1
|
Chen G, He H, Lv Q, Zhao L, Chen CYC. MMFA-DTA: Multimodal Feature Attention Fusion Network for Drug-Target Affinity Prediction for Drug Repurposing Against SARS-CoV-2. J Chem Theory Comput 2024. [PMID: 39269697 DOI: 10.1021/acs.jctc.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The continuous emergence of novel infectious diseases poses a significant threat to global public health security, necessitating the development of small-molecule inhibitors that directly target pathogens. The RNA-dependent RNA polymerase (RdRp) and main protease (Mpro) of SARS-CoV-2 have been validated as potential key antiviral drug targets for the treatment of COVID-19. However, the conventional new drug R&D cycle takes 10-15 years, failing to meet the urgent needs during epidemics. Here, we propose a general multimodal deep learning framework for drug repurposing, MMFA-DTA, to enable rapid virtual screening of known drugs and significantly improve discovery efficiency. By extracting graph topological and sequence features from both small molecules and proteins, we design attention mechanisms to achieve dynamic fusion across modalities. Results demonstrate the superior performance of MMFA-DTA in drug-target affinity prediction over several state-of-the-art baseline methods on Davis and KIBA data sets, validating the benefits of heterogeneous information integration for representation learning and interaction modeling. Further fine-tuning on COVID-19-relevant bioactivity data enhances model predictions for critical SARS-CoV-2 enzymes. Case studies screening the FDA-approved drug library successfully identify etacrynic acid as the potential lead compound against both RdRp and Mpro. Molecular dynamics simulations further confirm the stability and binding affinity of etacrynic acid to these targets. This study proves the great potential and advantages of deep learning and drug repurposing strategies in supporting antiviral drug discovery. The proposed general and rapid response computational framework holds significance for preparedness against future public health events.
Collapse
Affiliation(s)
- Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Haohuai He
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiujie Lv
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lu Zhao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Calvin Yu-Chian Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Guangdong L-Med Biotechnology Co., Ltd, Meizhou, Guangdong 514699, China
| |
Collapse
|
2
|
Rahebi P, Aryapour H. Reconstruction of the unbinding pathways of new inhibitors of the SARS-CoV-2 papain-like protease using molecular dynamics simulation. J Biomol Struct Dyn 2024; 42:7501-7514. [PMID: 37505097 DOI: 10.1080/07391102.2023.2240424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Developing novel antiviral drugs against the SARS-CoV-2 virus and COVID-19 disease is imperative as the vaccines may not offer absolute protection. PLpro plays a crucial role in the viral life cycle, making it an attractive target for drug development. Several PLpro inhibitors have been developed, and their 3D structures in complex with PLpro are available. In this work, we employed Supervised Molecular Dynamics (SuMD), a specific Unbiased Molecular Dynamics (UMD) method, to investigate unbinding pathways of the novel inhibitors of PLpro (PDB IDs: 7LBR, 7RZC, 7SDR and 7E35) and GRL0617 (PDB ID: 7JRN) as a reference. We conducted three simulations for each ligand and achieved unbinding events in the nanosecond timescale in all simulations. We found that unbinding events are commonly affected by altering the conformation of the BL2 loop, which is caused by the natural fluctuations of the loop that are required to trap the substrate and throw out the product. BL2 loop is crucial for keeping the ligand and unbinding and acts as a double-edged sword. Any inhibitor designed to be effective must prevent the loop's natural fluctuations. We perceived that increasing ligands interactions with the binding pocket interior and the BL2 loop will help prevent natural fluctuation of the BL2 loop, Although the interactions with the binding pocket's inner side are more critical than the BL2 loop. These findings may be helpful in developing more potent inhibitors against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pouya Rahebi
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| |
Collapse
|
3
|
Chihab A, El Brahmi N, Hamdoun G, El Abbouchi A, Ghammaz H, Touil N, Bousmina M, El Fahime E, El Kazzouli S. Development of a new experimental NMR strategy for covalent cysteine protease inhibitors screening: toward enhanced drug discovery. RSC Adv 2024; 14:26829-26836. [PMID: 39184001 PMCID: PMC11342919 DOI: 10.1039/d4ra04938a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
In the development of antiviral drugs, proteases and polymerases are among the most important targets. Cysteine proteases, also known as thiol proteases, catalyze the degradation of proteins by cleaving peptide bonds using the nucleophilic thiol group of cysteine. As part of our research, we are examining how cysteine, an essential amino acid found in the active site of the main protease (Mpro) enzyme in SARS-CoV-2, interacts with electrophilic groups present in ethacrynic acid (EA) and compounds 4, 6, and 8 to form sulfur-carbon bonds. Nuclear magnetic resonance (NMR) spectroscopy was used to monitor the reaction rate between cysteine and Michael acceptors. We found that the inhibitory activity of these compounds towards Mpro is correlated to their chemical reactivity toward cysteine. This approach may serve as a valuable tool in drug development for detecting potential covalent inhibitors of Mpro and other cysteine proteases.
