1
|
Tiritelli R, Giannetti D, Schifani E, Grasso DA, Cilia G. Neighbors sharing pathogens: the intricate relationship between Apis mellifera and ants (Hymenoptera: Formicidae) nesting in hives. INSECT SCIENCE 2024. [PMID: 39126179 DOI: 10.1111/1744-7917.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Ants are ubiquitous and eusocial insects that exhibit frequent physical contact among colony members, thereby increasing their susceptibility to diseases. Some species are often found in beehives and in their surroundings, where they exploit the food resources of honey bees. This intricate relationship may facilitate the interspecific transmission of honey bee pathogens to ants, although ants themselves may contribute to spillback phenomena. The objective of this study was to assess the presence and abundance of honey bee pathogens in ants sampled from Italian apiaries. A total of 37 colonies within 24 apiaries across 7 regions were monitored. In total, 6 pathogens were detected in adult ants and 3 in the brood. In particular, the study revealed a high prevalence of honey bee pathogens in ants, with DWV, BQCV, and CBPV being the most commonly encountered. The brood also tested positive for the same viruses. Notably, all analyzed viruses were found to be replicative in both adult ants and ant broods. Furthermore, co-infections were prevalent, suggesting complex pathogen interactions within ant populations. Statistical analysis indicated significant differences in pathogen prevalence and abundance among ant species and sample types. The findings highlight active infection in both the ants and the brood, suggesting a potential role of ants as reservoir hosts and vectors of honey bee pathogens emphasizing the need for further research to understand the implications of interspecific pathogen transmission on ant and bee health.
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Bologna, Italy
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniele Giannetti
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Schifani
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Donato A Grasso
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Bologna, Italy
| |
Collapse
|
2
|
Dos Santos ER, de Camargo BR, da Silva LA, Laumann RA, Ribeiro BM, Ardisson-Araújo DMP. The multispecies stinkbug iflavirus Halyomorpha halys virus detected in the multispecies stinkbug egg parasitoid microwasp, Telenomus podisi (Ashmead) (Hymenoptera: Platygastridae). Braz J Microbiol 2024; 55:1913-1921. [PMID: 38615311 PMCID: PMC11153462 DOI: 10.1007/s42770-024-01340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
Wasps are important parasitoids of stinkbugs and frequently exposed to various types of microorganisms through environmental contact and fecal-oral transmission route. Many parasitize stinkbug eggs and are commercially used in the field to control insect population. The parasitoid T. podisi is known for its high parasitism capacity and ability to target multiple species of stinkbugs. In this study we asked whether T. podisi exposed to eggs infected by a multispecies asymptomatic stinkbug virus, the Halyomorpha halys virus (HhV) would get infected. HhV is a geographically distributed multispecies iflavirus previously found to infect four stinkbug hosts, including three Brazilian species, Chinavia ubica, Euschistus heros and Diceraeus melacanthus, and T. posidi can parasitize all of them. As results, RT-PCR screening revealed positive samples for the HhV genome in two out of four tested pools of T. podisi, whereas the antigenome, indicative of replicative activity, was not detected. The wasps were raised in E. heros eggs that presented both the genome and the antigenome forms of the HhV genome. Subsequent RNA-deep sequencing of HhV positive T. podisi RNA pools yielded a complete genome of HhV with high coverage. Phylogenetic analysis positioned the isolate HhV-Tp (isolate Telenomus podisi) alongside with the stinkbug HhV. Analysis of transcriptomes from several hymenopteran species revealed HhV-Tp reads in four species. However, the transmission mechanism and the ecological significance of HhV remain elusive, warranting further studies to illuminate both the transmission process and its capacity for environmental propagation using T. podisi as a potential vector.
