1
|
Fan J, Yu H, Miao F, Ke J, Hu R. Attenuated African swine fever viruses and the live vaccine candidates: a comprehensive review. Microbiol Spectr 2024; 12:e0319923. [PMID: 39377589 PMCID: PMC11537121 DOI: 10.1128/spectrum.03199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 04/22/2024] [Indexed: 10/09/2024] Open
Abstract
The African swine fever virus (ASFV) is spreading worldwide and causing huge economic losses to the global pig industry. The ASFV genome is 170-193 kb in length, contains approximately 150 open reading frames, and encodes more than 200 proteins, most of which have unknown functions. Owing to the unique viral structure, replication strategy, large number of genes of unknown function, and complicated pathogenesis, vaccine development research is challenging. Several naturally attenuated ASFV isolates have been extensively investigated and many genetically manipulated, gene-deleted, and cell-adapted ASFVs have been reported. Currently, live attenuated viruses prepared from weakly virulent strains are an efficient method to provide effective protection in vaccinated pigs; however, these have seldom been widely approved for vaccine use, except in Vietnam. Herein, we summarize the attenuated isolates or vaccine candidates for live vaccines derived from different sources, including naturally mutated, attenuated, cell-adapted, and genetically modified recombinant ASFVs. This will help to understand the gene function and immunogenicity of attenuated live ASFV, as well as the shortcomings of these viruses as vaccine candidates, and provide clues to prepare live, efficient, and safe vaccines for African swine fever.IMPORTANCEOutbreaks of African swine fever (ASF) have caused devastating losses to the global pig industry. Pigs immunized with ASFV attenuated virus can resist the lethal challenge of a strongly virulent virus. Here, we summarize the virulence of naturally mutated, cell-adapted, and genetically recombinant ASFV for pigs, and the protective effect after facing an attack challenge. We also analyze the advantages and disadvantages of ASFV attenuated viruses as vaccine candidates to provide clues for the preparation of efficient and safe live African swine fever vaccines.
Collapse
Affiliation(s)
- Jiaqi Fan
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
| | - Haisheng Yu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Faming Miao
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Junnan Ke
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Rongliang Hu
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
2
|
Franzoni G, Fiori MS, Mura L, Carta T, Di Nardo A, Floris M, Ferretti L, Zinellu S, Angioi PP, Sechi AM, Carusillo F, Brundu D, Fadda M, Bazzardi R, Giammarioli M, Cappai S, Dei Giudici S, Oggiano A. In vitro phenotypic characterisation of two genotype I African swine fever viruses with genomic deletion isolated from Sardinian wild boars. Vet Res 2024; 55:73. [PMID: 38849962 PMCID: PMC11157848 DOI: 10.1186/s13567-024-01332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
African swine fever virus (ASFV) causes a devastating disease affecting domestic and wild pigs. ASF was first introduced in Sardinia in 1978 and until 2019 only genotype I isolates were identified. A remarkable genetic stability of Sardinian ASFV isolates was described, nevertheless in 2019 two wild boar isolates with a sustained genomic deletion (4342 base pairs) were identified (7303WB/19, 7212WB/19). In this study, we therefore performed in vitro experiments with monocyte-derived macrophages (moMФ) to unravel the phenotypic characteristics of these deleted viruses. Both 7303WB/19 and 7212WB/19 presented a lower growth kinetic in moMФ compared to virulent Sardinian 26544/OG10, using either a high (1) or a low (0.01) multiplicity of infection (MOI). In addition, flow cytometric analysis showed that both 7303WB/19 and 7212WB/19 presented lower intracellular levels of both early and late ASFV proteins. We subsequently investigated whether deleted virus variants were previously circulating in wild boars in Sardinia. In the four years preceding the last genotype I isolation (February 2015-January 2019), other eight wild boar isolates were collected, all belonging to p72 genotype I, B602L subgroup X, but none of them presented a sustained genomic deletion. Overall, we observed the deleted virus isolates in Sardinia only in 2019, at the end of a strong eradication campaign, and our data suggest that it might possess an attenuated phenotype in vivo. A better understanding of ASFV evolution in endemic territories might contribute to development of effective control measures against ASF.
Collapse
Affiliation(s)
- Giulia Franzoni
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy.
