1
|
Andrew A, Sum MSH, Ch'ng ES, Tang TH, Citartan M. Selection of DNA aptamers against Chikungunya virus Envelope 2 Protein and their application in sandwich ELASA. Talanta 2025; 281:126842. [PMID: 39305759 DOI: 10.1016/j.talanta.2024.126842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024]
Abstract
Chikungunya fever, caused by Chikungunya virus (CHIKV) exhibits clinical features that mimic that of other arbovirus infections such as dengue. CHIKV Envelope 2 (E2) protein, an antigenic epitope of CHIKV, has been identified as an ideal marker for diagnostics. The current CHIKV antigen detection tests are largely based on antibodies but are beleaguered by issues such as sensitivity to high temperature, expensive and prone to batch-to-batch variations. Aptamers are suitable alternatives to antibodies as they are cheaper and have no batch-to-batch variations compared to antibodies. In this study, DNA aptamer selection against CHIKV E2 proteins was performed using two different randomized ssDNA libraries. Chik-2 (96-mer) and Chik-3 (76-mer) were isolated from these two libraries and were identified as the potential aptamers against CHIKV E2 protein. The binding affinity of Chik-2 and Chik-3 against CHIKV E2 protein was estimated at 177.5 ± 32.69 nM and 30.01 ± 3.60 nM, respectively. A sandwich ELASA was developed, and this assay showed a detection limit of 2.17 x 103 PFU/mL. The sensitivity and specificity of the assay were 80 % and 100 %, respectively. The assay showed no cross-reactivity with dengue-positive samples, demonstrating the enormous diagnostic potential of these aptamers for the detection of CHIKV.
Collapse
Affiliation(s)
- Anna Andrew
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia; Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Magdline S H Sum
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Gaffar S, Nurbayanti SH, Hartati YW, Novianti MT, Novitriani K, Ishmayana S, Yusuf M, Subroto T. Expression of scFv-anti-CHIKV-E2 in Escherichia coli with chaperones Co-expression, and its functional assay by electrochemical immunosensor. J Immunoassay Immunochem 2024; 45:307-324. [PMID: 38776466 DOI: 10.1080/15321819.2024.2356639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Single Chain Variable Fragment (scFv), a small fragment of antibody can be used to substitute the monoclonal antibody for diagnostic purposes. Production of scFv in Escherichia coli host has been a challenge due to the potential miss-folding and formation of inclusion bodies. This study aimed to express anti-CHIKV E2 scFv which previously designed specifically for Asian strains by co-expression of three chaperones that play a role in increasing protein solubility; GroEL, GroES, and Trigger Factor. The scFv and chaperones were expressed in Origami B E. coli host under the control of the T7 promoter, and purified using a Ni-NTA column. Functional assay of anti-CHIKV-E2 scFv was examined by electrochemical immunosensor using gold modified Screen Printed Carbon Electrode (SPCE), and characterized by differential pulses voltammetry (DPV) using K3[Fe(CN)6] redox system and scanning microscope electron (SEM). The experimental condition was optimized using the Box-Behnken design. The results showed that co-expression of chaperone increased the soluble scFv yield from 54.405 μg/mL to 220.097 µg/mL (~5×). Furthermore, scFv can be used to detect CHIKV-E2 in immunosensor electrochemistry with a detection limit of 0.74048 ng/mL and a quantification limit of 2,24388 ng/mL. Thus, the scFv-anti-CHIKV-E2 can be applied as a bioreceptor in another immunoassay method.
