Sugimoto M, Matsuno K, Fujita Y, Mii T, Ayaki S, Takeuchi M, Yamaji S, Tanaka N, Takahashi E, Noda T, Kido H, Tokuyama T, Tokuyama T, Tokuyama T, Kuzuhara T. A novel aqueous extract from rice fermented with Aspergillus oryzae and Saccharomyces cerevisiae possesses an anti-influenza A virus activity. PLoS One 2021; 16:e0244885. [PMID: 33449947 PMCID: PMC7810313 DOI: 10.1371/journal.pone.0244885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022] Open
Abstract
Human influenza virus infections occur annually worldwide and are associated with high morbidity and mortality. Hence, development of novel anti-influenza drugs is urgently required. Rice Power® extract developed by the Yushin Brewer Co. Ltd. is a novel aqueous extract of rice obtained via saccharization and fermentation with various microorganisms, such as Aspergillus oryzae, yeast [such as Saccharomyces cerevisiae], and lactic acid bacteria, possessing various biological and pharmacological properties. In our previous experimental screening with thirty types of Rice Power® extracts, we observed that the 30th Rice Power® (Y30) extract promoted the survival of influenza A virus-infected Madin-Darby canine kidney (MDCK) cells. Therefore, to identify compounds for the development of novel anti-influenza drugs, we aimed to investigate whether the Y30 extract exhibits anti-influenza A virus activity. In the present study, we demonstrated that the Y30 extract strongly promoted the survival of influenza A H1N1 Puerto Rico 8/34 (A/PR/8/34), California 7/09, or H3N2 Aichi 2/68 (A/Aichi/2/68) viruses-infected MDCK cells and inhibited A/PR/8/34 or A/Aichi/2/68 viruses infection and growth in the co-treatment and pre-infection experiments. The pre-treatment of Y30 extract on MDCK cells did not induce anti-influenza activity in the cell. The Y30 extract did not significantly affect influenza A virus hemagglutination, and neuraminidase and RNA-dependent RNA polymerase activities. Interestingly, the electron microscopy experiment revealed that the Y30 extract disrupts the integrity of influenza A virus particles by permeabilizing the viral membrane envelope, suggesting that Y30 extract has a direct virucidal effect against influenza A virus. Furthermore, we observed that compared to the ethyl acetate (EtOAc) extract, the water extract of Y30 extract considerably promoted the survival of cells infected with A/PR/8/34 virus. These results indicated that more anti-influenza components were present in the water extract of Y30 extract than in the EtOAc extract. Our results highlight the potential of a rice extract fermented with A. oryzae and S. cerevisiae as an anti-influenza medicine and a drug source for the development of anti-influenza compounds.
Collapse
Affiliation(s)
- Masaki Shoji
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- * E-mail: (MS); (TK)
| | - Minami Sugimoto
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Kosuke Matsuno
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Yoko Fujita
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Mii
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Satomi Ayaki
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Misa Takeuchi
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Saki Yamaji
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Narue Tanaka
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Pathology and Metabolome Research for Infectious Disease and Host Defense, Institute for Enzyme Research, University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Kido
- Division of Pathology and Metabolome Research for Infectious Disease and Host Defense, Institute for Enzyme Research, University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | - Takaaki Tokuyama
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | | | - Takashi Tokuyama
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Takashi Kuzuhara
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- * E-mail: (MS); (TK)
| |
Collapse
|