| | - Mariangela S Fiori
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
| | - Lorena Mura
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
| | - Tania Carta
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | - Antonello Di Nardo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Luca Ferretti
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
| | - Susanna Zinellu
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
| | - Pier Paolo Angioi
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
| | - Anna Maria Sechi
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
| | | | - Diego Brundu
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
| | - Manlio Fadda
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | - Riccardo Bazzardi
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
| | - Monica Giammarioli
- National Swine Fever Laboratory, Istituto Zooprofilattico Sperimentale Dell'Umbria e Delle Marche, 06126, Perugia, Italy
| | - Stefano Cappai
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
| | - Silvia Dei Giudici
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
| | - Annalisa Oggiano
- Istituto Zooprofilattico Sperimentale Della Sardegna, 07100, Sassari, Italy
| |
Collapse
|
3
|
Thaweerattanasinp T, Kaewborisuth C, Viriyakitkosol R, Saenboonrueng J, Wanitchang A, Tanwattana N, Sonthirod C, Sangsrakru D, Pootakham W, Tangphatsornruang S, Jongkaewwattana A. Adaptation of African swine fever virus to MA-104 cells: Implications of unique genetic variations. Vet Microbiol 2024; 291:110016. [PMID: 38340553 DOI: 10.1016/j.vetmic.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal, contagious disease specifically in pigs. However, prevention and control of ASFV outbreaks have been hampered by the lack of an effective vaccine or antiviral treatment for ASFV. Although ASFV has been reported to adapt to a variety of continuous cell lines, the phenotypic and genetic changes associated with ASFV adaptation to MA-104 cells remain poorly understood. Here, we adapted ASFV field isolates to efficiently propagate through serial viral passages in MA-104 cells. The adapted ASFV strain developed a pronounced cytopathic effect and robust infection in MA-104 cells. Interestingly, the adapted variant maintained its tropism in primary porcine kidney macrophages. Whole genome analysis of the adapted virus revealed unique gene deletions in the left and right variable regions of the viral genome compared to other previously reported cell culture-adapted ASFV strains. Notably, gene duplications at the 5' and 3' ends of the viral genome were in reverse complementary alignment with their paralogs. Single point mutations in protein-coding genes and intergenic regions were also observed in the viral genome. Collectively, our results shed light on the significance of these unique genetic changes during adaptation, which facilitate the growth of ASFV in MA-104 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chutima Sonthirod
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Duangjai Sangsrakru
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wirulda Pootakham
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sithichoke Tangphatsornruang
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | | |
Collapse
|
4
|
Ramirez-Medina E, Velazquez-Salinas L, Rai A, Espinoza N, Valladares A, Silva E, Burton L, Spinard E, Meyers A, Risatti G, Calvelage S, Blome S, Gladue DP, Borca MV. Evaluation of the Deletion of the African Swine Fever Virus Gene O174L from the Genome of the Georgia Isolate. Viruses 2023; 15:2134. [PMID: 37896911 PMCID: PMC10612027 DOI: 10.3390/v15102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
African swine fever virus (ASFV) is a structurally complex, double-stranded DNA virus, which causes African swine fever (ASF), a contagious disease affecting swine. ASF is currently affecting pork production in a large geographical region, including Eurasia and the Caribbean. ASFV has a large genome, which harbors more than 160 genes, but most of these genes' functions have not been experimentally characterized. One of these genes is the O174L gene which has been experimentally shown to function as a small DNA polymerase. Here, we demonstrate that the deletion of the O174L gene from the genome of the virulent strain ASFV Georgia2010 (ASFV-G) does not significantly affect virus replication in vitro or in vivo. A recombinant virus, having deleted the O174L gene, ASFV-G-∆O174L, was developed to study the effect of the O174L protein in replication in swine macrophages cultures in vitro and disease production when inoculated in pigs. The results demonstrated that ASFV-G-∆O174L has similar replication kinetics to parental ASFV-G in swine macrophage cultures. In addition, animals intramuscularly inoculated with 102 HAD50 of ASFV-G-∆O174L presented a clinical form of the disease that is indistinguishable from that induced by the parental virulent strain ASFV-G. All animals developed a lethal disease, being euthanized around day 7 post-infection. Therefore, although O174L is a well-characterized DNA polymerase, its function is apparently not critical for the process of virus replication, both in vitro and in vivo, or for disease production in domestic pigs.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Alyssa Valladares
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Leeanna Burton
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Edward Spinard
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Amanda Meyers
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Guillermo Risatti
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA;
| | - Sten Calvelage
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.C.); (S.B.)
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.C.); (S.B.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| |
Collapse
|
5
|
Lu P, Zhou J, Wei S, Takada K, Masutani H, Okuda S, Okamoto K, Suzuki M, Kitamura T, Masujin K, Kokuho T, Itoh H, Nagata K. Comparative genomic and transcriptomic analyses of African swine fever virus strains. Comput Struct Biotechnol J 2023; 21:4322-4335. [PMID: 37711186 PMCID: PMC10497913 DOI: 10.1016/j.csbj.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
African swine fever (ASF) is the most devastating disease caused by the African swine fever virus (ASFV), impacting the pig industry worldwide and threatening food security and biodiversity. Although two vaccines have been approved in Vietnam to combat ASFV, the complexity of the virus, with its numerous open reading frames (ORFs), necessitates a more diverse vaccine strategy. Therefore, we focused on identifying and investigating the potential vaccine targets for developing a broad-spectrum defense against the virus. This study collected the genomic and/or transcriptomic data of different ASFV strains, specifically from in vitro studies, focusing on comparisons between genotypes I, II, and X, from the National Center for Biotechnology Information (NCBI) database. The comprehensive analysis of the genomic and transcriptomic differences between high- and low-virulence strains revealed six early genes, 13 late genes, and six short genes as potentially essential ORFs associated with high-virulence. In addition, many other ORFs (e.g., 14 multigene family members) are worth investigating. The results of this study provided candidate ORFs for developing ASF vaccines and therapies.