Collapse
Affiliation(s)
- Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Molecular Biology and Bioinformatic, Universitas Padjadjaran, Bandung, Indonesia
- Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Siti Hesti Nurbayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Mia Tria Novianti
- Research Center of Molecular Biology and Bioinformatic, Universitas Padjadjaran, Bandung, Indonesia
| | - Korry Novitriani
- Department of Medical Laboratory Technology, Universitas Bakti Tunas Husada, Tasikmalaya, Indonesia
| | - Safri Ishmayana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
3
|
He J, Zhu S, Zhou J, Jiang W, Yin L, Su L, Zhang X, Chen Q, Li X. Rapid detection of SARS-CoV-2: The gradual boom of lateral flow immunoassay. Front Bioeng Biotechnol 2023; 10:1090281. [PMID: 36704307 PMCID: PMC9871317 DOI: 10.3389/fbioe.2022.1090281] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still in an epidemic situation, which poses a serious threat to the safety of people and property. Rapid diagnosis and isolation of infected individuals are one of the important methods to control virus transmission. Existing lateral flow immunoassay techniques have the advantages of rapid, sensitive, and easy operation, and some new options have emerged with the continuous development of nanotechnology. Such as lateral flow immunoassay test strips based on colorimetric-fluorescent dual-mode and gold nanoparticles, Surface Enhanced Raman Scattering, etc., these technologies have played an important role in the rapid diagnosis of COVID-19. In this paper, we summarize the current research progress of lateral flow immunoassay in the field of Severe Acute Respiratory Syndrome Coronavirus 2 infection diagnosis, analyze the performance of Severe Acute Respiratory Syndrome Coronavirus 2 lateral flow immunoassay products, review the advantages and limitations of different detection methods and markers, and then explore the competitive CRISPR-based nucleic acid chromatography detection method. This method combines the advantages of gene editing and lateral flow immunoassay and can achieve rapid and highly sensitive lateral flow immunoassay detection of target nucleic acids, which is expected to be the most representative method for community and clinical point-of-care testing. We hope that researchers will be inspired by this review and strive to solve the problems in the design of highly sensitive targets, the selection of detection methods, and the enhancement of CRISPR technology, to truly achieve rapid, sensitive, convenient, and specific detection of novel coronaviruses, thus promoting the development of novel coronavirus diagnosis and contributing our modest contribution to the world's fight against epidemics.
Collapse
|
4
|
Moreira J, Brasil P, Dittrich S, Siqueira AM. Mapping the global landscape of chikungunya rapid diagnostic tests: A scoping review. PLoS Negl Trop Dis 2022; 16:e0010067. [PMID: 35878158 PMCID: PMC9352193 DOI: 10.1371/journal.pntd.0010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background Chikungunya (CHIKV) is a reemerging arboviral disease and represents a global health threat because of the unprecedented magnitude of its spread. Diagnostics strategies rely heavily on reverse transcriptase-polymerase chain reaction (RT-PCR) and antibody detection by enzyme-linked Immunosorbent assay (ELISA). Rapid diagnostic tests (RDTs) are available and promise to decentralize testing and increase availability at lower healthcare system levels. Objectives We aim to identify the extent of research on CHIKV RDTs, map the global availability of CHIKV RDTs, and evaluate the accuracy of CHIKV RDTs for the diagnosis of CHIKV. Eligibility criteria We included studies reporting symptomatic individuals suspected of CHIKV, tested with CHIKV RDTs, against the comparator being a validated laboratory-based RT-PCR or ELISA assay. The primary outcome was the accuracy of the CHIKV RDT when compared with reference assays. Sources of evidence Medline, EMBASE, and Scopus were searched from inception to 13 October 2021. National regulatory agencies (European Medicines Agency, US Food and Drug Administration, and the Brazilian National Health Surveillance Agency) were also searched for registered CHIKV RDTs. Results Seventeen studies were included and corresponded to 3,222 samples tested with RDTs between 2005 and 2018. The most development stage of CHIKV RDTs studies was Phase I (7/17 studies) and II (7/17 studies). No studies were in Phase IV. The countries that manufacturer the most CHIKV RDTs were Brazil (n = 17), followed by the United States of America (n = 7), and India (n = 6). Neither at EMA nor FDA-registered products were found. Conversely, the ANVISA has approved 23 CHIKV RDTs. Antibody RDTs (n = 43) predominated and demonstrated sensitivity between 20% and 100%. The sensitivity of the antigen RDTs ranged from 33.3% to 100%. Conclusions The landscape of CHIKV RDTs is fragmented and needs coordinated efforts to ensure that patients in CHIKV-endemic areas have access to appropriate RDTs. Further research is crucial to determine the impact of such tests on integrated fever case management and prescription practices for acute febrile patients.
