1
|
Pham AM, Kwun HJ. Casein kinase 1α mediates phosphorylation of the Merkel cell polyomavirus large T antigen for β-TrCP destruction complex interaction and subsequent degradation. mBio 2024; 15:e0111724. [PMID: 38940554 PMCID: PMC11323502 DOI: 10.1128/mbio.01117-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a double-stranded tumor virus that is the main causative agent of Merkel cell carcinoma (MCC). The MCPyV large T antigen (LT), an essential viral DNA replication protein, maintains viral persistence by interacting with host Skp1-Cullin 1-F-box (SCF) E3 ubiquitin ligase complexes, which subsequently induces LT's proteasomal degradation, restricting MCPyV DNA replication. SCF E3 ubiquitin ligases require their substrates to be phosphorylated to bind them, utilizing phosphorylated serine residues as docking sites. The MCPyV LT unique region (MUR) is highly phosphorylated and plays a role in multiple host protein interactions, including SCF E3 ubiquitin ligases. Therefore, this domain highly governs LT stability. Though much work has been conducted to identify host factors that restrict MCPyV LT protein expression, the kinase(s) that cooperates with the SCF E3 ligase remains unknown. Here, we demonstrate that casein kinase 1 alpha (CK1α) negatively regulates MCPyV LT stability and LT-mediated replication by modulating interactions with the SCF β-TrCP. Specifically, we show that numerous CK1 isoforms (α, δ, ε) localize in close proximity to MCPyV LT through in situ proximity ligation assays (PLA) and CK1α overexpression mainly resulted in decreased MCPyV LT protein expression. Inhibition of CK1α using short hairpin RNA (shRNA) and treatment of a CK1α inhibitor or an mTOR inhibitor, TORKinib, resulted in decreased β-TrCP interaction with LT, increased LT expression, and enhanced MCPyV replication. The expression level of the CSNK1A1 gene transcripts is higher in MCPyV-positive MCC, suggesting a vital role of CK1α in limiting MCPyV replication required for establishing persistent infection. IMPORTANCE Merkel cell polyomavirus (MCPyV) large tumor antigen is a polyphosphoprotein and the phosphorylation event is required to modulate various functions of LT, including viral replication. Therefore, cellular kinase pathways are indispensable for governing MCPyV polyomavirus infection and life cycle in coordinating with the immunosuppression environment at disease onset. Understanding the regulation mechanisms of MCPyV replication by viral and cellular factors will guide proper prevention strategies with targeted inhibitors for MCPyV-associated Merkel cell carcinoma (MCC) patients, who currently lack therapies.
Collapse
Affiliation(s)
- Alexander M. Pham
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Hyun Jin Kwun
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Penn State Cancer Institute, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Moens U, Passerini S, Falquet M, Sveinbjørnsson B, Pietropaolo V. Phosphorylation of Human Polyomavirus Large and Small T Antigens: An Ignored Research Field. Viruses 2023; 15:2235. [PMID: 38005912 PMCID: PMC10674619 DOI: 10.3390/v15112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are the most common post-translational modifications mediated by protein kinases and protein phosphatases, respectively. These reversible processes can modulate the function of the target protein, such as its activity, subcellular localization, stability, and interaction with other proteins. Phosphorylation of viral proteins plays an important role in the life cycle of a virus. In this review, we highlight biological implications of the phosphorylation of the monkey polyomavirus SV40 large T and small t antigens, summarize our current knowledge of the phosphorylation of these proteins of human polyomaviruses, and conclude with gaps in the knowledge and a proposal for future research directions.
Collapse
Affiliation(s)
- Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Mar Falquet
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Baldur Sveinbjørnsson
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| |
Collapse
|
3
|
Merkel Cell Polyomavirus Large T Antigen Induces Cellular Senescence for Host Growth Arrest and Viral Genome Persistence through Its Unique Domain. Cells 2023; 12:cells12030380. [PMID: 36766726 PMCID: PMC9913222 DOI: 10.3390/cells12030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Senescent cells accumulate in the host during the aging process and are associated with age-related pathogeneses, including cancer. Although persistent senescence seems to contribute to many aspects of cellular pathways and homeostasis, the role of senescence in virus-induced human cancer is not well understood. Merkel cell carcinoma (MCC) is an aggressive skin cancer induced by a life-long human infection of Merkel cell polyomavirus (MCPyV). Here, we show that MCPyV large T (LT) antigen expression in human skin fibroblasts causes a novel nucleolar stress response, followed by p21-dependent senescence and senescence-associated secretory phenotypes (SASPs), which are required for MCPyV genome maintenance. Senolytic and navitoclax treatments result in decreased senescence and MCPyV genome levels, suggesting a potential therapeutic for MCC prevention. Our results uncover the mechanism of a host stress response regulating human polyomavirus genome maintenance in viral persistency, which may lead to targeted intervention for MCC.