Collapse
Affiliation(s)
- Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jiaqiao Zhou
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sibo Wei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Konosuke Takada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hayato Masutani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Suguru Okuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoya Kitamura
- African Swine Fever Unit, National Institute of Animal Health, National A griculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo, Japan
| | - Kentaro Masujin
- African Swine Fever Unit, National Institute of Animal Health, National A griculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo, Japan
| | - Takehiro Kokuho
- African Swine Fever Unit, National Institute of Animal Health, National A griculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo, Japan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Ramirez-Medina E, Rai A, Espinoza N, Valladares A, Silva E, Velazquez-Salinas L, Borca MV, Gladue DP. Deletion of the H240R Gene in African Swine Fever Virus Partially Reduces Virus Virulence in Swine. Viruses 2023; 15:1477. [PMID: 37515164 PMCID: PMC10384018 DOI: 10.3390/v15071477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
African swine fever (ASF) is a highly contagious disease that affects wild and domestic swine. Currently, the disease is present as a pandemic affecting pork production in Eurasia and the Caribbean region. The etiological agent of ASF is a large, highly complex structural virus (ASFV) harboring a double-stranded genome encoding for more than 160 proteins whose functions, in most cases, have not been experimentally characterized. We show here that deletion of the ASFV gene H240R from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) isolate partially decreases virus virulence when experimentally inoculated in domestic swine. ASFV-G-∆H240R, a recombinant virus harboring the deletion of the H240R gene, was produced to evaluate the function of the gene in the development of disease in pigs. While all animals intramuscularly inoculated with 102 HAD50 of ASFV-G developed a fatal form of the disease, forty percent of pigs receiving a similar dose of ASFV-G-∆H240R survived the infection, remaining healthy during the 28-day observational period, and the remaining sixty percent developed a protracted but fatal form of the disease compared to that induced by ASFV-G. Additionally, all animals inoculated with ASFV-G-∆H240R presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G. Animals surviving infection with ASFV-G-∆H240R developed a strong virus-specific antibody response and were protected against the challenge of the virulent parental ASFV-G.
Collapse
Affiliation(s)
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Alyssa Valladares
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | | | - Manuel V Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Douglas P Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| |
Collapse
|
7
|
Ramirez-Medina E, Vuono EA, Rai A, Espinoza N, Valladares A, Spinard E, Velazquez-Salinas L, Gladue DP, Borca MV. Evaluation of the Function of ASFV Gene E66L in the Process of Virus Replication and Virulence in Swine. Viruses 2023; 15:v15020566. [PMID: 36851779 PMCID: PMC9965554 DOI: 10.3390/v15020566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of an economically important disease of swine currently affecting large areas of Africa, Eurasia and the Caribbean. ASFV has a complex structure harboring a large dsDNA genome which encodes for more than 160 proteins. One of the proteins, E66L, has recently been involved in arresting gene transcription in the infected host cell. Here, we investigate the role of E66L in the processes of virus replication in swine macrophages and disease production in domestic swine. A recombinant ASFV was developed (ASFV-G-∆E66L), from the virulent parental Georgia 2010 isolate (ASFV-G), harboring the deletion of the E66L gene as a tool to assess the role of the gene. ASFV-G-∆E66L showed that the E66L gene is non-essential for ASFV replication in primary swine macrophages when compared with the parental highly virulent field isolate ASFV-G. Additionally, domestic pigs infected with ASFV-G-∆E66L developed a clinical disease undistinguishable from that produced by ASFV-G. Therefore, E66L is not involved in virus replication or virulence in domestic pigs.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Elizabeth A. Vuono
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Ayushi Rai
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Alyssa Valladares
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Edward Spinard
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.)
| |
Collapse
|
8
|
Fiori MS, Ferretti L, Di Nardo A, Zhao L, Zinellu S, Angioi PP, Floris M, Sechi AM, Denti S, Cappai S, Franzoni G, Oggiano A, Dei Giudici S. A Naturally Occurring Microhomology-Mediated Deletion of Three Genes in African Swine Fever Virus Isolated from Two Sardinian Wild Boars. Viruses 2022; 14:2524. [PMID: 36423133 PMCID: PMC9693351 DOI: 10.3390/v14112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a lethal disease of domestic pigs and wild boars. ASF threatens the pig industry worldwide due to the lack of a licensed vaccine or treatment. The disease has been endemic for more than 40 years in Sardinia (Italy), but an intense campaign pushed it close to eradication; virus circulation was last detected in wild boars in 2019. In this study, we present a genomic analysis of two ASFV strains isolated in Sardinia from two wild boars during the 2019 hunting season. Both isolates presented a deletion of 4342 base pairs near the 5' end of the genome, encompassing the genes MGF 360-6L, X69R, and MGF 300-1L. The phylogenetic evidence suggests that the deletion recently originated within the Sardinia ecosystem and that it is most likely the result of a non-allelic homologous recombination driven by a microhomology present in most Sardinian ASFV genomes. These results represent a striking example of a genomic feature promoting the rapid evolution of structural variations and plasticity in the ASFV genome. They also raise interesting questions about the functions of the deleted genes and the potential link between the evolutionary timing of the deletion appearance and the eradication campaign.