Collapse
Affiliation(s)
- José Moreira
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Ensino & Pesquisa, Instituto Nacional de Cardiologia, Rio de Janeiro, Brazil
- * E-mail:
| | - Patrícia Brasil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sabine Dittrich
- Malaria & Fever Department, Foundation for Innovative New Diagnostics, Geneva, Switzerland
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - André M. Siqueira
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
A Chikungunya Virus Multiepitope Recombinant Protein Expressed from the Binary System Insect Cell/Recombinant Baculovirus Is Useful for Laboratorial Diagnosis of Chikungunya. Microorganisms 2022; 10:microorganisms10071451. [PMID: 35889170 PMCID: PMC9316945 DOI: 10.3390/microorganisms10071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus currently distributed worldwide, causing a disease that shares clinical signs and symptoms with other illnesses, such as dengue and Zika and leading to a challenging clinical differential diagnosis. In Brazil, CHIKV emerged in 2014 with the simultaneous introduction of both Asian and East/Central/South African (ECSA) genotypes. Laboratorial diagnosis of CHIKV is mainly performed by molecular and serological assays, with the latter more widely used. Although many commercial kits are available, their costs are still high for many underdeveloped and developing countries where the virus circulates. Here we described the development and evaluation of a multi-epitope recombinant protein-based IgG-ELISA (MULTREC IgG-ELISA) test for the specific detection of anti-CHIKV antibodies in clinical samples, as an alternative approach for laboratorial diagnosis. The MULTREC IgG-ELISA showed 86.36% of sensitivity and 100% of specificity, and no cross-reactivity with other exanthematic diseases was observed. The recombinant protein was expressed from the binary system insect cell/baculovirus using the crystal-forming baculoviral protein polyhedrin as a carrier of the target recombinant protein to facilitate recovery. The crystals were at least 10 times smaller in size and had an amorphous shape when compared to the polyhedrin wild-type crystal. The assay uses a multi-epitope antigen, representing two replicates of 18 amino acid sequences from the E2 region and a sequence of 17 amino acids from the nsP3 region of CHIKV. The recombinant protein was highly expressed, easy to purify and has demonstrated its usefulness in confirming chikungunya exposure, indeed showing a good potential tool for epidemiological surveillance.
Collapse
|
6
|
Islamuddin M, Ali A, Khan WH, Ali A, Hasan SK, Abdullah M, Kato K, Abdin MZ, Parveen S. Development of Highly Sensitive Sandwich ELISA for the Early-Phase Diagnosis of Chikungunya Virus Utilizing rE2-E1 Protein. Infect Drug Resist 2022; 15:4065-4078. [PMID: 35924014 PMCID: PMC9342874 DOI: 10.2147/idr.s347545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Chikungunya is caused by an alpha virus transmitted to humans by an infected mosquito. Infection is generally considered to be self-limiting and non-critical. Chikungunya infection may be diagnosed by severe joint pain with fever, but it is difficult to diagnose because the symptoms of chikungunya are common to many pathogens, including dengue fever. Diagnosis mainly depends on viral culture, reverse transcriptase polymerase chain reaction (RT-PCR), and IgM ELISA. Early and accurate diagnosis of the virus can be achieved by the application of PCR methods, but the high cost and the need for a thermal cycler restrict the use of such methods. On the other hand, antibody-based IgM ELISA is considered to be inexpensive, but antibodies against chikungunya virus (CHIKV) only develop after 4 days of infection, so it has limited application in