Collapse
Affiliation(s)
- Ethiane Rozo Dos Santos
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Brenda Rabelo de Camargo
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Leonardo Assis da Silva
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Raul Alberto Laumann
- Laboratory of Chemical Ecology, EMBRAPA Genetic Resources and Biotechnology, Brasília, DF, 70770-900, Brazil
| | - Bergmann Morais Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Daniel M P Ardisson-Araújo
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
3
|
Zhang Z, Villalobos EM, Nikaido S, Martin SJ. Seasonal Variability in the Prevalence of DWV Strains in Individual Colonies of European Honeybees in Hawaii. INSECTS 2024; 15:219. [PMID: 38667349 PMCID: PMC11050578 DOI: 10.3390/insects15040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
The most prevalent viral pathogen of honeybees is Deformed Wing Virus (DWV) and its two most widely studied and common master-variants are DWV-A and DWV-B. The prevalence of DWV variants in the UK and in the US is changing, with the prevalence of the DWV-A strain declining and DWV-B increasing over time. In 2012, only DWV-A was detected on the Hawaiian Islands of Oahu. In this study we focused on a colony-level survey of DWV strains in a single apiary and examined the prevalence of DWV variants over the course of two years. In 2018 and 2019, a total of 16 colonies underwent viral testing in January, May, and September. Of those 16 colonies, four were monitored in both 2018 and 2019. Individual colonies showed variability of DWV master variants throughout the sampling period. DWV-A was consistently detected; however, the detection of DWV-B was variable across time in individual colonies. Ultimately, this study demonstrated a seasonal variation in both viral prevalence and load for DWV-B, providing a perspective on the dynamic nature of DWV master variants emerging in Hawaii.
Collapse
Affiliation(s)
- Zhening Zhang
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA; (E.M.V.); (S.N.)
| | - Ethel M. Villalobos
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA; (E.M.V.); (S.N.)
| | - Scott Nikaido
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA; (E.M.V.); (S.N.)
| | - Stephen J. Martin
- School of Environment and Life Sciences, The University of Salford, Manchester M5 4WT, UK;
| |
Collapse
|
4
|
Nikulin SL, Hesketh-Best PJ, Mckeown DA, Spivak M, Schroeder DC. A semi-automated and high-throughput approach for the detection of honey bee viruses in bee samples. PLoS One 2024; 19:e0297623. [PMID: 38483922 PMCID: PMC10939240 DOI: 10.1371/journal.pone.0297623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/10/2024] [Indexed: 03/17/2024] Open
Abstract
Deformed wing virus (DWV) was first detected in dead honey bees in 1982 but has been in honey bees for at least 300 years. Due to its high prevalence and virulence, they have been linked with the ongoing decline in honey bee populations worldwide. A rapid, simple, semi-automated, high-throughput, and cost-effective method of screening colonies for viruses would benefit bee research and the beekeeping industry. Here we describe a semi-automated approach that combines an RNA-grade liquid homogenizer followed by magnetic bead capture for total virus nucleic acid extraction. We compare it to the more commonly applied nucleic acid column-based purification method and use qPCR plus Oxford Nanopore Technologies sequencing to evaluate the accuracy of analytical results for both methods. Our results showed high reproducibility and accuracy for both approaches. The semi-automated method described here allows for faster screening of viral loads in units of 96 samples at a time. We developed this method to monitor viral loads in honey bee colonies, but it could be easily applied for any PCR or genomic-based screening assays.
Collapse
Affiliation(s)
- Sofia Levin Nikulin
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Poppy J. Hesketh-Best
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Dean A. Mckeown
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Marla Spivak
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
5
|
Doublet V, Oddie MAY, Mondet F, Forsgren E, Dahle B, Furuseth-Hansen E, Williams GR, De Smet L, Natsopoulou ME, Murray TE, Semberg E, Yañez O, de Graaf DC, Le Conte Y, Neumann P, Rimstad E, Paxton RJ, de Miranda JR. Shift in virus composition in honeybees ( Apis mellifera) following worldwide invasion by the parasitic mite and virus vector Varroa destructor. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231529. [PMID: 38204792 PMCID: PMC10776227 DOI: 10.1098/rsos.231529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite Varroa destructor that acts as potent virus vector among honeybees Apis mellifera, we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples. We hypothesized that the vector has had an effect on the epidemiology of several bee viruses, potentially altering their transmissibility and/or virulence, and consequently their prevalence, abundance, or both. To test this, we quantified the prevalence and loads of 14 viruses from honeybee samples collected in mite-free and mite-infested populations in four independent geographical regions. The presence of the mite dramatically increased the prevalence and load of deformed wing virus, a cause of unsustainably high colony losses. In addition, several other viruses became more prevalent or were found at higher load in mite-infested areas, including viruses not known to be actively varroa-transmitted, but which may increase opportunistically in varroa-parasitized bees.
