1
|
László Z, Pankovics P, Urbán P, Herczeg R, Balka G, Igriczi B, Cságola A, Albert M, Tóth F, Reuter G, Boros Á. Multiple Co-Infecting Caliciviruses in Oral Fluid and Enteric Samples of Swine Detected by a Novel RT-qPCR Assay and a 3'RACE-PCR-NGS Method. Viruses 2025; 17:193. [PMID: 40006947 PMCID: PMC11860220 DOI: 10.3390/v17020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Caliciviruses including noro- and sapoviruses of family Caliciviridae are important enteric human and swine pathogens, while others, like valoviruses, are less known. In this study, we developed a detection and typing pipeline for the most prevalent swine enteric caliciviruses-sapovirus GIII (Sw-SaV), norovirus GII (Sw-NoV), and valovirus GI (Sw-VaV). The pipeline integrates triplex RT-qPCR, 3'RACE semi-nested PCR, and next-generation sequencing (NovaSeq, Illumina) techniques. A small-scale epidemiological investigation was conducted on archived enteric and, for the first time, on oral fluid/saliva samples of diarrheic and asymptomatic swine of varying ages from Hungary and Slovakia. In enteric samples, Sw-SaV was the most prevalent, detected in 26.26% of samples, primarily in diarrheic pigs with low Cq values, followed by Sw-NoV (2.53%) in nursery pigs. In oral fluid samples, Sw-NoV predominated (7.46%), followed by Sw-SaV (4.39%). Sw-VaVs were sporadically found in both sample types. A natural, asymptomatic Sw-SaV outbreak was retrospectively detected where the transient shedding of the virus was <2 weeks. Complete capsid sequences (n = 59; 43 Sw-SaV, 13 Sw-NoV, and 3 Sw-VaV) including multiple (up to five) co-infecting variants were identified. Sw-SaV sequences belong to seven genotypes, while Sw-NoV and Sw-VaV strains clustered into distinct sub-clades, highlighting the complex diversity of these enteric caliciviruses in swine.
Collapse
Affiliation(s)
- Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Péter Urbán
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, János Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (P.U.); (R.H.)
| | - Róbert Herczeg
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, János Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (P.U.); (R.H.)
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary; (G.B.); (B.I.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1078 Budapest, Hungary
| | - Barbara Igriczi
- Department of Pathology, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary; (G.B.); (B.I.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1078 Budapest, Hungary
| | - Attila Cságola
- Ceva Phylaxia Ltd., 1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Mihály Albert
- Ceva Phylaxia Ltd., 1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Fruzsina Tóth
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| |
Collapse
|
2
|
Tóth F, Gáspár G, Pankovics P, Urbán P, Herczeg R, Albert M, Reuter G, Boros Á. Co-infecting viruses of species Bovine rhinitis B virus (Picornaviridae) and Bovine nidovirus 1 (Tobaniviridae) identified for the first time from a post-mortem respiratory sample of a sheep (Ovis aries) in Hungary. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 120:105585. [PMID: 38508364 DOI: 10.1016/j.meegid.2024.105585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
In this study, a picornavirus and a nidovirus were identified from a single available nasopharyngeal swab (NPS) sample of a freshly deceased sheep, as the only vertebrate viruses found with viral metagenomics and next-generation sequencing methods. The sample was originated from a mixed feedlot farm in Hungary where sheep and cattle were held together but in separate stalls. Most of the sheep had respiratory signs (coughing and increased respiratory effort) at the time of sampling. Other NPS were not, but additional enteric samples were collected from sheep (n = 27) and cattle (n = 11) of the same farm at that time. The complete/nearly complete genomes of the identified viruses were determined using RT-PCR and Nanopore (MinION-Flonge) / Dye-terminator sequencing techniques. The results of detailed genomic and phylogenetic analyses indicate that the identified picornavirus most likely belongs to a type 4 genotype of species Bovine rhinitis B virus (BRBV-4, OR885914) of genus Aphthovirus, family Picornaviridae while the ovine nidovirus (OvNV, OR885915) - as a novel variant - could belong to the recently created Bovine nidovirus 1 (BoNV) species of genus Bostovirus, family Tobaniviridae. None of the identified viruses were detectable in the enteric samples using RT-PCR and generic screening primer pairs. Both viruses are well-known respiratory pathogens of cattle, but their presence was not demonstrated before in other animals, like sheep. Furthermore, neither BRBV-4 nor BoNVs were investigated in European cattle and/or sheep flocks, therefore it cannot be determined whether the presence of these viruses in sheep was a result of a single host species switch/spillover event or these viruses are circulating in not just cattle but sheep populations as well. Further studies required to investigate the spread of these viruses in Hungarian and European sheep and cattle populations and to identify their pathogenic potential in sheep.