Collapse
Affiliation(s)
| | | | | | | | - Hamza Ghammaz
- Centre National de la Recherche Scientifique et Technique (CNRST) Angle avenues des FAR et Allal El Fassi, Hay Ryad 10102 Rabat Morocco
| | - Nadia Touil
- Cell Culture Unit, Center of Virology, Infectious, and Tropical Diseases Mohammed V Military Hospital Rabat Morocco
| | | | - Elmostafa El Fahime
- Centre National de la Recherche Scientifique et Technique (CNRST) Angle avenues des FAR et Allal El Fassi, Hay Ryad 10102 Rabat Morocco
| | | |
Collapse
|
4
|
Filippova TA, Masamrekh RA, Khudoklinova YY, Shumyantseva VV, Kuzikov AV. The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity. Biochimie 2024; 222:169-194. [PMID: 38494106 DOI: 10.1016/j.biochi.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Yulia Yu Khudoklinova
- Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia.
| |
Collapse
|
5
|
Li L, Xi HM, Lu H, Cai X. Combination of Ethacrynic Acid and ATRA Triggers Differentiation and/or Apoptosis of Acute Myeloid Leukemia Cells through ROS. Anticancer Agents Med Chem 2024; 24:412-422. [PMID: 38204257 DOI: 10.2174/0118715206273000231211092743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND AND OBJECTIVE All-trans retinoic acid (ATRA), an effective differentiation inducer, has been applied clinically to treat acute promyelocytic leukemia (APL). Unfortunately, it is not as potent in other kinds of acute myeloid leukemia (AML). Ethacrynic acid (EA), a classical powerful diuretic, can increase reactive oxygen species (ROS) contents, which can assist ATRA in inducing differentiation in AML cells. Here, we investigated the effect of EA combined with ATRA (EA+RA) on some AML cells except APL. METHODS Apoptosis and differentiation were determined by morphology, cell viability, Annexin-V assay and CD11c expression. Western blot analysis and the detection of ROS and mitochondrial transmembrane potentials (MMP) were used to investigate the mechanisms. RESULTS AML cells exhibited differentiation and/or apoptosis after EA+RA treatment. EA+RA increased the intracellular ROS contents. EA+RA-induced apoptosis was accompanied by MMP attenuation and caspase-3/7 activation. EA+RA-induced differentiation was along with MEK/ERK and Akt activation and increased expression of PU.1, CCAAT/enhancer-binding protein β (C/EBPβ) and C/EBPε. N-acetyl-L-cysteine (NAC), an antioxidant, thoroughly reduced EA+RA-increased ROS, and also inhibited MMP attenuation, the activation of caspase- 3/7, MEK/ERK and Akt pathways, the elevation of PU.1 and C/EBPs, and apoptosis and differentiation. However, MEK or PI3K specific inhibitors only suppressed EA+RA-triggered differentiation and the elevation of PU.1 and C/EBPs, but not ROS levels. CONCLUSION EA+RA induced cell apoptosis through ROS dependent MMP attenuation and caspase 3/7 activation while inducing differentiation by ROS-MEK/ERK-PU.1/C/EBPs and ROS-Akt-PU.1/C/EBPs pathways. In summary, it may provide innovative ATRA-based combination therapy strategies for AML patients via ROS.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197 Ruijin Road II, Shanghai, 200025, China
| | - Hui-Min Xi
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197 Ruijin Road II, Shanghai, 200025, China
| | - Hao Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197 Ruijin Road II, Shanghai, 200025, China
| | - Xun Cai
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197 Ruijin Road II, Shanghai, 200025, China
| |
Collapse
|
6
|
Ruatta SM, Prada Gori DN, Fló Díaz M, Lorenzelli F, Perelmuter K, Alberca LN, Bellera CL, Medeiros A, López GV, Ingold M, Porcal W, Dibello E, Ihnatenko I, Kunick C, Incerti M, Luzardo M, Colobbio M, Ramos JC, Manta E, Minini L, Lavaggi ML, Hernández P, Šarlauskas J, Huerta García CS, Castillo R, Hernández-Campos A, Ribaudo G, Zagotto G, Carlucci R, Medrán NS, Labadie GR, Martinez-Amezaga M, Delpiccolo CML, Mata EG, Scarone L, Posada L, Serra G, Calogeropoulou T, Prousis K, Detsi A, Cabrera M, Alvarez G, Aicardo A, Araújo V, Chavarría C, Mašič LP, Gantner ME, Llanos MA, Rodríguez S, Gavernet L, Park S, Heo J, Lee H, Paul Park KH, Bollati-Fogolín M, Pritsch O, Shum D, Talevi A, Comini MA. Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro. Front Pharmacol 2023; 14:1193282. [PMID: 37426813 PMCID: PMC10323144 DOI: 10.3389/fphar.2023.1193282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy -performed in a large and diverse chemolibrary- complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 μM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12-20 μM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7-45 μM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known "garbage in, garbage out" machine learning principle.
Collapse
Affiliation(s)
- Santiago M. Ruatta
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Denis N. Prada Gori
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - Martín Fló Díaz
- Laboratory of Immunovirology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Franca Lorenzelli
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Lucas N. Alberca
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina L. Bellera
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Medeiros
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gloria V. López
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Vascular Biology and Drug Discovery Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariana Ingold