Collapse
Affiliation(s)
- Mariangela Stefania Fiori
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Luca Ferretti
- Nuffield Department of Medicine, Big Data Institute and Pandemic Sciences Institute, University of Oxford, Oxford OX1 4BH, UK
| | | | - Lele Zhao
- Nuffield Department of Medicine, Big Data Institute and Pandemic Sciences Institute, University of Oxford, Oxford OX1 4BH, UK
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Anna Maria Sechi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Stefano Denti
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Stefano Cappai
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| |
Collapse
|
9
|
Ramirez-Medina E, Vuono E, Pruitt S, Rai A, Espinoza N, Valladares A, Spinard E, Silva E, Velazquez-Salinas L, Gladue DP, Borca MV. ASFV Gene A151R Is Involved in the Process of Virulence in Domestic Swine. Viruses 2022; 14:v14081834. [PMID: 36016456 PMCID: PMC9413758 DOI: 10.3390/v14081834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a swine pandemic affecting a large geographical area extending from Central Europe to Asia. The viral disease was also recently identified in the Dominican Republic and Haiti. ASFV is a structurally complex virus with a large dsDNA genome that encodes for more than 150 genes. Most of these genes have not been experimentally characterized. One of these genes, A151R, encodes for a nonstructural protein and has been reported to be required for the replication of a Vero-cell-adapted ASFV strain. Here, we evaluated the role of the A151R gene in the context of the highly virulent field isolate Georgia 2010 (ASFV-G) during virus replication in swine macrophage cell cultures and during experimental infection in swine. We show that the recombinant virus ASFV-G-∆A151R, harboring a deletion of the A151R gene, replicated in swine macrophage cultures as efficiently as the parental virus ASFV-G, indicating that the A151R gene is not required for ASFV replication in swine macrophages. Interestingly, experimental infection of domestic pigs demonstrated that ASFV-G-∆A151R had a decreased replication rate and produced a drastic reduction in virus virulence. Animals were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A151R and compared with pigs receiving a similar dose of virulent ASFV-G. All ASFV-G-infected pigs developed an acute lethal form of the disease, while those inoculated with ASFV-G-∆A151R remained healthy during the 28-day observational period, with the exception of only one showing a protracted, but fatal, form of the disease. All ASFV-G-∆A151R surviving animals presented protracted viremias with lower virus titers than those detected in ASFV-G-infected animals. In addition, three out of the four animals surviving the infection with ASFV-G-∆A151R were protected against the challenge with the virulent parental virus ASFV-G. This is the first report indicating that the ASFV A151R gene is involved in virus virulence in domestic swine, suggesting that its deletion may be used to increase the safety profile of currently experimental vaccines.
Collapse
Affiliation(s)
| | - Elizabeth Vuono
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39762, USA
| | - Sarah Pruitt
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Alyssa Valladares
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Edward Spinard
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | | | - Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.)
| |
Collapse
|
10
|
Vuono EA, Ramirez-Medina E, Pruitt S, Rai A, Espinoza N, Spinard E, Valladares A, Silva E, Velazquez-Salinas L, Borca MV, Gladue DP. Deletion of the EP296R Gene from the Genome of Highly Virulent African Swine Fever Virus Georgia 2010 Does Not Affect Virus Replication or Virulence in Domestic Pigs. Viruses 2022; 14:1682. [PMID: 36016304 PMCID: PMC9415450 DOI: 10.3390/v14081682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
African swine fever virus (ASFV) causes a lethal disease (ASF) in domestic pigs, African swine fever (ASF). ASF is currently producing a pandemic affecting pig production across Eurasia, leading to a shortage of food accessibility. ASFV is structurally complex, harboring a large genome encoding over 150 genes. One of them, EP296R, has been shown to encode for an endonuclease that is necessary for the efficient replication of the virus in swine macrophages, the natural ASFV target cell. Here, we report the development of a recombinant virus, ASFV-G-∆EP296R, harboring the deletion of the EP296R gene from the genome of the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). The recombinant ASFV-G-∆EP296R replicates in primary swine macrophages with similar kinetics as the parental virus ASFV-G. Pigs experimentally infected by the intramuscular route with 102 HAD50 show a slightly protracted, although lethal, presentation of the disease when compared to that of animals inoculated with parental ASFV-G. Viremia titers in the ASFV-G-∆EP296R-infected animals closely followed the kinetics of presentation of clinical disease. Results presented here demonstrate that ASFV-G-∆EP296R is not essential for the processes of ASFV replication in swine macrophages, nor is it radically involved in the process of virus replication or disease production in domestic pigs.
Collapse
Affiliation(s)
- Elizabeth A. Vuono
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Oxford, MS 39762, USA
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Sarah Pruitt
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Edward Spinard
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Alyssa Valladares
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| |
Collapse
|
11
|
Ramirez-Medina E, Vuono EA, Pruitt S, Rai A, Espinoza N, Valladares A, Silva E, Velazquez-Salinas L, Borca MV, Gladue DP. Deletion of African Swine Fever Virus Histone-like Protein, A104R from the Georgia Isolate Drastically Reduces Virus Virulence in Domestic Pigs. Viruses 2022; 14:v14051112. [PMID: 35632853 PMCID: PMC9146580 DOI: 10.3390/v14051112] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a frequently lethal disease, ASF, affecting domestic and wild swine. Currently, ASF is causing a pandemic affecting pig production in Eurasia. There are no vaccines available, and therefore control of the disease is based on culling infected animals. We report here that deletion of the ASFV gene A104R, a virus histone-like protein, from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) strain induces a clear decrease in virus virulence when experimentally inoculated in domestic swine. A recombinant virus lacking the A104R gene, ASFV-G-∆A104R, was developed to assess the role of the A104R gene in disease production in swine. Domestic pigs were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A104R, and compared with animals that received a similar dose of virulent ASFV-G. While all ASFV-G inoculated animals developed a fatal form of the disease, animals receiving ASFV-G-∆A104R survived the challenge, remaining healthy during the 28-day observational period, with the exception of only one showing a protracted but fatal form of the disease. ASFV-G-∆A104R surviving animals presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G, and all of them developed a strong virus-specific antibody response. This is the first report demonstrating that the A104R gene is involved in ASFV virulence in domestic swine, suggesting that A104R deletion may be used to increase the safety profile of currently experimental vaccines.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Elizabeth A. Vuono
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39762, USA
| | - Sarah Pruitt
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Alyssa Valladares
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Correspondence: (M.V.B.); (D.P.G.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Correspondence: (M.V.B.); (D.P.G.)