Collapse
Affiliation(s)
- Fruzsina Tóth
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Gáspár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | - Róbert Herczeg
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | | | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
3
|
Boros Á, Pankovics P, László Z, Urbán P, Herczeg R, Gáspár G, Tóth F, Reuter G. The genomic and epidemiological investigations of enteric viruses of domestic caprine ( Capra hircus) revealed the presence of multiple novel viruses related to known strains of humans and ruminant livestock species. Microbiol Spectr 2023; 11:e0253323. [PMID: 37823638 PMCID: PMC10714811 DOI: 10.1128/spectrum.02533-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Compared with other domestic animals, the virome and viral diversity of small ruminants especially in caprine are less studied even of its zoonotic potential. In this study, the enteric virome of caprine was investigated in detail using next-generation sequencing and reverse transcription PCR techniques. The complete or nearly complete genomes of seven novel viruses were determined which show a close phylogenetic relationship to known human and ruminant viruses. The high similarity between the identified caprine tusavirus (family Parvoviridae) and an unassigned CRESS DNA virus with closely related human strains could indicate the (reverse) zoonotic potential of these viruses. Others, like astroviruses (family Astroviridae), enteroviruses, or novel caripiviruses (named after the term caprine picornavirus) of family Picornaviridae found mostly in multiple co-infections in caprine and ovine, could indicate the cross-species transmission capabilities of these viruses between small ruminants.
Collapse
Affiliation(s)
- Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | - Róbert Herczeg
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | - Gábor Gáspár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Fruzsina Tóth
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Pacini MI, Mazzei M, Sgorbini M, D’Alfonso R, Papini RA. A One-Year Retrospective Analysis of Viral and Parasitological Agents in Wildlife Animals Admitted to a First Aid Hospital. Animals (Basel) 2023; 13:ani13050931. [PMID: 36899788 PMCID: PMC10000059 DOI: 10.3390/ani13050931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
This study aimed to provide information on the presence and frequency of viral and parasitic agents in wildlife presented to a Veterinary Teaching Hospital in 2020-2021. Serum and faecal samples were collected from 50 rescued animals (roe deer, fallow deer, foxes, badgers, pine martens, and porcupines) and examined by serological, molecular, and parasitological techniques. Transtracheal wash (TTW) was also collected post-mortem from roe deer. Overall, the results of the different techniques showed infections with the following viral and parasitic agents: Bovine Viral Diarrhea Virus, Small Ruminant Lentiviruses, Kobuvirus, Astrovirus, Canine Adenovirus 1, Bopivirus, gastrointestinal strongyles, Capillaria, Ancylostomatidae, Toxocara canis, Trichuris vulpis, Hymenolepis, Strongyloides, Eimeria, Isospora, Dictyocaulus, Angiostrongylus vasorum, Crenosoma, Dirofilaria immitis, Neospora caninum, Giardia duodenalis, and Cryptosporidium. Sequencing (Tpi locus) identified G. duodenalis sub-assemblages AI and BIV in one roe deer and one porcupine, respectively. Adult lungworms collected from the TTW were identified as Dictyocaulus capreolus (COX1 gene). This is the first molecular identification of G. duodenalis sub-assemblage AI and D. capreolus in roe deer in Italy. These results show a wide presence of pathogens in wild populations and provide an overview of environmental health surveillance.