- Vascular Biology and Drug Discovery Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Williams Porcal
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Vascular Biology and Drug Discovery Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Estefanía Dibello
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Irina Ihnatenko
- PVZ—Center of Pharmaceutical Engineering, Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Conrad Kunick
- PVZ—Center of Pharmaceutical Engineering, Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marcelo Incerti
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Martín Luzardo
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Maximiliano Colobbio
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Química Fina, Facultad de Química, Instituto Polo Tecnológico de Pando, Universidad de la República, Montevideo, Uruguay
| | - Juan Carlos Ramos
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Química Fina, Facultad de Química, Instituto Polo Tecnológico de Pando, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Manta
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Química Fina, Facultad de Química, Instituto Polo Tecnológico de Pando, Universidad de la República, Montevideo, Uruguay
| | - Lucía Minini
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - María Laura Lavaggi
- Laboratorio de Química Biológica Ambiental, Sede Rivera, Centro Universitario Regional Noreste, Universidad de la República, Montevideo, Uruguay
| | - Paola Hernández
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Jonas Šarlauskas
- Life Sciences Centre, Department of Xenobiotic Biochemistry, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | | | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Renzo Carlucci
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Noelia S. Medrán
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo R. Labadie
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Maitena Martinez-Amezaga
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina M. L. Delpiccolo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ernesto G. Mata
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura Scarone
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Laura Posada
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gloria Serra
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | - Kyriakos Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Mauricio Cabrera
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Guzmán Alvarez
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Adrián Aicardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Nutrición Clínica, Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Verena Araújo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Alimentos, Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Chavarría
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | | | - Melisa E. Gantner
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Manuel A. Llanos
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Santiago Rodríguez
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Soonju Park
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Jinyeong Heo
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Honggun Lee
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Kyu-Ho Paul Park
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, Republic of Korea
| | | | - Otto Pritsch
- Laboratory of Immunovirology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo A. Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
7
|
Arrigoni R, Santacroce L, Ballini A, Palese LL. AI-Aided Search for New HIV-1 Protease Ligands. Biomolecules 2023; 13:biom13050858. [PMID: 37238727 DOI: 10.3390/biom13050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The availability of drugs capable of blocking the replication of microorganisms has been one of the greatest triumphs in the history of medicine, but the emergence of an ever-increasing number of resistant strains poses a serious problem for the treatment of infectious diseases. The search for new potential ligands for proteins involved in the life cycle of pathogens is, therefore, an extremely important research field today. In this work, we have considered the HIV-1 protease, one of the main targets for AIDS therapy. Several drugs are used today in clinical practice whose mechanism of action is based on the inhibition of this enzyme, but after years of use, even these molecules are beginning to be interested by resistance phenomena. We used a simple artificial intelligence system for the initial screening of a data set of potential ligands. These results were validated by docking and molecular dynamics, leading to the identification of a potential new ligand of the enzyme which does not belong to any known class of HIV-1 protease inhibitors. The computational protocol used in this work is simple and does not require large computational power. Furthermore, the availability of a large number of structural information on viral proteins and the presence of numerous experimental data on their ligands, with which it is possible to compare the results obtained with computational methods, make this research field the ideal terrain for the application of these new computational techniques.