Collapse
Affiliation(s)
- Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Melissa A. Y. Oddie
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
- Norwegian Beekeepers Association, Kløfta 2040, Norway
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement, Avignon 84914, France
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta 2040, Norway
| | - Elisabeth Furuseth-Hansen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Geoffrey R. Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
- Entomology & Plant Pathology, Auburn University, Auburn, AL 36832, USA
| | - Lina De Smet
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Myrsini E. Natsopoulou
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Tomás E. Murray
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Emilia Semberg
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
| | - Dirk C. de Graaf
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement, Avignon 84914, France
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Robert J. Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Germany
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| |
Collapse
|
6
|
Cook SC, Ryabov EV, Becker C, Rogers CW, Posada-Florez F, Evans JD, Chen YP. Deformed wing virus of honey bees is inactivated by cold plasma ionized hydrogen peroxide. FRONTIERS IN INSECT SCIENCE 2023; 3:1216291. [PMID: 38469475 PMCID: PMC10926414 DOI: 10.3389/finsc.2023.1216291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/18/2023] [Indexed: 03/13/2024]
Abstract
Deformed wing virus (DWV) is a widespread pathogen of Apis mellifera honey bees, and is considered a major causative factor for the collapse of infected honey bee colonies. DWV can be horizontally transmitted among bees through various oral routes, including via food sharing and by interactions of bees with viral-contaminated solid hive substrates. Cold plasma ionized hydrogen peroxide (iHP) is used extensively by the food production, processing and medical industries to clean surfaces of microbial contaminants. In this study, we investigated the use of iHP to inactivate DWV particles in situ on a solid substrate. iHP-treated DWV sources were ~105-fold less infectious when injected into naïve honey bee pupae compared to DWV receiving no iHP treatment, matching injected controls containing no DWV. iHP treatment also greatly reduced the incidence of overt DWV infections (i.e., pupae having >109 copies of DWV). The level of DWV inactivation achieved with iHP treatment was higher than other means of viral inactivation such as gamma irradiation, and iHP treatment is likely simpler and safer. Treatment of DWV contaminated hive substrates with iHP, even with honey bees present, may be an effective way to decrease the impacts of DWV infection on honey bees.
Collapse
Affiliation(s)
- Steven C. Cook
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Eugene V. Ryabov
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
- Department of Entomology, University of Maryland, College Park, MD, United States
| | | | - Curtis W. Rogers
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Francisco Posada-Florez
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Jay D. Evans
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Yan Ping Chen
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|
7
|
Kunc M, Dobeš P, Ward R, Lee S, Čegan R, Dostálková S, Holušová K, Hurychová J, Eliáš S, Pinďáková E, Čukanová E, Prodělalová J, Petřivalský M, Danihlík J, Havlík J, Hobza R, Kavanagh K, Hyršl P. Omics-based analysis of honey bee (Apis mellifera) response to Varroa sp. parasitisation and associated factors reveals changes impairing winter bee generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103877. [PMID: 36403678 DOI: 10.1016/j.ibmb.2022.103877] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/24/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The extensive annual loss of honey bees (Apis mellifera L.) represents a global problem affecting agriculture and biodiversity. The parasitic mite Varroa destructor, associated with viral co-infections, plays a key role in this loss. Despite years of intensive research, the complex mechanisms of Varroa - honey bee interaction are still not fully defined. Therefore, this study employed a unique combination of transcriptomic, proteomic, metabolomic, and functional analyses to reveal new details about the effect of Varroa mites and naturally associated factors, including viruses, on honey bees. We focused on the differences between Varroa parasitised and unparasitised ten-day-old worker bees collected before overwintering from the same set of colonies reared without anti-mite treatment. Supplementary comparison to honey bees collected from colonies with standard anti-Varroa treatment can provide further insights into the effect of a pyrethroid flumethrin. Analysis of the honey bees exposed to mite parasitisation revealed alterations in the transcriptome and proteome related to immunity, oxidative stress, olfactory recognition, metabolism of sphingolipids, and RNA regulatory mechanisms. The immune response and sphingolipid metabolism were strongly activated, whereas olfactory recognition and oxidative stress pathways were inhibited in Varroa parasitised honey bees compared to unparasitised ones. Moreover, metabolomic analysis confirmed the depletion of nutrients and energy stores, resulting in a generally disrupted metabolism in the parasitised workers. The combined omics-based analysis conducted on strictly parasitised bees revealed the key molecular components and mechanisms underlying the detrimental effects of Varroa sp. and its associated pathogens. This study provides the theoretical basis and interlinked datasets for further research on honey bee response to biological threats and the development of efficient control strategies against Varroa mites.