Collapse
Affiliation(s)
- Maria Irene Pacini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- Correspondence:
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Micaela Sgorbini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Rossella D’Alfonso
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Amerigo Papini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| |
Collapse
|
5
|
Yang Y, Abi K, Li Y, Yang C, Yang F. First detection and molecular characteristics of bopivirus from goats in China. Front Vet Sci 2022; 9:1033011. [PMID: 36532341 PMCID: PMC9753977 DOI: 10.3389/fvets.2022.1033011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 10/13/2023] Open
Abstract
A metavirome analysis was performed and detected bopivirus in the diarrhoeal fecal samples of goats in China. A total of 136 fecal samples were collected from yeanlings between the dates of June 2021 and January 2022 in Sichuan province, China. Moreover, "Bopivirus B" strains were detected by a specific RT-PCR targeting the 3D gene of the virus. The results showed that the overall detection rate of "Bopivirus B" was 19.12% (26/136). Additionally, there was a higher detection rate (24.05%, 19/79) in the fecal samples collected from yeanlings with diarrhea compared to those from asymptomatic animals (12.28%, 7/57). In these samples, no other common diarrhea-causing pathogens were detected except for three enteric viruses, namely caprine enterovirus, caprine kobuvirus and caprine hunnivirus (with detection rates of 13.97, 13.97, and 8.82%, respectively). Subsequently, full-length VP4, VP2, VP3, and VP1 genes from "Bopivirus B"-positive samples were amplified, cloned, sequenced, and analyzed. The phylogenetic analysis performed on the VP1 genes revealed that the identified bopivirus belonged to genotype B1 (seven strains) and B2 (three strains) and presented a high genetic diversity. Furthermore, a complete genome sequence of a "Bopivirus B" strain (SWUN/B1/2022) was obtained using PCR from fecal sample of a diarrhoeal yeanling. The complete genome was 7,309 nucleotides in length with a standard picornavirus genome organization, and shares 93.10% and 91.10% nucleotide similarity with bopivirus B1 genotype strain ovine/TB14/2010-HUN and bopivirus B2 genotype strain goat/AGK16/2020-HUN, respectively. According to the species classification criteria put forward by the International Committee on Taxonomy of Viruses and VP1 genotype, the strain SWUN/B1/2022 belongs to the bopivirus B1. This strain has unique amino acid substitutions in the VP4, VP2, VP3, and VP1 genes. Moreover, genomic recombination analysis revealed that this strain may be a minor parental strain of bopivirus B1 ovine/TB14/2010-HUN. Evolutionary analysis based on the 2C and 3CD genes revealed that the new bopivirus B1 strain SWUN/B1/2022 presents a unique evolutionary pattern. This study provided evidence to suggest that "Bopivirus B" is circulating with substantial genetic diversity in goats in China at present, and the mixed infection of "Bopivirus B" with other enteric viruses should be considered to be a composite factor in the occurrence of viral diarrhea in goats.
Collapse
Affiliation(s)
- Youwen Yang
- Department of Veterinary Medicine, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Kehamo Abi
- Department of Veterinary Medicine, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yanmin Li
- Department of Veterinary Medicine, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Chen Yang
- Department of Veterinary Medicine, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Falong Yang
- Department of Veterinary Medicine, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| |
Collapse
|
6
|
Palombieri A, Fruci P, Di Profio F, Sarchese V, Robetto S, Martella V, Di Martino B. Detection and characterization of bopiviruses in domestic and wild ruminants. Transbound Emerg Dis 2022; 69:3972-3978. [PMID: 35933587 DOI: 10.1111/tbed.14676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023]
Abstract
Highly divergent picornaviruses (PVs) classified in the genus Bopivirus have been recently discovered on faecal samples from sheep and goats in Hungary and from fallow and red deer in Australia. In this study, we investigated the epidemiology of these novel viruses in domestic and wild ruminants from Northwestern Italian Alps by testing archival faecal samples collected from 128 sheep, 167 goats, 61 red deer (Cervus elaphus), 77 roe deer (Capreolus capreolus), 43 chamois (Rupicapra rupicapra) and 32 Alpine ibex (Capra ibex). Bopivirus RNA was detected in a total of 19 animals, including 14 sheep (10.9%), 2 red deer (3.3%), 1 roe deer (1.3%), 1 chamois (2.3 %) and 1 Alpine ibex (3.3 %), but not in goats. Upon sequence analysis of the 3DRdRp region, the sequences generated from chamois, roe deer, Alpine ibex and ovine faecal samples showed the highest nucleotide identity (96.8-100%) to bopiviruses detected in goats and sheep from Hungarian farms, whereas strains found in red deer displayed the closest relatedness (90.8%-91.2%) to bopiviruses identified in fallow and red deer in Australia. The nearly complete genome sequence of strains 12/2020/ITA (ON497046) and 14-73/2020/ITA (ON497047) detected in an Alpine ibex and in a sheep, respectively, was determined by combining a modified 3'-RACE protocol with Oxford Nanopore Technologies sequencing platform. On phylogenetic analysis based on the complete polyprotein, both strains segregated into the candidate species Bopivirus B along with ovine and caprine strains detected in Hungary (90.0-94.6% nucleotide and 94.6-98.0% amino acid identities). The findings of this study expand the host range of these novel viruses and hint to a possible virus circulation between domestic ruminants and wild animals.