the earlier diagnosis of viral infection and the management of patients. Because of these challenges, a simple antigen-based sensitive, specific, and rapid detection method is required for the early and accurate clinical diagnosis of chikungunya. Methods The amino acid sequence of CHIKV ectodomain E1 and E2 proteins was analyzed using bioinformatics tools to determine the antigenic residues, particularly the B-cell epitopes and their characteristics. Recombinant E2-E1 CHIKV antigen was used for the development of polyclonal antibodies in hamsters and IgG was purified. Serological tests of 96 CHIKV patients were conducted by antigen-capture ELISA using primary antibodies raised against rCHIKV E2-E1 in hamsters and human anti-CHIKV antibodies. Results We observed high specificity and sensitivity, of 100% and 95.8%, respectively, and these values demonstrate the efficiency of the test as a clinical diagnostic tool. There was no cross-reactivity with samples taken from dengue patients. Discussion Our simple and sensitive sandwich ELISA for the early-phase detection of CHIKV infection may be used to improve the diagnosis of chikungunya.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Correspondence: Mohammad Islamuddin; Shama Parveen, Email ;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Wajihul Hasan Khan
- Molecular Virology Lab, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Syed Kazim Hasan
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Abdullah
- Microbiology Laboratory, Ansari Health Center, Jamia Millia Islamia, New Delhi 110025, India
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Malik Zainul Abdin
- Department of Biotechnology, School of Chemical and Life Sciences, Hamdard University, New Delhi 110026, India
| | - Shama Parveen
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
7
|
Salcedo N, Reddy A, Gomez AR, Bosch I, Herrera BB. Monoclonal antibody pairs against SARS-CoV-2 for rapid antigen test development. PLoS Negl Trop Dis 2022; 16:e0010311. [PMID: 35358198 PMCID: PMC9004783 DOI: 10.1371/journal.pntd.0010311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/12/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The focus on laboratory-based diagnosis of coronavirus disease 2019 (COVID-19) warrants alternative public health tools such as rapid antigen tests. While there are a number of commercially available antigen tests to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), all cross-react with the genetically similar SARS-CoV-1 or require an instrument for results interpretation. METHODOLOGY/PRINCIPAL FINDINGS We developed and validated rapid antigen tests that use pairs of murine-derived monoclonal antibodies (mAbs), along with gold nanoparticles, to detect SARS-CoV-2 with or without cross-reaction to SARS-CoV-1 and other coronaviruses. In this development, we demonstrate a robust antibody screening methodology for the selection of mAb pairs that can recognize SARS-CoV-2 spike (S) and nucleocapsid (N) proteins. Linear epitope mapping of the mAbs helped elucidate SARS-CoV-2 S and N interactions in lateral flow chromatography. A candidate rapid antigen test for SARS-CoV-2 N was validated using nasal swab specimens that were confirmed positive or negative by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Test results were image-captured using a mobile phone and normalized signal pixel intensities were calculated; signal intensities were inversely correlated to RT-PCR cycle threshold (Ct) value. CONCLUSION/SIGNIFICANCE Overall, our results suggest that the rapid antigen test is optimized to detect SARS-CoV-2 N during the acute phase of COVID-19. The rapid antigen tests developed in this study are alternative tools for wide scale public health surveillance of COVID-19.
