1
|
Krämer N, Mato UG, Krauter S, Büscher N, Afifi A, Herhaus L, Florin L, Plachter B, Zimmermann C. The Autophagy Receptor SQSTM1/p62 Is a Restriction Factor of HCMV Infection. Viruses 2024; 16:1440. [PMID: 39339916 PMCID: PMC11436200 DOI: 10.3390/v16091440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Intrinsic defense mechanisms are pivotal host strategies to restrict viruses already at early stages of their infection. Here, we addressed the question of how the autophagy receptor sequestome 1 (SQSTM1/p62, hereafter referred to as p62) interferes with human cytomegalovirus (HCMV) infection. (2) Methods: CRISPR/Cas9-mediated genome editing, mass spectrometry and the expression of p62 phosphovariants from recombinant HCMVs were used to address the role of p62 during infection. (3) Results: The knockout of p62 resulted in an increased release of HCMV progeny. Mass spectrometry revealed an interaction of p62 with cellular proteins required for nucleocytoplasmic transport. Phosphoproteomics further revealed that p62 is hyperphosphorylated at position S272 in HCMV-infected cells. Phosphorylated p62 showed enhanced nuclear retention, which is concordant with enhanced interaction with viral proteins relevant for genome replication and nuclear capsid egress. This modification led to reduced HCMV progeny release compared to a non-phosphorylated version of p62. (4) Conclusions: p62 is a restriction factor for HCMV replication. The activity of the receptor appears to be regulated by phosphorylation at position S272, leading to enhanced nuclear localization, viral protein degradation and impaired progeny production.
Collapse
Affiliation(s)
- Nadine Krämer
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Uxía Gestal Mato
- Institute of Biochemistry II (IBC2), Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.G.M.); (L.H.)
| | - Steffi Krauter
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Nicole Büscher
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Ahmad Afifi
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Lina Herhaus
- Institute of Biochemistry II (IBC2), Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.G.M.); (L.H.)
| | - Luise Florin
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Bodo Plachter
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Christine Zimmermann
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| |
Collapse
|
2
|
Kuderna AK, Reichel A, Tillmanns J, Class M, Scherer M, Stamminger T. Discovery of a Novel Antiviral Effect of the Restriction Factor SPOC1 against Human Cytomegalovirus. Viruses 2024; 16:363. [PMID: 38543731 PMCID: PMC10976249 DOI: 10.3390/v16030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
The chromatin-remodeler SPOC1 (PHF13) is a transcriptional co-regulator and has been identified as a restriction factor against various viruses, including human cytomegalovirus (HCMV). For HCMV, SPOC1 was shown to block the onset of immediate-early (IE) gene expression under low multiplicities of infection (MOI). Here, we demonstrate that SPOC1-mediated restriction of IE expression is neutralized by increasing viral titers. Interestingly, our study reveals that SPOC1 exerts an additional antiviral function beyond the IE phase of HCMV replication. Expression of SPOC1 under conditions of high MOI resulted in severely impaired viral DNA replication and viral particle release, which may be attributed to inefficient viral transcription. With the use of click chemistry, the localization of viral DNA was investigated at late time points after infection. Intriguingly, we detected a co-localization of SPOC1, RNA polymerase II S5P and polycomb repressor complex 2 (PRC2) components in close proximity to viral DNA in areas that are hypothesized to harbor viral transcription sites. We further identified the N-terminal domain of SPOC1 to be responsible for interaction with EZH2, a subunit of the PRC2 complex. With this study, we report a novel and potent antiviral function of SPOC1 against HCMV that is efficient even with unrestricted IE gene expression.
Collapse
Affiliation(s)
- Anna K. Kuderna
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (A.K.K.); (M.S.)
| | - Anna Reichel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Julia Tillmanns
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Maja Class
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (A.K.K.); (M.S.)
| | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (A.K.K.); (M.S.)
| | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (A.K.K.); (M.S.)
| |
Collapse
|
3
|
Simon F, Thoma-Kress AK. Intercellular Transport of Viral Proteins. Results Probl Cell Differ 2024; 73:435-474. [PMID: 39242389 DOI: 10.1007/978-3-031-62036-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.