Collapse
Affiliation(s)
- Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Rachel Ward
- Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| | - Saetbyeol Lee
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Sara Eliáš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eliška Pinďáková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Eliška Čukanová
- Department of Infectious Disease and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Jana Prodělalová
- Department of Infectious Disease and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jaroslav Havlík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
8
|
Mayack C, Hakanoğlu H. Honey Bee Pathogen Prevalence and Interactions within the Marmara Region of Turkey. Vet Sci 2022; 9:vetsci9100573. [PMID: 36288185 PMCID: PMC9610934 DOI: 10.3390/vetsci9100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/12/2022] Open
Abstract
Beekeeping has yet to reach its full potential in terms of productivity in Turkey where it has a relatively large role in the economy. Poor colony health is suspected to be the reason for this, but comprehensive disease monitoring programs are lacking to support this notion. We sampled a total of 115 colonies across five different apiaries throughout the Marmara region of Turkey and screened for all of the major bee pathogens using PCR and RNA-seq methods. We found that Varroa mites are more prevalent in comparison to Nosema infections. The pathogens ABPV, DWV, KV, and VDV1 are near 100% prevalent and are the most abundant across all locations, which are known to be vectored by the Varroa mite. We therefore suspect that controlling Varroa mites will be key for improving bee health in Turkey moving forward. We also documented significant interactions between DWV, KV, and VDV1, which may explain how the more virulent strain of the virus becomes abundant. ABPV had a positive interaction with VDV1, thereby possibly facilitating this more virulent viral strain, but a negative interaction with Nosema ceranae. Therefore, these complex pathogen interactions should be taken into consideration in the future to improve bee health.
Collapse
Affiliation(s)
- Christopher Mayack
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul 34956, Turkey
| | - Haşim Hakanoğlu
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul 34956, Turkey
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
- Correspondence:
| |
Collapse
|
9
|
Paxton RJ, Schäfer MO, Nazzi F, Zanni V, Annoscia D, Marroni F, Bigot D, Laws-Quinn ER, Panziera D, Jenkins C, Shafiey H. Epidemiology of a major honey bee pathogen, deformed wing virus: potential worldwide replacement of genotype A by genotype B. Int J Parasitol Parasites Wildl 2022; 18:157-171. [PMID: 35592272 PMCID: PMC9112108 DOI: 10.1016/j.ijppaw.2022.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023]
Abstract
The western honey bee (Apis mellifera) is of major economic and ecological importance, with elevated rates of colony losses in temperate regions over the last two decades thought to be largely caused by the exotic ectoparasitic mite Varroa destructor and deformed wing virus (DWV), which the mite transmits. DWV currently exists as two main genotypes: the formerly widespread DWV-A and the more recently described and rapidly expanding DWV-B. It is an excellent system to understand viral evolution and the replacement of one viral variant by another. Here we synthesise published results on the distribution and prevalence of DWV-A and -B over the period 2008-2021 and present novel data for Germany, Italy and the UK to suggest that (i) DWV-B has rapidly expanded worldwide since its first description in 2004 and (ii) that it is potentially replacing DWV-A. Both genotypes are also found in wild bee species. Based on a simple mathematical model, we suggest that interference between viral genotypes when co-infecting the same host is key to understanding their epidemiology. We finally discuss the consequences of genotype replacement for beekeeping and for wild pollinator species.
Collapse
Affiliation(s)
- Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marc O. Schäfer
- Institute of Infectology Medicine, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Fabio Marroni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Diane Bigot
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Eoin R. Laws-Quinn
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Christina Jenkins
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Hassan Shafiey
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
10
|
Tehel A, Streicher T, Tragust S, Paxton RJ. Experimental cross species transmission of a major viral pathogen in bees is predominantly from honeybees to bumblebees. Proc Biol Sci 2022; 289:20212255. [PMID: 35168401 PMCID: PMC8848241 DOI: 10.1098/rspb.2021.2255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cross-species transmission of a pathogen from a reservoir to a recipient host species, spillover, can have major impacts on biodiversity, domestic species and human health. Deformed wing virus (DWV) is a panzootic RNA virus in honeybees that is causal in their elevated colony losses, and several correlative field studies have suggested spillover of DWV from managed honeybees to wild bee species such as bumblebees. Yet unequivocal demonstration of DWV spillover is lacking, while spillback, the transmission of DWV from a recipient back to the reservoir host, is rarely considered. Here, we show in fully crossed laboratory experiments that the transmission of DWV (genotype A) from honeybees to bumblebees occurs readily, yet we neither detected viral transmission from bumblebees to honeybees nor onward transmission from experimentally infected to uninoculated bumblebees. Our results support the potential for viral spillover from honeybees to other bee species in the field when robbing resources from heterospecific nests or when visiting the same flowers. They also underscore the importance of studies on the virulence of DWV in wild bee species so as to evaluate viral impact on individual and population fitness as well as viral adaption to new host species.