Collapse
Affiliation(s)
- Nol Salcedo
- E25Bio, Inc., Cambridge, Massachusetts, United States of America
| | - Ankita Reddy
- E25Bio, Inc., Cambridge, Massachusetts, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam R. Gomez
- E25Bio, Inc., Cambridge, Massachusetts, United States of America
| | - Irene Bosch
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bobby Brooke Herrera
- E25Bio, Inc., Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Diagnostic accuracy of serological tests for the diagnosis of Chikungunya virus infection: A systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010152. [PMID: 35120141 PMCID: PMC8849447 DOI: 10.1371/journal.pntd.0010152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) causes febrile illnesses and has always been misdiagnosed as other viral infections, such as dengue and Zika; thus, a laboratory test is needed. Serological tests are commonly used to diagnose CHIKV infection, but their accuracy is questionable due to varying degrees of reported sensitivities and specificities. Herein, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of serological tests currently available for CHIKV. METHODOLOGY AND PRINCIPAL FINDINGS A literature search was performed in PubMed, CINAHL Complete, and Scopus databases from the 1st December 2020 until 22nd April 2021. Studies reporting sensitivity and specificity of serological tests against CHIKV that used whole blood, serum, or plasma were included. QUADAS-2 tool was used to assess the risk of bias and applicability, while R software was used for statistical analyses. Thirty-five studies were included in this meta-analysis; 72 index test data were extracted and analysed. Rapid and ELISA-based antigen tests had a pooled sensitivity of 85.8% and 82.2%, respectively, and a pooled specificity of 96.1% and 96.0%, respectively. According to our meta-analysis, antigen detection tests serve as a good diagnostic test for acute-phase samples. The IgM detection tests had more than 90% diagnostic accuracy for ELISA-based tests, immunofluorescence assays, in-house developed tests, and samples collected after seven days of symptom onset. Conversely, low sensitivity was found for the IgM rapid test (42.3%), commercial test (78.6%), and for samples collected less than seven of symptom onset (26.2%). Although IgM antibodies start to develop on day 2 of CHIKV infection, our meta-analysis revealed that the IgM detection test is not recommended for acute-phase samples. The diagnostic performance of the IgG detection tests was more than 93% regardless of the test formats and whether the test was commercially available or developed in-house. The use of samples collected after seven days of symptom onset for the IgG detection test suggests that IgG antibodies can be detected in the convalescent-phase samples. Additionally, we evaluated commercial IgM and IgG tests for CHIKV and found that ELISA-based and IFA commercial tests manufactured by Euroimmun (Lübeck, Germany), Abcam (Cambridge, UK), and Inbios (Seattle, WA) had diagnostic accuracy of above 90%, which was similar to the manufacturers' claim. CONCLUSION Based on our meta-analysis, antigen or antibody-based serological tests can be used to diagnose CHIKV reliably, depending on the time of sample collection. The antigen detection tests serve as a good diagnostic test for samples collected during the acute phase (≤7 days post symptom onset) of CHIKV infection. Likewise, IgM and IgG detection tests can be used for samples collected in the convalescent phase (>7 days post symptom onset). In correlation to the clinical presentation of the patients, the combination of the IgM and IgG tests can differentiate recent and past infections.
Collapse
|
9
|
Lima MDRQ, de Lima RC, de Azeredo EL, dos Santos FB. Analysis of a Routinely Used Commercial Anti-Chikungunya IgM ELISA Reveals Cross-Reactivities with Dengue in Brazil: A New Challenge for Differential Diagnosis? Diagnostics (Basel) 2021; 11:diagnostics11050819. [PMID: 33946597 PMCID: PMC8147240 DOI: 10.3390/diagnostics11050819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
In Brazil, chikungunya emerged in 2014, and by 2016, co-circulated with other arbovirosis, such as dengue and zika. ELISAs (Enzyme-Linked Immunosorbent Assays) are the most widely used approach for arboviruses diagnosis. However, some limitations include antibody cross reactivities when viruses belong to the same genus, and sensitivity variations in distinct epidemiological scenarios. As chikungunya virus (CHIKV) is an alphavirus, no serological cross reactivity with dengue virus (DENV) should be observed. Here, we evaluated a routinely used chikungunya commercial IgM (Immunoglobulin M) ELISA test (Anti-Chikungunya IgM ELISA, Euroimmun) to assess its performance in confirming chikungunya in a dengue endemic area. Samples (n = 340) representative of all four DENV serotypes, healthy individuals and controls were tested. The Anti-CHIKV IgM ELISA test had a sensitivity of 100% and a specificity of 25.3% due to the cross reactivities observed with dengue. In dengue acute cases, the chikungunya test showed an overall cross-reactivity of 31.6%, with a higher cross-reactivity with DENV-4. In dengue IgM positive cases, the assay showed a cross-reactivity of 46.7%. Serological diagnosis may be challenging and, despite the results observed here, more evaluations shall be performed. Because distinct arboviruses co-circulate in Brazil, reliable diagnostic tools are essential for disease surveillance and patient management.
Collapse
|