Collapse
Affiliation(s)
- Florian Simon
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
4
|
Syrigos GV, Feige M, Dirlam A, Businger R, Gruska I, Wiebusch L, Hamprecht K, Schindler M. Abemaciclib restricts HCMV replication by suppressing pUL97-mediated phosphorylation of SAMHD1. Antiviral Res 2023; 217:105689. [PMID: 37516154 DOI: 10.1016/j.antiviral.2023.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that causes life-threatening infections in newborns or immunosuppressed patients. For viral replication, HCMV establishes a network of cellular interactions, among others cyclin-dependent kinases (CDK). Furthermore, HCMV encodes pUL97, a viral kinase, which is a CDK-homologue. HCMV uses pUL97 in order to phosphorylate and thereby antagonize SAMHD1, an antiviral host cell factor. Since HCMV has several mechanisms to evade restriction by SAMHD1, we first analyzed the kinetics of SAMHD1-inactivation and found that phosphorylation of SAMHD1 by pUL97 occurs directly after infection of macrophages. We hence hypothesized that inhibition of this process qualifies as efficient antiviral target and FDA approved CDK-inhibitors (CDKIs) might be potent antivirals that prevent the inactivation of SAMHD1. Indeed, Abemaciclib, a 2nd generation CDKI exhibited superior IC50s against HCMV in infected macrophages and the antiviral activity largely relied on its ability to block pUL97-mediated SAMHD1-phosphorylation. Altogether, our study highlights the therapeutic potential of clinically-approved CDKIs as antivirals against HCMV, sheds light on their mode of action and establishes SAMHD1 as a valid and highly potent therapeutic target.
Collapse
Affiliation(s)
- Georgios Vavouras Syrigos
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Feige
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Alicia Dirlam
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Ramona Businger
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Iris Gruska
- Laboratory of Molecular Pediatrics, Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lüder Wiebusch
- Laboratory of Molecular Pediatrics, Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Hamprecht
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Ma XH, Yao YX, Wang XZ, Zhou YP, Huang SN, Li D, Mei MJ, Wu JP, Pan YT, Cheng S, Jiang X, Sun JY, Zeng WB, Gong S, Cheng H, Luo MH, Yang B. MORC3 restricts human cytomegalovirus infection by suppressing the major immediate-early promoter activity. J Med Virol 2022; 94:5492-5506. [PMID: 35879101 DOI: 10.1002/jmv.28025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.
Collapse
Affiliation(s)
- Xue-Hui Ma
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yong-Xuan Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-Zhang Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yue-Peng Zhou
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Nan Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng-Jie Mei
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Peng Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Ting Pan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Cheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xuan Jiang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Yan Sun
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wen-Bo Zeng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Sitang Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Cheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min-Hua Luo
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bo Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Monti CE, Mokry RL, Schumacher ML, Dash RK, Terhune SS. Computational modeling of protracted HCMV replication using genome substrates and protein temporal profiles. Proc Natl Acad Sci U S A 2022; 119:e2201787119. [PMID: 35994667 PMCID: PMC9437303 DOI: 10.1073/pnas.2201787119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major cause of illness in immunocompromised individuals. The HCMV lytic cycle contributes to the clinical manifestations of infection. The lytic cycle occurs over ∼96 h in diverse cell types and consists of viral DNA (vDNA) genome replication and temporally distinct expression of hundreds of viral proteins. Given its complexity, understanding this elaborate system can be facilitated by the introduction of mechanistic computational modeling of temporal relationships. Therefore, we developed a multiplicity of infection (MOI)-dependent mechanistic computational model that simulates vDNA kinetics and late lytic replication based on in-house experimental data. The predictive capabilities were established by comparison to post hoc experimental data. Computational analysis of combinatorial regulatory mechanisms suggests increasing rates of protein degradation in association with increasing vDNA levels. The model framework also allows expansion to account for additional mechanisms regulating the processes. Simulating vDNA kinetics and the late lytic cycle for a wide range of MOIs yielded several unique observations. These include the presence of saturation behavior at high MOIs, inefficient replication at low MOIs, and a precise range of MOIs in which virus is maximized within a cell type, being 0.382 IU to 0.688 IU per fibroblast. The predicted saturation kinetics at high MOIs are likely related to the physical limitations of cellular machinery, while inefficient replication at low MOIs may indicate a minimum input material required to facilitate infection. In summary, we have developed and demonstrated the utility of a data-driven and expandable computational model simulating lytic HCMV infection.
