1
|
Becker AS, Lopes TRR, Pedroso NH, Silva Júnior JVJ, Weiblen R, Flores EF. Novel high-coverage primers for detection of canine morbillivirus by end-point and real-time RT-PCR assays. J Virol Methods 2024; 323:114853. [PMID: 37979697 DOI: 10.1016/j.jviromet.2023.114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Canine distemper virus (CDV) is a major threat to domestic dogs and wildlife worldwide. Molecular assays are the most sensitive and specific tests to diagnose the disease, however, the high CDV genetic variability may compromise laboratory diagnosis. Herein, we designed a high-coverage primer set for end-point (RT-PCR) and real-time (RT-qPCR) for CDV detection. Initially, we collected 194 complete/near-complete CDV genomes (GenBank) and analyzed them for highly conserved regions for primer design. We then assessed the in silico coverage, analytical sensitivity, specificity and diagnostic performance of RT-PCR/RT-qPCR reactions based on our primers. Furthermore, the coverage of our primers, as well as their analytical sensitivity and diagnostic performance, were compared to a commonly used primer set for CDV detection (named PP-I). Our forward (F) and reverse (R) primers fully matched 100 % (194/194) and 99 % (192/194) of the analyzed sequences, whereas the PP-I F and R primers fully matched 15 % (29/194) and 9 % (18/194) sequences, respectively. The detection limit of our RT-PCR and RT-qPCR was equivalent to that of PP-I primers (0.001 TCID50/mL). Out of 70 clinical samples tested, 38 were positive by our RT-PCR/RT-qPCR assays, whereas reactions with primers PP-I failed to detect 9/28 (32 %) positive samples selected for comparison purposes. In addition, our assays did not amplify other canine viruses associated with respiratory and neurological diseases: canine adenovirus 2, canine parainfluenza virus 2, canine herpesvirus 1 and rabies virus. Overall, we describe a high-coverage primer set for CDV detection, which represents an attractive tool for laboratory diagnosis of canine distemper.
Collapse
Affiliation(s)
- Alice Silveira Becker
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil; Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Thaísa Regina Rocha Lopes
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil; Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Natália Hettwer Pedroso
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil; Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - José Valter Joaquim Silva Júnior
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil; Setor de Virologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Pernambuco, Brazil.
| | - Rudi Weiblen
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Eduardo Furtado Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Gradauskaite V, Inglebert M, Doench J, Scherer M, Dettwiler M, Wyss M, Shrestha N, Rottenberg S, Plattet P. LRP6 Is a Functional Receptor for Attenuated Canine Distemper Virus. mBio 2023; 14:e0311422. [PMID: 36645301 PMCID: PMC9973313 DOI: 10.1128/mbio.03114-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 01/17/2023] Open
Abstract
Wild-type canine distemper virus (CDV) is an important pathogen of dogs as well as wildlife that can infect immune and epithelial cells through two known receptors: the signaling lymphocytic activation molecule (SLAM) and nectin-4, respectively. Conversely, the ferret and egg-adapted CDV-Onderstepoort strain (CDV-OP) is employed as an effective vaccine for dogs. CDV-OP also exhibits promising oncolytic properties, such as its abilities to infect and kill multiple cancer cells in vitro. Interestingly, several cancer cells do not express SLAM or nectin-4, suggesting the presence of a yet unknown entry factor for CDV-OP. By conducting a genome-wide CRISPR/Cas9 knockout (KO) screen in CDV-OP-susceptible canine mammary carcinoma P114 cells, which neither express SLAM nor nectin-4, we identified low-density lipoprotein receptor-related protein 6 (LRP6) as a host factor that promotes CDV-OP infectivity. Whereas the genetic ablation of LRP6 rendered cells resistant to infection, ectopic expression in resistant LRP6KO cells restored susceptibility. Furthermore, multiple functional studies revealed that (i) the overexpression of LRP6 leads