Collapse
Affiliation(s)
- Anja Tehel
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Tabea Streicher
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Simon Tragust
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China. Viruses 2022; 14:v14020227. [PMID: 35215821 PMCID: PMC8877953 DOI: 10.3390/v14020227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Insect pollinators provide major pollination services for wild plants and crops. Honeybee viruses can cause serious damage to honeybee colonies. However, viruses of other wild pollinating insects have yet to be fully explored. In the present study, we used RNA sequencing to investigate the viral diversity of 50 species of wild pollinating insects. A total of 3 pathogenic honeybee viruses, 8 previously reported viruses, and 26 novel viruses were identified in sequenced samples. Among these, 7 novel viruses were shown to be closely related to honeybee pathogenic viruses, and 4 were determined to have potential pathogenicity for their hosts. The viruses detected in wild insect pollinators were mainly from the order Picornavirales and the families Orthomyxoviridae, Sinhaliviridae, Rhabdoviridae, and Flaviviridae. Our study expanded the species range of known insect pollinator viruses, contributing to future efforts to protect economic honeybees and wild pollinating insects.
Collapse
|
12
|
de Miranda JR, Brettell LE, Chejanovsky N, Childers AK, Dalmon A, Deboutte W, de Graaf DC, Doublet V, Gebremedhn H, Genersch E, Gisder S, Granberg F, Haddad NJ, Kaden R, Manley R, Matthijnssens J, Meeus I, Migdadi H, Milbrath MO, Mondet F, Remnant EJ, Roberts JMK, Ryabov EV, Sela N, Smagghe G, Somanathan H, Wilfert L, Wright ON, Martin SJ, Ball BV. Cold case: The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970's Egypt. Virol J 2022; 19:12. [PMID: 35033134 PMCID: PMC8760790 DOI: 10.1186/s12985-022-01740-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/31/2021] [Indexed: 01/11/2023] Open
Abstract
In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.
Collapse
Affiliation(s)
- Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Renrith, NSW, 2751, Australia.,School of Environment and Life Sciences, University of Salford, Manchester, M5 4WT, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Nor Chejanovsky
- Institute of Plant Protection, The Volcani Center, PO Box 15159, 7528809, Rishon Lezion, Israel
| | - Anna K Childers
- Bee Research Laboratory, Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Anne Dalmon
- Abeilles et Environnement, INRAE, 84914, Avignon, France
| | - Ward Deboutte
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, University of Leuven, 3000, Leuven, Belgium.,Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000, Ghent, Belgium
| | - Vincent Doublet
- College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Haftom Gebremedhn
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000, Ghent, Belgium.,Tigray Agricultural Research Institute, P.O. Box 492, Mekelle, Ethiopia
| | - Elke Genersch
- Institut Für Mikrobiologie Und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany.,Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Sebastian Gisder
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Fredrik Granberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Nizar J Haddad
- Bee Research Department, National Agricultural Research Center, Baq'a, Jordan
| | - Rene Kaden
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.,Clinical Microbiology, Department of Medical Sciences, Uppsala University, 753 09, Uppsala, Sweden
| | - Robyn Manley
- College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, University of Leuven, 3000, Leuven, Belgium
| | - Ivan Meeus
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Hussein Migdadi
- Bee Research Department, National Agricultural Research Center, Baq'a, Jordan
| | - Meghan O Milbrath
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Fanny Mondet
- Abeilles et Environnement, INRAE, 84914, Avignon, France
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Lab, School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2006, Australia
| | - John M K Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, 2601, Australia
| | - Eugene V Ryabov
- Bee Research Laboratory, Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Noa Sela
- Institute of Plant Protection, The Volcani Center, PO Box 15159, 7528809, Rishon Lezion, Israel
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Hema Somanathan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Lena Wilfert
- College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Owen N Wright
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QG, UK
| | - Stephen J Martin
- School of Environment and Life Sciences, University of Salford, Manchester, M5 4WT, UK.,Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Brenda V Ball
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
13
|
Special Issue “Evolution and Diversity of Insect Viruses”. Viruses 2021; 14:v14010002. [PMID: 35062206 PMCID: PMC8781910 DOI: 10.3390/v14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022] Open
|
14
|
Thaduri S, Marupakula S, Terenius O, Onorati P, Tellgren-Roth C, Locke B, de Miranda JR. Global similarity, and some key differences, in the metagenomes of Swedish varroa-surviving and varroa-susceptible honeybees. Sci Rep 2021; 11:23214. [PMID: 34853367 PMCID: PMC8636477 DOI: 10.1038/s41598-021-02652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022] Open
Abstract
There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.