Collapse
Affiliation(s)
- Christopher E. Monti
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ranjan K. Dash
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
7
|
Hui L, De Catte L, Beard S, Maksimovic J, Vora NL, Oshlack A, Walker SP, Hannan NJ. RNA-Seq of amniotic fluid cell-free RNA: a discovery phase study of the pathophysiology of congenital cytomegalovirus infection. Am J Obstet Gynecol 2022; 227:634.e1-634.e12. [PMID: 35609640 DOI: 10.1016/j.ajog.2022.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Congenital cytomegalovirus infection is the most common perinatal infection and a significant cause of sensorineural hearing loss, cerebral palsy, and neurodevelopmental disability. There is a paucity of human gene expression studies examining the pathophysiology of cytomegalovirus infection. OBJECTIVE This study aimed to perform a whole transcriptomic assessment of amniotic fluid from pregnancies with live fetuses to identify differentially expressed genes and enriched Gene Ontology categories associated with congenital cytomegalovirus infection. STUDY DESIGN Amniotic fluid supernatant was prospectively collected from pregnant women undergoing amniocentesis for suspected congenital cytomegalovirus infection because of first-trimester maternal primary infection or ultrasound features suggestive of fetal infection. Women who had received therapy to prevent fetal infection were excluded. Congenital cytomegalovirus infection was diagnosed via viral polymerase chain reaction of amniotic fluid; cytomegalovirus-infected fetuses were paired with noninfected controls, matched for gestational age and fetal sex. Paired-end RNA sequencing was performed on amniotic fluid cell-free RNA with the Novaseq 6000 at a depth of 30 million reads per sample. Following quality control and filtering, reads were mapped to the human genome and counts summarized across genes. Differentially expressed genes were identified using 2 approaches: voomWithQualityWeights in conjunction with limma and RUVSeq with edgeR. Genes with a false discovery rate <0.05 were considered statistically significant. Differential exon use was analyzed using DEXSeq. Functional analysis was performed using gene set enrichment analysis and Ingenuity Pathway Analysis. Manual curation of differentially regulated genes was also performed. RESULTS Amniotic fluid samples were collected from 50 women; 16 (32%) had congenital cytomegalovirus infection confirmed by polymerase chain reaction. After excluding 3 samples without matched controls, 13 cytomegalovirus-infected samples collected at 18 to 23 weeks and 13 cytomegalovirus-negative gestation-matched controls were submitted for RNA sequencing and analysis (N=26). Ten of the 13 pregnancies with cytomegalovirus-infected fetuses had amniocentesis because of serologic evidence of maternal primary infection with normal fetal ultrasound, and 3 had amniocentesis because of ultrasound abnormality suggestive of cytomegalovirus infection. Four cytomegalovirus-infected pregnancies ended in termination (n=3) or fetal death (n=1), and 9 resulted in live births. Pregnancy outcomes were available for 11 of the 13 cytomegalovirus-negative controls; all resulted in live births of clinically-well infants. Differential gene expression analysis revealed 309 up-regulated and 32 down-regulated genes in the cytomegalovirus-infected group compared with the cytomegalovirus-negative group. Gene set enrichment analysis showed significant enrichment of multiple Gene Ontology categories involving the innate immune response to viral infection and interferon signaling. Of the 32 significantly down-regulated genes, 8 were known to be involved in neurodevelopment and preferentially expressed by the brain. Six specific cellular restriction factors involved in host defense to cytomegalovirus infection were up-regulated in the cytomegalovirus-infected group. Ingenuity Pathway Analysis predicted the activation of pathways involved in progressive neurologic disease and inflammatory neurologic disease. CONCLUSION In this next-generation sequencing study, we revealed new insights into the pathophysiology of congenital cytomegalovirus infection. These data on the up-regulation of the intraamniotic innate immune response to cytomegalovirus infection and the dysregulation of neurodevelopmental genes may inform future approaches to developing prognostic markers and assessing fetal responses to in utero therapy.