to increased cell-cell fusion, (ii) a soluble construct of the viral receptor-binding protein (solHOP) interacts with a soluble form of LRP6 (solLRP6), (iii) an H-OP point mutant that prevents interaction with solLRP6 abrogates cell entry in multiple cell lines once transferred into recombinant viral particles, and (iv) vesicular stomatitis virus (VSV) pseudotyped with CDV-OP envelope glycoproteins loses its infectivity in LRP6KO cells. Collectively, our study identified LRP6 as the long sought-after cell entry receptor of CDV-OP in multiple cell lines, which set the molecular bases to refine our understanding of viral-cell adaptation and to further investigate its oncolytic properties. IMPORTANCE Oncolytic viruses (OV) have gathered increasing interest in recent years as an alternative option to treat cancers. The Onderstepoort strain of canine distemper virus (CDV-OP), an enveloped RNA virus belonging to the genus Morbillivirus, is employed as a safe and efficient vaccine for dogs against distemper disease. Importantly, although CDV-OP can infect and kill multiple cancer cell lines, the basic mechanisms of entry remain to be elucidated, as most of those transformed cells do not express natural receptors (i.e., SLAM and nectin-4). In this study, using a genome-wide CRISPR/Cas9 knockout screen, we describe the discovery of LRP6 as a novel functional entry receptor for CDV-OP in various cancer cell lines and thereby uncover a basic mechanism of cell culture adaptation. Since LRP6 is upregulated in various cancer types, our data provide important insights in order to further investigate the oncolytic properties of CDV-OP.
Collapse
Affiliation(s)
- Vaiva Gradauskaite
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marine Inglebert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - John Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Melanie Scherer
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Martina Dettwiler
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marianne Wyss
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Neeta Shrestha
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | - Philippe Plattet
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Bi Z, Wang W, Xia X. Structure and function of a novel lineage-specific neutralizing epitope on H protein of canine distemper virus. Front Microbiol 2023; 13:1088243. [PMID: 36713169 PMCID: PMC9875009 DOI: 10.3389/fmicb.2022.1088243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Canine distemper virus (CDV) infects many sensitive species worldwide and its host range is expanding. The hemagglutinin (H) protein, the major neutralizing target, binds to cellular receptors and subsequently triggers fusion for initial viral infection. So it's necessary to clarify the precise neutralizing epitopes of H protein and extend the knowledge of mechanisms of virus neutralization. In this study, a neutralizing monoclonal antibody (mAb) 2D12 against CDV H protein, which had different reactivity with different CDV strains, was generated and characterized. A series of truncated H proteins were screened to define the minimal linear epitope 238DIEREFD244 recognized by 2D12. Further investigation revealed that the epitope was highly conserved in America-1 vaccine lineage of CDV strains, but different substitutions in the epitope appeared in CDV strains of the other lineages and two substitutions (D238Y and R241G) caused the change of antigenicity. Thus, the epitope represents a novel lineage-specific neutralizing target on H protein of CDV for differentiation of America-1 vaccine lineage and the other lineages of CDV strains. The epitope was identified to localize at the surface of H protein in two different positions in a three-dimensional (3D) structure, but not at the position of the receptor-binding site (RBS), so the mAb 2D12 that recognized the epitope did not inhibit binding of H protein to the receptor. But mAb 2D12 interfered with the H-F interaction for inhibiting membrane fusion, suggesting that the mAb plays key roles for formation of H-F protein oligomeric structure. Our data will contribute to the understanding of the structure, function, and antigenicity of CDV H protein and mechanisms of virus neutralization.