Collapse
Affiliation(s)
- Srinivas Thaduri
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Srisailam Marupakula
- Department of Forestry Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Olle Terenius
- Department of Cellular and Molecular Biology, BioMedical Centre, Uppsala University, Husargatan 3, 751-24, Uppsala, Sweden
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | | | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
| |
Collapse
|
15
|
Grindrod I, Kevill JL, Villalobos EM, Schroeder DC, Martin SJ. Ten Years of Deformed Wing Virus (DWV) in Hawaiian Honey Bees ( Apis mellifera), the Dominant DWV-A Variant Is Potentially Being Replaced by Variants with a DWV-B Coding Sequence. Viruses 2021; 13:969. [PMID: 34073733 PMCID: PMC8225128 DOI: 10.3390/v13060969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
The combination of Deformed wing virus (DWV) and Varroa destructor is arguably one of the greatest threats currently facing western honey bees, Apis mellifera. Varroa's association with DWV has decreased viral diversity and increased loads of DWV within honey bee populations. Nowhere has this been better studied than in Hawaii, where the arrival of Varroa progressively led to the dominance of the single master variant (DWV-A) on both mite-infested Hawaiian Islands of Oahu and Big Island. Now, exactly 10 years following the original study, we find that the DWV population has changed once again, with variants containing the RdRp coding sequence pertaining to the master variant B beginning to co-dominate alongside variants with the DWV-A RdRp sequence on the mite-infested islands of Oahu and Big Island. In speculation, based on other studies, it appears this could represent a stage in the journey towards the complete dominance of DWV-B, a variant that appears better adapted to be transmitted within honey bee colonies.
Collapse
Affiliation(s)
- Isobel Grindrod
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WX, UK;
| | - Jessica L. Kevill
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK;
| | - Ethel M. Villalobos
- College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, 3050 Maile Way, Honolulu, HI 96822, USA;
| | - Declan C. Schroeder
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK;
- Environmental Biology (Virology), School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Stephen John Martin
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WX, UK;
| |
Collapse
|
16
|
Rasmussen C, Dupont YL, Madsen HB, Bogusch P, Goulson D, Herbertsson L, Maia KP, Nielsen A, Olesen JM, Potts SG, Roberts SPM, Sydenham MAK, Kryger P. Evaluating competition for forage plants between honey bees and wild bees in Denmark. PLoS One 2021; 16:e0250056. [PMID: 33909661 PMCID: PMC8081269 DOI: 10.1371/journal.pone.0250056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
A recurrent concern in nature conservation is the potential competition for forage plants between wild bees and managed honey bees. Specifically, that the highly sophisticated system of recruitment and large perennial colonies of honey bees quickly exhaust forage resources leading to the local extirpation of wild bees. However, different species of bees show different preferences for forage plants. We here summarize known forage plants for honey bees and wild bee species at national scale in Denmark. Our focus is on floral resources shared by honey bees and wild bees, with an emphasis on both threatened wild bee species and foraging specialist species. Across all 292 known bee species from Denmark, a total of 410 plant genera were recorded as forage plants. These included 294 plant genera visited by honey bees and 292 plant genera visited by different species of wild bees. Honey bees and wild bees share 176 plant genera in Denmark. Comparing the pairwise niche overlap for individual bee species, no significant relationship was found between their overlap and forage specialization or conservation status. Network analysis of the bee-plant interactions placed honey bees aside from most other bee species, specifically the module containing the honey bee had fewer links to any other modules, while the remaining modules were more highly inter-connected. Despite the lack of predictive relationship from the pairwise niche overlap, data for individual species could be summarized. Consequently, we have identified a set of operational parameters that, based on a high foraging overlap (>70%) and unfavorable conservation status (Vulnerable+Endangered+Critically Endangered), can guide both conservation actions and land management decisions in proximity to known or suspected populations of these species.