Collapse
Affiliation(s)
- Roberto Arrigoni
- Bioenergetics and Molecular Biotechnologies (IBIOM), CNR Institute of Biomembranes, 70125 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Luigi Leonardo Palese
- Department of Translational Biomedicine and Neurosciences-(DiBraiN), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
8
|
Al Oweidat K, Al-Amer R, Saleh MY, Albtoosh AS, Toubasi AA, Ribie MK, Hasuneh MM, Alfaqheri DL, Alshurafa AH, Ribie M, Ali AM, Obeidat N. Mortality, Intensive Care Unit Admission, and Intubation among Hospitalized Patients with COVID-19: A One-Year Retrospective Study in Jordan. J Clin Med 2023; 12:jcm12072651. [PMID: 37048734 PMCID: PMC10094820 DOI: 10.3390/jcm12072651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
COVID-19 is a public health crisis that has caused numerous deaths, necessitated an increased number of hospital admissions, and led to extended inpatient stays. This study aimed to identify the factors associated with COVID-19 mortality, intensive care unit admission, intubation, and length of hospital stay among Jordanian patients. This was a one-year retrospective study of 745 COVID-19 patients admitted to Jordan University Hospital. Data regarding the patients’ demographics, clinical and co-morbid conditions, imaging, laboratory parameters, mortality, intensive care unit admission (ICU), and intubation were collected from their medical records using a coding manual. The data revealed that the overall rates of COVID-19-related mortality, ICU admission, and invasive intubation were 23.0%, 28.3%, and 10.8%, respectively. Chronic kidney disease (CKD), troponin, lactate dehydrogenase (LDH), and O2 saturation <90% were significantly associated with the mortality rate. The variables that were significantly associated with ICU admission were heart failure and the use of remdesivir. However, O2 saturation <90% and gastrointestinal (GI) symptoms were the only variables associated with invasive intubation. The findings of this study suggest that study-related health outcomes can be used to predict the severity of COVID-19, and they can inform future research aiming to identify specific populations who are at a higher risk of COVID-19 complications.
Collapse
Affiliation(s)
- Khaled Al Oweidat
- Department of Respiratory and Sleep Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Rasmieh Al-Amer
- Faculty of Nursing, Isra University, Amman 11953, Jordan
- School of Nursing and Midwifery, Western Sydney University, Penrith, NSW 2751, Australia
| | | | - Asma S. Albtoosh
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmad A. Toubasi
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mona Khaled Ribie
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Manar M. Hasuneh
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Daniah L. Alfaqheri
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Abdullah H. Alshurafa
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Ribie
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Amira Mohammed Ali
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Smouha, Alexandria 21527, Egypt
| | - Nathir Obeidat
- Department of Respiratory and Sleep Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
9
|
Negru PA, Radu AF, Vesa CM, Behl T, Abdel-Daim MM, Nechifor AC, Endres L, Stoicescu M, Pasca B, Tit DM, Bungau SG. Therapeutic dilemmas in addressing SARS-CoV-2 infection: Favipiravir versus Remdesivir. Biomed Pharmacother 2022; 147:112700. [PMID: 35131656 PMCID: PMC8813547 DOI: 10.1016/j.biopha.2022.112700] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents an unmet clinical need, due to a high mortality rate, rapid mutation rate in the virus, increased chances of reinfection, lack of effectiveness of repurposed drugs and economic damage. COVID-19 pandemic has created an urgent need for effective molecules. Clinically proven efficacy and safety profiles have made favipiravir (FVP) and remdesivir (RDV) promising therapeutic options for use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Even though both are prodrug molecules with an antiviral role based on a similar mechanism of action, differences in pharmacological, pharmacokinetic and pharmacotoxicological mechanisms have been identified. The present study aims to provide a comprehensive comparative assessment of FVP and RDV against SARS-CoV-2 infections, by centralizing medical data provided by significant literature and authorized clinical trials, focusing on the importance of a better understanding of the interactions between drug molecules and infectious agents in order to improve the global management of COVID-19 patients and to reduce the risk of antiviral resistance.