Collapse
|
4
|
Merkel Cell Polyomavirus: Infection, Genome, Transcripts and Its Role in Development of Merkel Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15020444. [PMID: 36672392 PMCID: PMC9857234 DOI: 10.3390/cancers15020444] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
The best characterized polyomavirus family member, i.e., simian virus 40 (SV40), can cause different tumors in hamsters and can transform murine and human cells in vitro. Hence, the SV40 contamination of millions of polio vaccine doses administered from 1955-1963 raised fears that this may cause increased tumor incidence in the vaccinated population. This is, however, not the case. Indeed, up to now, the only polyomavirus family member known to be the most important cause of a specific human tumor entity is Merkel cell polyomavirus (MCPyV) in Merkel cell carcinoma (MCC). MCC is a highly deadly form of skin cancer for which the cellular origin is still uncertain, and which appears as two clinically very similar but molecularly highly different variants. While approximately 80% of cases are found to be associated with MCPyV the remaining MCCs carry a high mutational load. Here, we present an overview of the multitude of molecular functions described for the MCPyV encoded oncoproteins and non-coding RNAs, present the available MCC mouse models and discuss the increasing evidence that both, virus-negative and -positive MCC constitute epithelial tumors.
Collapse
|
5
|
Falquet M, Prezioso C, Ludvigsen M, Bruun JA, Passerini S, Sveinbjørnsson B, Pietropaolo V, Moens U. Regulation of Transcriptional Activity of Merkel Cell Polyomavirus Large T-Antigen by PKA-Mediated Phosphorylation. Int J Mol Sci 2023; 24:ijms24010895. [PMID: 36614338 PMCID: PMC9820997 DOI: 10.3390/ijms24010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. MCPyV large T-antigen (LTag) and small T-antigen (sTag) are the main oncoproteins involved in MCPyV-induced MCC. A hallmark of MCPyV-positive MCC cells is the expression of a C-terminal truncated LTag. Protein kinase A (PKA) plays a fundamental role in a variety of biological processes, including transcription by phosphorylating and thereby regulating the activity of transcription factors. As MCPyV LTag has been shown to be phosphorylated and acts as a transcription factor for the viral early and late promoter, we investigated whether LTag can be phosphorylayted by PKA, and whether this affects the transcript activity of LTag. Using a phosphorylation prediction algorithm, serine 191, 203, and 265 were identified as putative phosphorylation sites for PKA. Mass spectrometry of in vitro PKA-phosphorylated peptides confirmed phosphorylation of S203 and S265, but not S191. Full-length LTag inhibited early and late promoter activity of MCPyV, whereas the truncated MKL2 LTag variant stimulated both promoters. Single non-phosphorylable, as well as phosphomimicking mutations did not alter the inhibitory effect of full-length LTag. However, the non-phosphorylable mutations abrogated transactivation of the MCPyV promoters by MKL2 LTag, whereas phosphomimicking substitutions restored the ability of MKL2 LTag to activate the promoters. Triple LTag and MKL2 LTag mutants had the same effect as the single mutants. Activation of the PKA signaling pathway did not enhance MCPyV promoter activity, nor did it affect LTag expression levels in MCPyV-positive Merkel cell carcinoma (MCC) cells. Our results show that phosphorylation of truncated LTag stimulates viral promoter activity, which may contribute to higher levels of the viral oncoproteins LTag and sTag. Interfering with PKA-induced LTag phosphorylation/activity may be a therapeutic strategy to treat MCPyV-positive MCC patients.
Collapse
Affiliation(s)
- Mar Falquet
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele, 00163 Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Ludvigsen
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jack-Ansgar Bruun
- Department of Medical Biology, Proteomics Platform, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, 17177 Stockholm, Sweden
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (V.P.); (U.M.)
| | - Ugo Moens
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele, 00163 Rome, Italy
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
6
|
Ortiz LE, Pham AM, Kwun HJ. Identification of the Merkel Cell Polyomavirus Large Tumor Antigen Ubiquitin Conjugation Residue. Int J Mol Sci 2021; 22:ijms22137169. [PMID: 34281220 PMCID: PMC8267701 DOI: 10.3390/ijms22137169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/24/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) large tumor (LT) antigen is a DNA binding protein essential for viral gene transcription and genome replication. MCPyV LT interacts with multiple E3 ligases in a phosphorylation-dependent manner, limiting its own viral replication by enhancing LT protein degradation, which is a unique mechanism for MCPyV latency. Thus, identifying LT ubiquitination sites is an important step toward understanding the biological role of these virus-host interactions that can potentially result in viral oncogenesis. The ubiquitin (Ub) attachment sites in LT were predicted by using Rapid UBIquitination (RUBI), a sequence-based ubiquitination web server. Using an immunoprecipitation approach, the lysine (Lys, K) 585 residue in LT is identified as the ubiquitin conjugation site. Lysine 585 is deleted from tumor-derived truncated LTs (tLTs), resulting in stable expression of tLTs present in cancers. Substitution of lysine 585 to arginine (Arg, R) increased LT protein stability, but impaired MCPyV origin replication, due to a loss of ATP hydrolysis activity. These findings uncover a never-before-identified ubiquitination site of LT and its importance not only in the regulation of protein turnover, but also in MCPyV genome replication.
Collapse
Affiliation(s)
- Luz E. Ortiz
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (L.E.O.); (A.M.P.)
| | - Alexander M. Pham
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (L.E.O.); (A.M.P.)
| | - Hyun Jin Kwun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (L.E.O.); (A.M.P.)
- Penn State Cancer Institute, Hershey, PA 17033, USA
- Correspondence: ; Tel.: +1-717-531-7241
| |
Collapse
|