Collapse
Affiliation(s)
- Zhenwei Bi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China,*Correspondence: Zhenwei Bi,
| | - Wenjie Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingxia Xia
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
4
|
Marek K, Armando F, Nippold VM, Rohn K, Plattet P, Brogden G, Gerold G, Baumgärtner W, Puff C. Persistent Infection of a Canine Histiocytic Sarcoma Cell Line with Attenuated Canine Distemper Virus Expressing Vasostatin or Granulocyte-Macrophage Colony-Stimulating Factor. Int J Mol Sci 2022; 23:ijms23116156. [PMID: 35682834 PMCID: PMC9181094 DOI: 10.3390/ijms23116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Canine histiocytic sarcoma (HS) represents a neoplasia with poor prognosis. Due to the high metastatic rate of HS, there is urgency to improve treatment options and to prevent tumor metastases. Canine distemper virus (CDV) is a single-stranded negative-sense RNA (ssRNA (-)) virus with potentially oncolytic properties. Moreover, vasostatin and granulocyte-macrophage colony-stimulating factor (GM-CSF) are attractive molecules in cancer therapy research because of their anti-angiogenetic properties and potential modulation of the tumor microenvironment. In the present study, an in vitro characterization of two genetically engineered viruses based on the CDV strain Onderstepoort (CDV-Ond), CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF was performed. Canine histiocytic sarcoma cells (DH82 cells) were persistently infected with CDV-Ond, CDV-Ondneon, CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF and characterized on a molecular and protein level regarding their vasostatin and GM-CSF production. Interestingly, DH82 cells persistently infected with CDV-Ondneon-vasostatin showed a significantly increased number of vasostatin mRNA transcripts. Similarly, DH82 cells persistently infected with CDV-Ondneon-GM-CSF displayed an increased number of GM-CSF mRNA transcripts mirrored on the protein level as confirmed by immunofluorescence and Western blot. In summary, modified CDV-Ond strains expressed GM-CSF and vasostatin, rendering them promising candidates for the improvement of oncolytic virotherapies, which should be further detailed in future in vivo studies.
Collapse
Affiliation(s)
- Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
| | - Vanessa Maria Nippold
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Philippe Plattet
- Division of Experimental Clinical Research, Vetsuisse University Bern, 3012 Bern, Switzerland;
| | - Graham Brogden
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.B.); (G.G.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.B.); (G.G.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, 901 87 Umeå, Sweden
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Correspondence:
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
| |
Collapse
|
5
|
Gradauskaite V, Khosravi M, Plattet P. Selective SLAM/CD150 Receptor-Detargeting of Canine Distemper Virus. Virus Res 2022; 318:198841. [DOI: 10.1016/j.virusres.2022.198841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
|
6
|
Highly Potent Host-Specific Small-Molecule Inhibitor of Paramyxovirus and Pneumovirus Replication with High Resistance Barrier. mBio 2021; 12:e0262121. [PMID: 34724816 PMCID: PMC8561388 DOI: 10.1128/mbio.02621-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Multiple enveloped RNA viruses of the family Paramyxoviridae and Pneumoviridae, like measles virus (MeV), Nipah virus (NiV), canine distemper virus (CDV), or respiratory syncytial virus (RSV), are of high clinical relevance. Each year a huge number of lives are lost as a result of these viral infections. Worldwide, MeV infection alone is responsible for over a hundred thousand deaths each year despite available vaccine. Therefore, there is an urgent need for treatment options to counteract these viral infections. The development of antiviral drugs in general stands as a huge challenge due to the rapid emergence of viral escape mutants. Here, we disclose the discovery of a small-molecule antiviral, compound 1 (ZHAWOC9045), active against several pneumo-/paramyxoviruses, including MeV, NiV, CDV, RSV, and parainfluenza virus type 5 (PIV-5). A series of mechanistic characterizations revealed that compound 1 targets a host factor which is indispensable for viral genome replication. Drug resistance profiling against a paramyxovirus model (CDV) demonstrated no detectable adaptation despite prolonged time of investigation, thereby mitigating the rapid emergence of escape variants. Furthermore, a thorough structure-activity relationship analysis of compound 1 led to the invention of 100-times-more potent-derivatives, e.g., compound 2 (ZHAWOC21026). Collectively, we present in this study an attractive host-directed pneumoviral/paramyxoviral replication inhibitor with potential therapeutic application.
Collapse
|