Collapse
Affiliation(s)
- Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jedah 21442, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania.
| | - Laura Endres
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Bianca Pasca
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
10
|
Mahmoud A, Mostafa A, Al-Karmalawy AA, Zidan A, Abulkhair HS, Mahmoud SH, Shehata M, Elhefnawi MM, Ali MA. Telaprevir is a potential drug for repurposing against SARS-CoV-2: computational and in vitro studies. Heliyon 2021; 7:e07962. [PMID: 34518806 PMCID: PMC8426143 DOI: 10.1016/j.heliyon.2021.e07962] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/25/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Drug repurposing is an important approach to the assignment of already approved drugs for new indications. This technique bypasses some steps in the traditional drug approval system, which saves time and lives in the case of pandemics. Direct acting antivirals (DAAs) have repeatedly repurposed from treating one virus to another. In this study, 16 FDA-approved hepatitis C virus (HCV) DAA drugs were studied to explore their activities against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human and viral targets. Among the 16 HCV DAA drugs, telaprevir has shown the best in silico evidence to work on both indirect human targets (cathepsin L [CTSL] and human angiotensin-converting enzyme 2 [hACE2] receptor) and direct viral targets (main protease [Mpro]). Moreover, the docked poses of telaprevir inside both hACE2 and Mpro were subjected to additional molecular dynamics simulations monitored by calculating the binding free energy using MM-GBSA. In vitro analysis of telaprevir showed inhibition of SARS-CoV-2 replication in cell culture (IC50 = 11.552 μM, CC50 = 60.865 μM, and selectivity index = 5.27). Accordingly, based on the in silico studies and supported by the presented in vitro analysis, we suggest that telaprevir may be considered for therapeutic development against SARS-CoV-2.
Collapse
Affiliation(s)
- Amal Mahmoud
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box. 1982, 31441, Dammam, Saudi Arabia
| | - Ahmed Mostafa
- Center of Scientific Excellence for Infuenza Viruses, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Ahmad Zidan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
- Clinical Research Team, Monof Chest Hospital, Ministry of Health, Egypt
| | - Hamada S. Abulkhair
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Infuenza Viruses, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mahmoud Shehata
- Center of Scientific Excellence for Infuenza Viruses, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mahmoud M. Elhefnawi
- Biomedical Informatics and Cheminformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Infuenza Viruses, National Research Centre, 12622 Dokki, Giza, Egypt
| |
Collapse
|
11
|
Sardanelli AM, Isgrò C, Palese LL. SARS-CoV-2 Main Protease Active Site Ligands in the Human Metabolome. Molecules 2021; 26:1409. [PMID: 33807773 PMCID: PMC7961382 DOI: 10.3390/molecules26051409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
In late 2019, a global pandemic occurred. The causative agent was identified as a member of the Coronaviridae family, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we present an analysis on the substances identified in the human metabolome capable of binding the active site of the SARS-CoV-2 main protease (Mpro). The substances present in the human metabolome have both endogenous and exogenous origins. The aim of this research was to find molecules whose biochemical and toxicological profile was known that could be the starting point for the development of antiviral therapies. Our analysis revealed numerous metabolites-including xenobiotics-that bind this protease, which are essential to the lifecycle of the virus. Among these substances, silybin, a flavolignan compound and the main active component of silymarin, is particularly noteworthy. Silymarin is a standardized extract of milk thistle, Silybum marianum, and has been shown to exhibit antioxidant, hepatoprotective, antineoplastic, and antiviral activities. Our results-obtained in silico and in vitro-prove that silybin and silymarin, respectively, are able to inhibit Mpro, representing a possible food-derived natural compound that is useful as a therapeutic strategy against COVID-19.
Collapse
Affiliation(s)
- Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Camilla Isgrò
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Luigi Leonardo Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
| |
Collapse
|