| |
Collapse
|
12
|
Gladue DP, Borca MV. Recombinant ASF Live Attenuated Virus Strains as Experimental Vaccine Candidates. Viruses 2022; 14:v14050878. [PMID: 35632620 PMCID: PMC9146452 DOI: 10.3390/v14050878] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is causing a pandemic affecting swine in a large geographical area of the Eastern Hemisphere, from Central Europe to East and Southeast Asia, and recently in the Americas, the Dominican Republic and Haiti. The etiological agent, ASF virus (ASFV), infects both domestic and wild swine and produces a variety of clinical presentations depending on the virus strain and the genetics of the pigs infected. No commercial vaccines are currently available, although experimental recombinant live attenuated vaccine candidates have been shown to be efficacious in protecting animals against disease when challenged with homologous virulent strains. This review attempts to systematically provide an overview of all the live attenuated strains that have been shown to be experimental vaccine candidates. Moreover, it aims to analyze the development of these vaccine candidates, obtained by deleting specific genes or group of genes, and their efficacy in preventing virus infection and clinical disease after being challenged with virulent isolates. This report summarizes all the experimental vaccine strains that have shown promise against the contemporary pandemic strain of African swine fever.
Collapse
|
13
|
Zhang Y, Ke J, Zhang J, Yue H, Chen T, Li Q, Zhou X, Qi Y, Zhu R, Wang S, Miao F, Zhang S, Li N, Mi L, Yang J, Yang J, Han X, Wang L, Li Y, Hu R. I267L Is Neither the Virulence- Nor the Replication-Related Gene of African Swine Fever Virus and Its Deletant Is an Ideal Fluorescent-Tagged Virulence Strain. Viruses 2021; 14:v14010053. [PMID: 35062257 PMCID: PMC8777747 DOI: 10.3390/v14010053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF) which reaches up to 100% case fatality in domestic pigs and wild boar and causes significant economic losses in the swine industry. Lack of knowledge of the function of ASFV genes is a serious impediment to the development of the safe and effective vaccine. Herein, I267L was identified as a relative conserved gene and an early expressed gene. A recombinant virus (SY18ΔI267L) with I267L gene deletion was produced by replacing I267L of the virulent ASFV SY18 with enhanced green fluorescent protein (EGFP) cassette. The replication kinetics of SY18ΔI267L is similar to that of the parental isolate in vitro. Moreover, the doses of 102.0 TCID50 (n = 5) and 105.0 TCID50 (n = 5) SY18ΔI267L caused virulent phenotype, severe clinical signs, viremia, high viral load, and mortality in domestic pigs inoculated intramuscularly as the virulent parental virus strain. Therefore, the deletion of I267L does not affect the replication or the virulence of ASFV. Utilizing the fluorescent-tagged virulence deletant can be easy to gain a visual result in related research such as the inactivation effect of some drugs, disinfectants, extracts, etc. on ASFV.
Collapse
Affiliation(s)
- Yanyan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Junnan Ke
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (J.K.); (J.Y.)
| | - Jingyuan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Huixian Yue
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Teng Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Qian Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Xintao Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Yu Qi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Rongnian Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Shuchao Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Faming Miao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Shoufeng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Lijuan Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Jinjin Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (J.K.); (J.Y.)
| | - Jinmei Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Xun Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Lidong Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Ying Li
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (J.K.); (J.Y.)
- Correspondence: (Y.L.); (R.H.)
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
- Correspondence: (Y.L.); (R.H.)
| |
Collapse
|
14
|
Ramirez-Medina E, Vuono EA, Pruitt S, Rai A, Espinoza N, Velazquez-Salinas L, Gladue DP, Borca MV. Evaluation of an ASFV RNA Helicase Gene A859L for Virus Replication and Swine Virulence. Viruses 2021; 14:v14010010. [PMID: 35062213 PMCID: PMC8777736 DOI: 10.3390/v14010010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
African swine fever virus (ASFV) is producing a devastating pandemic that, since 2007, has spread to a contiguous geographical area from central Europe to Asia. In July 2021, ASFV was detected in the Dominican Republic, the first report of the disease in the Americas in more than 40 years. ASFV is a large, highly complex virus harboring a large dsDNA genome that encodes for more than 150 genes. The majority of these genes have not been functionally characterized. Bioinformatics analysis predicts that ASFV gene A859L encodes for an RNA helicase, although its function has not yet been experimentally assessed. Here, we evaluated the role of the A859L gene during virus replication in cell cultures and during infection in swine. For that purpose, a recombinant virus (ASFV-G-∆A859L) harboring a deletion of the A859L gene was developed using the highly virulent ASFV Georgia (ASFV-G) isolate as a template. Recombinant ASFV-G-∆A859L replicates in swine macrophage cultures as efficiently as the parental virus ASFV-G, demonstrating that the A859L gene is non-essential for ASFV replication. Experimental infection of domestic pigs demonstrated that ASFV-G-∆A859L replicates as efficiently and induces a clinical disease indistinguishable from that caused by the parental ASFV-G. These studies conclude that the predicted RNA helicase gene A859L is not involved in the processes of virus replication or disease production in swine.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, Orient, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
| | - Elizabeth A. Vuono
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, Orient, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Sarah Pruitt
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, Orient, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, Orient, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, Orient, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, Orient, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, Orient, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
- Correspondence: (D.P.G.); (M.V.B.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, Orient, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
- Correspondence: (D.P.G.); (M.V.B.)