Collapse
|
8
|
Human cytomegalovirus protein RL1 degrades the antiviral factor SLFN11 via recruitment of the CRL4 E3 ubiquitin ligase complex. Proc Natl Acad Sci U S A 2022; 119:2108173119. [PMID: 35105802 PMCID: PMC8832970 DOI: 10.1073/pnas.2108173119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate, and adaptive immunity. We have employed two orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins down-regulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterized, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion.
Collapse
|
9
|
Peptide Derivatives of Platelet-Derived Growth Factor Receptor Alpha Inhibit Cell-Associated Spread of Human Cytomegalovirus. Viruses 2021; 13:v13091780. [PMID: 34578361 PMCID: PMC8473290 DOI: 10.3390/v13091780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cell-free human cytomegalovirus (HCMV) can be inhibited by a soluble form of the cellular HCMV-receptor PDGFRα, resembling neutralization by antibodies. The cell-associated growth of recent HCMV isolates, however, is resistant against antibodies. We investigated whether PDGFRα-derivatives can inhibit this transmission mode. A protein containing the extracellular PDGFRα-domain and 40-mer peptides derived therefrom were tested regarding the inhibition of the cell-associated HCMV strain Merlin-pAL1502, hits were validated with recent isolates, and the most effective peptide was modified to increase its potency. The modified peptide was further analyzed regarding its mode of action on the virion level. While full-length PDGFRα failed to inhibit HCMV isolates, three peptides significantly reduced virus growth. A 30-mer version of the lead peptide (GD30) proved even more effective against the cell-free virus, and this effect was HCMV-specific and depended on the viral glycoprotein O. In cell-associated spread, GD30 reduced both the number of transferred particles and their penetration. This effect was reversible after peptide removal, which allowed the synchronized analysis of particle transfer, showing that two virions per hour were transferred to neighboring cells and one virion was sufficient for infection. In conclusion, PDGFRα-derived peptides are novel inhibitors of the cell-associated spread of HCMV and facilitate the investigation of this transmission mode.
Collapse
|
10
|
Poole EL, Nevels MM. Editorial: Cytomegalovirus Pathogenesis and Host Interactions. Front Cell Infect Microbiol 2021; 11:711551. [PMID: 34307201 PMCID: PMC8293988 DOI: 10.3389/fcimb.2021.711551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Emma L. Poole
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael M. Nevels
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
11
|
König R, Münk C. Special Issue: "Innate Immune Sensing of Viruses and Viral Evasion". Viruses 2021; 13:v13040567. [PMID: 33810623 PMCID: PMC8066569 DOI: 10.3390/v13040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this Special Issue, a wide variety of original and review articles provide a timely overview of how viruses are recognized by and evade from cellular innate immunity, which represents the first line of defense against viruses [...].
Collapse
Affiliation(s)
- Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany
- Correspondence: (R.K.); (C.M.)
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: (R.K.); (C.M.)
| |
Collapse
|