1
|
Druciarek T, Tzanetakis IE. Invisible vectors, visible impact: The role of eriophyoid mites in emaravirus disease dynamics. Virology 2025; 606:110478. [PMID: 40112629 DOI: 10.1016/j.virol.2025.110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Emaraviruses are segmented, negative-sense RNA viruses that are transmitted by eriophyoid mites. Advances in virus detection and discovery have significantly improved our understanding of these viruses, yet several challenges persist. This review emphasizes the significant gaps in our knowledge of virus replication, transmission dynamics, and plant-virus-vector interactions and highlights the role of mite vectors in the epidemiology and control of emaraviruses. By bridging the knowledge gaps with advanced genomic tools such as high-throughput sequencing and bioinformatics and targeted acarological research we will achieve sustainable control strategies and reduce the impact of emaravirus-caused diseases.
Collapse
Affiliation(s)
- Tobiasz Druciarek
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, Arkansas, 72701, United States; Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, Arkansas, 72701, United States.
| |
Collapse
|
2
|
Carr JP. Engineered Resistance to Tobamoviruses. Viruses 2024; 16:1007. [PMID: 39066170 PMCID: PMC11281658 DOI: 10.3390/v16071007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco mosaic virus (TMV) was the first virus to be studied in detail and, for many years, TMV and other tobamoviruses, particularly tomato mosaic virus (ToMV) and tobamoviruses infecting pepper (Capsicum spp.), were serious crop pathogens. By the end of the twentieth and for the first decade of the twenty-first century, tobamoviruses were under some degree of control due to introgression of resistance genes into commercial tomato and pepper lines. However, tobamoviruses remained important models for molecular biology, biotechnology and bio-nanotechnology. Recently, tobamoviruses have again become serious crop pathogens due to the advent of tomato brown rugose fruit virus, which overcomes tomato resistance against TMV and ToMV, and the slow but apparently inexorable worldwide spread of cucumber green mottle mosaic virus, which threatens all cucurbit crops. This review discusses a range of mainly molecular biology-based approaches for protecting crops against tobamoviruses. These include cross-protection (using mild tobamovirus strains to 'immunize' plants against severe strains), expressing viral gene products in transgenic plants to inhibit the viral infection cycle, inducing RNA silencing against tobamoviruses by expressing virus-derived RNA sequences in planta or by direct application of double-stranded RNA molecules to non-engineered plants, gene editing of host susceptibility factors, and the transfer and optimization of natural resistance genes.
Collapse
Affiliation(s)
- John Peter Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
3
|
Dye AE, Muga B, Mwangi J, Hoyer JS, Ly V, Rosado Y, Sharpee W, Mware B, Wambugu M, Labadie P, Deppong D, Jackai L, Jacobson A, Kennedy G, Ateka E, Duffy S, Hanley-Bowdoin L, Carbone I, Ascencio-Ibáñez JT. Cassava begomovirus species diversity changes during plant vegetative cycles. Front Microbiol 2023; 14:1163566. [PMID: 37303798 PMCID: PMC10248227 DOI: 10.3389/fmicb.2023.1163566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 06/13/2023] Open
Abstract
Cassava is a root crop important for global food security and the third biggest source of calories on the African continent. Cassava production is threatened by Cassava mosaic disease (CMD), which is caused by a complex of single-stranded DNA viruses (family: Geminiviridae, genus: Begomovirus) that are transmitted by the sweet potato whitefly (Bemisia tabaci). Understanding the dynamics of different cassava mosaic begomovirus (CMB) species through time is important for contextualizing disease trends. Cassava plants with CMD symptoms were sampled in Lake Victoria and coastal regions of Kenya before transfer to a greenhouse setting and regular propagation. The field-collected and greenhouse samples were sequenced using Illumina short-read sequencing and analyzed on the Galaxy platform. In the field-collected samples, African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), East African cassava mosaic Kenya virus (EACMKV), and East African cassava mosaic virus-Uganda variant (EACMV-Ug) were detected in samples from the Lake Victoria region, while EACMV and East African mosaic Zanzibar virus (EACMZV) were found in the coastal region. Many of the field-collected samples had mixed infections of EACMV and another begomovirus. After 3 years of regrowth in the greenhouse, only EACMV-like viruses were detected in all samples. The results suggest that in these samples, EACMV becomes the dominant virus through vegetative propagation in a greenhouse. This differed from whitefly transmission results. Cassava plants were inoculated with ACMV and another EACMV-like virus, East African cassava mosaic Cameroon virus (EACMCV). Only ACMV was transmitted by whiteflies from these plants to recipient plants, as indicated by sequencing reads and copy number data. These results suggest that whitefly transmission and vegetative transmission lead to different outcomes for ACMV and EACMV-like viruses.
Collapse
Affiliation(s)
- Anna E. Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Brenda Muga
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Jenniffer Mwangi
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, United States
| | - Vanessa Ly
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Yamilex Rosado
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - William Sharpee
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Benard Mware
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Mary Wambugu
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Paul Labadie
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - David Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Louis Jackai
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - George Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, United States
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | | |
Collapse
|
4
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
5
|
Goodin M, Verchot J. Introduction to Special Issue of Plant Virus Emergence. Viruses 2021; 13:v13010055. [PMID: 33401517 PMCID: PMC7824620 DOI: 10.3390/v13010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
We are pleased to present in this Special Issue a series of reviews and research studies on the topic of "Plant Virus Emergence" [...].
Collapse
Affiliation(s)
- Michael Goodin
- Plant Pathology Department, University of Kentucky, Lexington, KY 40546, USA
- Correspondence: (M.G.); (J.V.); Tel.: +1-979-845-1788 (J.V.)
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA
- Correspondence: (M.G.); (J.V.); Tel.: +1-979-845-1788 (J.V.)
| |
Collapse
|