| |
Collapse
|
15
|
Deletion of the A137R Gene from the Pandemic Strain of African Swine Fever Virus Attenuates the Strain and Offers Protection against the Virulent Pandemic Virus. J Virol 2021; 95:e0113921. [PMID: 34406865 DOI: 10.1128/jvi.01139-21] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
African swine fever virus (ASFV) is causing a devastating pandemic in domestic and wild swine within an extended geographical area from Central Europe to East Asia, resulting in economic losses for the regional swine industry. There are no commercial vaccines; therefore, disease control relies on identification and culling of infected animals. We report here that the deletion of the ASFV gene A137R from the highly virulent ASFV-Georgia2010 (ASFV-G) isolate induces a significant attenuation of virus virulence in swine. A recombinant virus lacking the A137R gene, ASFV-G-ΔA137R, was developed to assess the role of this gene in ASFV virulence in domestic swine. Animals inoculated intramuscularly with 102 50% hemadsorption doses (HAD50) of ASFV-G-ΔA137R remained clinically healthy during the 28-day observational period. All animals inoculated with ASFV-G-ΔA137R had medium to high viremia titers and developed a strong virus-specific antibody response. Importantly, all ASFV-G-ΔA137R-inoculated animals were protected when challenged with the virulent parental strain ASFV-G. No evidence of replication of challenge virus was observed in the ASFV-G-ΔA137R-inoculated animals. Therefore, ASFV-G-ΔA137R is a novel potential live attenuated vaccine candidate and one of the few experimental vaccine strains reported to induce protection against the highly virulent ASFV Georgia virus that is the cause of the current Eurasian pandemic. IMPORTANCE No commercial vaccine is available to prevent African swine fever. The ASF pandemic caused by ASFV Georgia2007 strain (ASFV-G) is seriously affecting pork production in a contiguous area from Central Europe to East Asia. Here we report the rational development of a potential live attenuated vaccine strain by deleting a virus-specific gene, A137R, from the genome of ASFV-G. The resulting virus presented a completely attenuated phenotype and, importantly, animals infected with this genetically modified virus were protected from developing ASF after challenge with the virulent parental virus. ASFV-G-ΔA137R confers protection even at low doses (102 HAD50), demonstrating its potential as a vaccine candidate. Therefore, ASFV-G-ΔA137R is a novel experimental ASF vaccine protecting pigs from the epidemiologically relevant ASFV Georgia isolate.
Collapse
|
16
|
African Swine Fever Virus E120R Protein Inhibits Interferon Beta Production by Interacting with IRF3 To Block Its Activation. J Virol 2021; 95:e0082421. [PMID: 34190598 DOI: 10.1128/jvi.00824-21] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
African swine fever is a devastating disease of swine caused by African swine fever virus (ASFV). The pathogenesis of the disease remains largely unknown, leaving the spread of the disease uncontrolled in many countries and regions. Here, we identified E120R, a structural protein of ASFV, as a key virulence factor and late-phase-expressed protein of the virus. E120R revealed an activity to suppress the host antiviral response through blocking beta interferon (IFN-β) production, and the amino acids (aa) at sites 72 and 73 (amino acids 72-73) in the C-terminal domain were essential for this function. E120R interacted with interferon regulatory factor 3 (IRF3) and interfered with the recruitment of IRF3 to TANK-binding kinase 1 (TBK1), which in turn suppressed IRF3 phosphorylation, decreasing interferon production. A recombinant mutant ASFV was further constructed to confirm the claimed mechanism. The ASFV lacking the complete E120R region could not be rescued, whereas the virus could tolerate the deletion of the 72nd and 73rd residues in E120R (ASFV E120R-Δ72-73aa). ASFV E120R with the two-amino-acid deletion failed to interact with IRF3 during ASFV E120R-Δ72-73aa infection, and the viral infection activated IRF3 phosphorylation highly and induced more robust type I interferon production than its parental ASFV. An unbiased transcriptome-wide analysis of gene expression also confirmed that considerably more IFN-stimulated genes (ISGs) were detected in ASFV E120R-Δ72-73aa-infected porcine alveolar macrophages (PAMs) than in wild-type ASFV-infected PAMs. Together, our findings have identified a novel mechanism evolved by ASFV to inhibit the host antiviral response, and they provide a new target for guiding the development of ASFV live-attenuated vaccine. IMPORTANCE African swine fever is a highly contagious animal disease affecting the pig industry worldwide, which has brought enormous economic losses. Infection by the causative agent, African swine fever virus (ASFV), causes severe immunosuppression during viral infection, contributing to serious clinical manifestations. Therefore, identification of the viral proteins involved in immunosuppression is critical for ASFV vaccine design and development. Here, for the first time, we demonstrated that E120R protein, a structural protein of ASFV, played an important role in suppression of interferon regulatory factor 3 (IRF3) phosphorylation and type I interferon production by binding to IRF3 and blocking the recruitment of IRF3 to TANK-binding kinase 1 (TBK1). Deletion of the crucial binding sites in E120R critically increased the interferon response during ASFV infection. This study explored a novel antagonistic mechanism of ASFV, which is critical for guiding the development of ASFV live-attenuated vaccines.