Collapse
Affiliation(s)
- Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Paola Fruci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Serena Robetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, CeRMAS, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| |
Collapse
|
7
|
Huaman JL, Pacioni C, Sarker S, Doyle M, Forsyth DM, Pople A, Carvalho TG, Helbig KJ. Novel Picornavirus Detected in Wild Deer: Identification, Genomic Characterisation, and Prevalence in Australia. Viruses 2021; 13:v13122412. [PMID: 34960681 PMCID: PMC8706930 DOI: 10.3390/v13122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The use of high-throughput sequencing has facilitated virus discovery in wild animals and helped determine their potential threat to humans and other animals. We report the complete genome sequence of a novel picornavirus identified by next-generation sequencing in faeces from Australian fallow deer. Genomic analysis revealed that this virus possesses a typical picornavirus-like genomic organisation of 7554 nt with a single open reading frame (ORF) encoding a polyprotein of 2225 amino acids. Based on the amino acid identity comparison and phylogenetic analysis of the P1, 2C, 3CD, and VP1 regions, this novel picornavirus was closely related to but distinct from known bopiviruses detected to date. This finding suggests that deer/bopivirus could belong to a novel species within the genus Bopivirus, tentatively designated as "Bopivirus C". Epidemiological investigation of 91 deer (71 fallow, 14 sambar and 6 red deer) and 23 cattle faecal samples showed that six fallow deer and one red deer (overall prevalence 7.7%, 95% confidence interval [CI] 3.8-15.0%) tested positive, but deer/bopivirus was undetectable in sambar deer and cattle. In addition, phylogenetic and sequence analyses indicate that the same genotype is circulating in south-eastern Australia. To our knowledge, this study reports for the first time a deer-origin bopivirus and the presence of a member of genus Bopivirus in Australia. Further epidemiological and molecular studies are needed to investigate the geographic distribution and pathogenic potential of this novel Bopivirus species in other domestic and wild animal species.
Collapse
Affiliation(s)
- Jose L. Huaman
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Carlo Pacioni
- Department of Environment, Land, Water, and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, VIC 3084, Australia;
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Subir Sarker
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Mark Doyle
- South East Local Land Services, Bega, NSW 2550, Australia;
| | - David M. Forsyth
- Vertebrate Pest Research Unit, Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia;
| | - Anthony Pople
- Department of Agriculture and Fisheries, Invasive Plants & Animals Research, Biosecurity Queensland, Ecosciences Precinct, Brisbane, QLD 4102, Australia;
| | - Teresa G. Carvalho
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Karla J. Helbig
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
- Correspondence: ; Tel.: +61-3-9479-6650
| |
Collapse
|
8
|
Hause BM, Nelson E, Christopher-Hennings J. Identification of a novel statovirus in a faecal sample from a calf with enteric disease. J Gen Virol 2021; 102. [PMID: 34554084 DOI: 10.1099/jgv.0.001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel clade of RNA viruses was identified in the mammalian gastrointestinal tract by next-generation sequencing. Phylogenetically, these viruses are related to the genera Tombusviridae (plant viruses) and Flaviviridae, which includes mammalian, avian and insect hosts. Named in line with their characterization as stool-associated Tombus-like viruses, it is unclear if statoviruses infect mammals or are dietary in origin. Here, metagenomic sequencing of faecal material collected from a 10-week-old calf with enteric disease found that 20 % of the reads mapped to a de novo-assembled 4 kb contig with homology to statoviruses. Phylogenetic analysis of the statovirus genome found a clear evolutionary relationship with statovirus A, but, with only 47 % similarity, we propose that the statovirus sequence presents a novel species, statovirus F. A TaqMan PCR targeting statovirus F performed on faecal material found a cycle threshold of 11, suggesting a high titre of virus shed from the calf with enteric disease. A collection of 48 samples from bovine enteric disease diagnostic submissions were assayed by PCR to investigate statovirus F prevalence and 6 of 48 (12.5 %) were positive. An ELISA to detect antibodies to the coat protein found that antibodies to statovirus F were almost ubiquitous in bovine serum. Combined, the PCR and ELISA results suggest that statovirus F commonly infects cattle. Further research is needed to elucidate the aetiological significance of statovirus infection.
Collapse
Affiliation(s)
- Ben M Hause
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Jane Christopher-Hennings
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, 57007, USA
| |
Collapse
|
9
|
Hause BM, Nelson E, Christopher-Hennings J. Identification of boosepivirus B in U.S. calves. Arch Virol 2021; 166:3193-3197. [PMID: 34528138 PMCID: PMC8442811 DOI: 10.1007/s00705-021-05231-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Bovine enteric disease has a complex etiology that can include viral, bacterial, and parasitic pathogens and is a significant source of losses due to morbidity and mortality. Boosepivirus was identified in calves with enteric disease with unclear etiology in Japan in 2009 and has not been reported elsewhere. Metagenomic sequencing and PCR here identified boosepivirus in bovine enteric disease diagnostic submissions from six states in the USA with 98% sequence identity to members of the species Boosepivirus B. In all cases, boosepivirus was identified as a coinfection with the established pathogens bovine coronavirus, bovine rotavirus, and cryptosporidia. Further research is needed to determine the clinical significance of boosepivirus infection.
Collapse
Affiliation(s)
- Ben M Hause
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA.
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Jane Christopher-Hennings
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| |
Collapse
|