Collapse
Affiliation(s)
- Claus Rasmussen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- * E-mail:
| | - Yoko L. Dupont
- Department of Bioscience, Aarhus University, Kalø, Denmark
| | | | - Petr Bogusch
- Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Lina Herbertsson
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Kate Pereira Maia
- Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Anders Nielsen
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway and Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jens M. Olesen
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Simon G. Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Stuart P. M. Roberts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | | | - Per Kryger
- Department of Agroecology, Entomology and Plant Pathology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
17
|
Norton AM, Remnant EJ, Tom J, Buchmann G, Blacquiere T, Beekman M. Adaptation to vector-based transmission in a honeybee virus. J Anim Ecol 2021; 90:2254-2267. [PMID: 33844844 DOI: 10.1111/1365-2656.13493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
Global pollinator declines as a result of emerging infectious diseases are of major concern. Managed honeybees Apis mellifera are susceptible to numerous parasites and pathogens, many of which appear to be transmissible to sympatric non-Apis taxa. The ectoparasitic mite Varroa destructor is considered to be the most significant threat to honeybees due to its role in vectoring RNA viruses, particularly Deformed wing virus (DWV). Vector transmission of DWV has resulted in the accumulation of high viral loads in honeybees and is often associated with colony death. DWV has two main genotypes, A and B. DWV-A was more prevalent during the initial phase of V. destructor establishment. In recent years, the global prevalence of DWV-B has increased, suggesting that DWV-B is better adapted to vector transmission than DWV-A. We aimed to determine the role vector transmission plays in DWV genotype prevalence at a colony level. We experimentally increased or decreased the number of V. destructor mites in honeybee colonies, and tracked DWV-A and DWV-B loads over a period of 10 months. Our results show that the two DWV genotypes differ in their response to mite numbers. DWV-A accumulation in honeybees was positively correlated with mite numbers yet DWV-A was largely undetected in the absence of the mite. In contrast, colonies had high loads of DWV-B even when mite numbers were low. DWV-B loads persisted in miticide-treated colonies, indicating that this genotype has a competitive advantage over DWV-A irrespective of mite numbers. Our findings suggest that the global increase in DWV-B prevalence is not driven by selective pressure by the vector. Rather, DWV-B is able to persist in colonies at higher viral loads relative to DWV-A in the presence and absence of V. destructor. The interplay between V. destructor and DWV genotypes within honeybee colonies may have broad consequences upon viral diversity in sympatric taxa as a result of spillover.
Collapse
Affiliation(s)
- Amanda M Norton
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jolanda Tom
- Wageningen University and Research, Wageningen, The Netherlands
| | - Gabriele Buchmann
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - Madeleine Beekman
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
18
|
Detection of deformed wing virus (DWV) in the Vietnamese walking stick Medauroidea extradentata (Phasmatodea). Virus Res 2020; 293:198263. [PMID: 33359173 DOI: 10.1016/j.virusres.2020.198263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
Deformed wing virus (DWV) is a single-stranded positive sense RNA virus that mainly infects honey bees (Apis mellifera) and can have devastating impacts on the colony. Recent studies have shown the presence of this virus in several species of Apis spp. and some other Hymenoptera, but our knowledge of their host range is very limited. We screened previously sequenced RNAseq libraries from different tissues of Vietnamese Walking Stick, Medauroidea extradentata (Phasmatodea) for DWV. We only found this virus in six libraries from anterior and posterior midgut tissue. From the midgut libraries we were able to construct a complete DWV genome sequence, which consisted of 10,140 nucleotides and included one open reading frame. Pairwise genome comparison confirmed strong similarity (98.89 %) of these assembled sequences with only 113 SNPs to the original DWV genome. We hypothesize the M. extradentata acquired this virus via a foodborne transmission by consuming DWV-infected material such as pollen or leaves contaminated with virus infected bee faeces.
Collapse
|