Collapse
|
17
|
Wang T, Wang L, Han Y, Pan L, Yang J, Sun M, Zhou P, Sun Y, Bi Y, Qiu HJ. Adaptation of African swine fever virus to HEK293T cells. Transbound Emerg Dis 2021; 68:2853-2866. [PMID: 34314096 DOI: 10.1111/tbed.14242] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022]
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with high morbidity and mortality in domestic pigs. Although adaptation of ASFV to Vero cells has been investigated, the phenotypic changes and the corresponding genomic variations during adaptation of ASFV to other cell lines remain unclear. To obtain a cell-adapted ASFV strain, different cell lines were tested to determine whether they support ASFV infection. Interestingly, the ASFV wild-type strain ASFV-HLJ/18 can infect HEK293T cells and replicate at a low level. After continuous passaging, the adapted ASFV strain can replicate efficiently in both HEK293T and Vero cells. However, the adapted ASFV strain displayed reduced infectivity in primary porcine alveolar macrophages compared to the corresponding wild-type strain. Furthermore, stepwise losses at the left variable end of the MGF genes and accumulative mutations were identified during passaging, indicating that the ASFV strain gradually adapted to HEK293T cells. Comparison of MGF deletions in other cell culture-adapted ASFV strains revealed that the deletions of MGF300 (1L, 2R and 4L) and MGF360 genes (8L, 9L, 10L and 11L) play an important role for the adaptation of ASFV to HEK293T cells at the early stage. The biological functions of the deletions and mutants associated with ASFV infection in HEK293T cells and pigs warrant further study. Overall, our findings provide new targets to elucidate the molecular mechanism of adaptation of ASFV to cell lines.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning, CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, China
| | - Yu Han
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Pan
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning, CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, China
| | - Maowen Sun
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pingping Zhou
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning, CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
18
|
Borca MV, Rai A, Ramirez-Medina E, Silva E, Velazquez-Salinas L, Vuono E, Pruitt S, Espinoza N, Gladue DP. A Cell Culture-Adapted Vaccine Virus against the Current African Swine Fever Virus Pandemic Strain. J Virol 2021; 95:e0012321. [PMID: 33952643 PMCID: PMC8315737 DOI: 10.1128/jvi.00123-21] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
African swine fever virus (ASFV) causes a virulent, deadly infection in wild and domestic swine and is currently causing a pandemic covering a contiguous geographical area from Central and Eastern Europe to Asia. No commercial vaccines are available to prevent African swine fever (ASF), resulting in devastating economic losses to the swine industry. The most advanced vaccine candidates are live attenuated strains developed using a genetically modified virulent parental virus. Recently, we developed a vaccine candidate, ASFV-G-ΔI177L, by deleting the I177L gene from the genome of the highly virulent ASFV pandemic strain Georgia (ASFV-G). ASFV-G-ΔI177L is safe and highly efficacious in challenge studies using parental ASFV-G. Large-scale production of ASFV-G-ΔI177L has been limited because it can replicate efficiently only in primary swine macrophages. Here, we present the development of an ASFV-G-ΔI177L derivative strain, ASFV-G-ΔI177L/ΔLVR, that replicates efficiently in a stable porcine cell line. In challenge studies, ASFV-G-ΔI177L/ΔLVR maintained the same level of attenuation, immunogenic characteristics, and protective efficacy as ASFV-G-ΔI177L. ASFV-G-ΔI177L/ΔLVR is the first rationally designed ASF vaccine candidate that can be used for large-scale commercial vaccine manufacture. IMPORTANCE African swine fever is currently causing a pandemic resulting in devastating losses to the swine industry. Experimental ASF vaccines rely on the production of vaccine in primary swine macrophages, which are difficult to use for the production of a vaccine on a commercial level. Here, we report a vaccine for ASFV with a deletion in the left variable region (LVR). This deletion allows for growth in stable cell cultures while maintaining the potency and efficacy of the parental vaccine strain. This discovery will allow for the production of an ASF vaccine on a commercial scale.
Collapse
Affiliation(s)
- M. V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
| | - A. Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, USA
| | - E. Ramirez-Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Mansfield, Connecticut, USA
| | - E. Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - L. Velazquez-Salinas
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - E. Vuono
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - S. Pruitt
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
| | - N. Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
| | - D. P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA
| |
Collapse
|
19
|
Vuono EA, Ramirez-Medina E, Pruitt S, Rai A, Espinoza N, Velazquez-Salinas L, Gladue DP, Borca MV. Evaluation of the Function of the ASFV KP177R Gene, Encoding for Structural Protein p22, in the Process of Virus Replication and in Swine Virulence. Viruses 2021; 13:986. [PMID: 34073222 PMCID: PMC8227490 DOI: 10.3390/v13060986] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
African swine fever virus (ASFV) causes a devastating disease of swine that has caused outbreaks in Central Europe since 2007, spreading into Asia in 2018. ASFV is a large, structurally complex virus with a large dsDNA genome encoding for more than 160 genes, most of them still uncharacterized. p22, encoded by the ASFV gene KP177R, is an early transcribed, structural virus protein located in the ASFV particle. Although its exact function is unknown, p22 has recently been identified as an interacting partner of several host proteins. Here, we describe the development of a recombinant ASFV (ASFV-G-∆KP177R) lacking the KP177R gene as a tool to evaluate the role of p22 in virus replication and virulence in swine. The recombinant ASFV-G-∆KP177R demonstrated that the KP177R gene is non-essential for ASFV replication in primary swine macrophages, with virus yields similar to those of the parental, highly virulent field isolate Georgia2010 (ASFV-G). In addition, experimental infection of domestic pigs with ASFV-G-∆KP177R produced a clinical disease similar to that caused by the parental ASFV-G. Therefore, and surprisingly, p22 does not seem to be involved in virus replication or virulence in swine.
Collapse
Affiliation(s)
- Elizabeth A. Vuono
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
| | - Sarah Pruitt
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (L.V.-S.)
| |
Collapse
|
20
|
Ramirez-Medina E, Vuono E, Pruitt S, Rai A, Silva E, Espinoza N, Zhu J, Velazquez-Salinas L, Borca MV, Gladue DP. Development and In Vivo Evaluation of a MGF110-1L Deletion Mutant in African Swine Fever Strain Georgia. Viruses 2021; 13:286. [PMID: 33673255 PMCID: PMC7918709 DOI: 10.3390/v13020286] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
African swine fever (ASF) is currently causing an epizootic, affecting pigs throughout Eurasia, and causing significant economic losses in the swine industry. ASF is caused by African swine fever virus (ASFV) that consists of a large dsDNA genome that encodes for more than 160 genes; few of these genes have been studied in detail. ASFV contains four multi-gene family (MGF) groups of genes that have been implicated in regulating the immune response and host specificity; however, the individual roles of most of these genes have not been well studied. Here, we describe the evaluation of the previously uncharacterized ASFV MGF110-1L open reading frame (ORF) using a deletion mutant of the ASFV currently circulating throughout Eurasia. The recombinant ASFV lacking the MGF110-1L gene (ASFV-G-ΔMGF110-1L) demonstrated in vitro that the MGF110-1L gene is non-essential, since ASFV-G-ΔMGF110-1L had similar replication kinetics in primary swine macrophage cell cultures when compared to parental highly virulent field isolate Georgia2007 (ASFV-G). Experimental infection of domestic pigs with ASFV-G-ΔMGF110-1L produced a clinical disease similar to that caused by the parental ASFV-G, confirming that deletion of the MGF110-1L gene from the ASFV genome does not affect viral virulence.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA; (E.R.-M.); (E.V.); (S.P.); (A.R.); (E.S.); (N.E.); (J.Z.); (L.V.-S.)
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Elizabeth Vuono
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA; (E.R.-M.); (E.V.); (S.P.); (A.R.); (E.S.); (N.E.); (J.Z.); (L.V.-S.)
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39762, USA
| | - Sarah Pruitt
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA; (E.R.-M.); (E.V.); (S.P.); (A.R.); (E.S.); (N.E.); (J.Z.); (L.V.-S.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA; (E.R.-M.); (E.V.); (S.P.); (A.R.); (E.S.); (N.E.); (J.Z.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA; (E.R.-M.); (E.V.); (S.P.); (A.R.); (E.S.); (N.E.); (J.Z.); (L.V.-S.)
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA; (E.R.-M.); (E.V.); (S.P.); (A.R.); (E.S.); (N.E.); (J.Z.); (L.V.-S.)
| | - James Zhu
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA; (E.R.-M.); (E.V.); (S.P.); (A.R.); (E.S.); (N.E.); (J.Z.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA; (E.R.-M.); (E.V.); (S.P.); (A.R.); (E.S.); (N.E.); (J.Z.); (L.V.-S.)
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA; (E.R.-M.); (E.V.); (S.P.); (A.R.); (E.S.); (N.E.); (J.Z.); (L.V.-S.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA; (E.R.-M.); (E.V.); (S.P.); (A.R.); (E.S.); (N.E.); (J.Z.); (L.V.-S.)
| |
Collapse
|
21
|
Evaluation in Swine of a Recombinant Georgia 2010 African Swine Fever Virus Lacking the I8L Gene. Viruses 2020; 13:v13010039. [PMID: 33383814 PMCID: PMC7823879 DOI: 10.3390/v13010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever, a disease currently causing significant economic losses in Europe and Asia. Specifically, the highly virulent ASFV strain Georgia 2010 (ASFV-G) is producing disease outbreaks in this large geographical region. The ASFV genome encodes for over 150 genes, most of which are still not experimentally characterized. I8L is a highly conserved gene that has not been studied beyond its initial description as a virus ORF. Transcriptional analysis of swine macrophages infected with ASFV-G demonstrated that the I8L gene is transcribed early during the virus replication cycle. To assess the importance of I8L during ASFV-G replication in vitro and in vivo, as well as its role in virus virulence in domestic swine, we developed a recombinant virus lacking the I8L gene (ASFV-G-ΔI8L). Replication of ASFV-G-ΔI8L was similar to parental ASFV-G replication in primary swine macrophage cultures, suggesting that the I8L gene is not essential for ASFV-G replication in vitro. Similarly, replication of ASFV-G-ΔI8L in swine intramuscularly inoculated with 102 HAD50 displayed replication kinetics similar to ASFV-G. In addition, animals inoculated with ASFV-G-ΔI8L presented with a clinical disease indistinguishable from that induced by the same dose of the virulent parental ASFV-G isolate. We conclude that deletion of the I8L gene from ASFV-G does not affect virus replication in vitro or in vivo, nor changes the disease outcome in swine.
Collapse
|