1
|
Ziersch M, Harms D, Neumair L, Kurreck A, Johne R, Bock CT, Kurreck J. Combining RNA Interference and RIG-I Activation to Inhibit Hepatitis E Virus Replication. Viruses 2024; 16:1378. [PMID: 39339854 PMCID: PMC11435946 DOI: 10.3390/v16091378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis E virus (HEV) poses a significant global health threat, with an estimated 20 million infections occurring annually. Despite being a self-limiting illness, in most cases, HEV infection can lead to severe outcomes, particularly in pregnant women and individuals with pre-existing liver disease. In the absence of specific antiviral treatments, the exploration of RNAi interference (RNAi) as a targeted strategy provides valuable insights for urgently needed therapeutic interventions against Hepatitis E. We designed small interfering RNAs (siRNAs) against HEV, which target the helicase domain and the open reading frame 3 (ORF3). These target regions will reduce the risk of viral escape through mutations, as they belong to the most conserved regions in the HEV genome. The siRNAs targeting the ORF3 efficiently inhibited viral replication in A549 cells after HEV infection. Importantly, the siRNA was also highly effective at inhibiting HEV in the persistently infected A549 cell line, which provides a suitable model for chronic infection in patients. Furthermore, we showed that a 5' triphosphate modification on the siRNA sense strand activates the RIG-I receptor, a cytoplasmic pattern recognition receptor that recognizes viral RNA. Upon activation, RIG-I triggers a signaling cascade, effectively suppressing HEV replication. This dual-action strategy, combining the activation of the adaptive immune response and the inherent RNAi pathway, inhibits HEV replication successfully and may lead to the development of new therapies.
Collapse
Affiliation(s)
- Mathias Ziersch
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Dominik Harms
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enterovirus, Robert Koch Institute, 13353 Berlin, Germany
| | - Lena Neumair
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Anke Kurreck
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
- BioNukleo GmbH, Ackerstrasse 76, 13355 Berlin, Germany
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - C-Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enterovirus, Robert Koch Institute, 13353 Berlin, Germany
| | - Jens Kurreck
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
2
|
Li X, Sun X, Pinpin J, Zhao Q, Sun Y. Multifunctional ORF3 protein of hepatitis E virus. J Med Virol 2024; 96:e29691. [PMID: 38783788 DOI: 10.1002/jmv.29691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that is transmitted primarily through the fecal-oral route and can cause acute hepatitis in humans. Since HEV was identified as a zoonotic pathogen, different species of HEV strains have been globally identified from various hosts, leading to an expanding range of hosts. The HEV genome consists of a 5' noncoding region, three open reading frames (ORFs), and a 3' noncoding region. The ORF3 protein is the smallest but has many functions in HEV release and pathogenesis. In this review, we systematically summarize recent progress in understanding the functions of the HEV ORF3 protein in virion release, biogenesis of quasi-enveloped viruses, antigenicity, and host environmental regulation. This review will help us to understand HEV replication and pathogenesis mechanisms better.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ji Pinpin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Orozco-Cordoba J, Mazas C, Du Pont G, Lamoyi E, Cárdenas G, Fierro NA. Viral Biology and Immune Privilege in the Development of Extrahepatic Manifestations During Hepatitis E Virus Infection. Viral Immunol 2023; 36:627-641. [PMID: 38064537 DOI: 10.1089/vim.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Hepatitis E virus (HEV) exhibits tropism toward hepatocytes and thus affects the liver; however, HEV may also affect other tissues, including the heart, kidneys, intestines, testicles, and central nervous system. To date, the pathophysiological links between HEV infection and extrahepatic manifestations have not yet been established. Considering that HEV infects multiple types of cells, the direct effects of virus replication in peripheral tissues represent a plausible explanation for extrahepatic manifestations. In addition, since the immune response is crucial in the development of the disease, the immune characteristics of affected tissues should be revisited to identify commonalities explaining the effects of the virus. This review summarizes the most recent advances in understanding the virus biology and immune-privileged status of specific tissues as major elements for HEV replication in diverse organs. These discoveries may open avenues to explain the multiple extrahepatic manifestations associated with HEV infection and ultimately to design effective strategies for infection control.
Collapse
Affiliation(s)
- Javier Orozco-Cordoba
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Camila Mazas
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Gisela Du Pont
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Edmundo Lamoyi
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Graciela Cárdenas
- Departamento de Neuroinfectología, Instituto Nacional de Neurología Manuel Velasco Suárez, Mexico City, Mexico
| | - Nora A Fierro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
4
|
Meyer L, Duquénois I, Gellenoncourt S, Pellerin M, Marcadet-Hauss A, Pavio N, Doceul V. Identification of interferon-stimulated genes with modulated expression during hepatitis E virus infection in pig liver tissues and human HepaRG cells. Front Immunol 2023; 14:1291186. [PMID: 38058490 PMCID: PMC10696647 DOI: 10.3389/fimmu.2023.1291186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Hepatitis E virus (HEV) is a common cause of enterically transmitted acute hepatitis worldwide. The virus is transmitted by the fecal-oral route via the consumption of contaminated water supplies and is also a zoonotic foodborne pathogen. Swine are the main reservoir of zoonotic HEV. In humans, HEV infection is usually asymptomatic or causes acute hepatitis that is self-limited. However, fulminant hepatic failure and chronic cases of HEV infection can occur in some patients. In contrast, HEV infection in pigs remains asymptomatic, although the virus replicates efficiently, suggesting that swine are able to control the virus pathogenesis. Upon viral infection, IFN is secreted and activates cellular pathways leading to the expression of many IFN-stimulated genes (ISGs). ISGs can restrict the replication of specific viruses and establish an antiviral state within infected and neighboring cells. Methods In this study, we used PCR arrays to determine the expression level of up to 168 ISGs and other IFN-related genes in the liver tissues of pigs infected with zoonotic HEV-3c and HEV-3f and in human bipotent liver HepaRG cells persistently infected with HEV-3f. Results and discussion The expression of 12 and 25 ISGs was found to be up-regulated in infected swine livers and HepaRG cells, respectively. The expression of CXCL10, IFIT2, MX2, OASL and OAS2 was up-regulated in both species. Increased expression of IFI16 mRNA was also found in swine liver tissues. This study contributes to the identification of potential ISGs that could play a role in the control or persistence of HEV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Virginie Doceul
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), École Nationale Vétérinaire d'Alfort (ENVA), UMR Virology, Maisons-Alfort, France
| |
Collapse
|
5
|
Desdouits M, Reynaud Y, Philippe C, Guyader FSL. A Comprehensive Review for the Surveillance of Human Pathogenic Microorganisms in Shellfish. Microorganisms 2023; 11:2218. [PMID: 37764063 PMCID: PMC10537662 DOI: 10.3390/microorganisms11092218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Bivalve molluscan shellfish have been consumed for centuries. Being filter feeders, they may bioaccumulate some microorganisms present in coastal water, either naturally or through the discharge of human or animal sewage. Despite regulations set up to avoid microbiological contamination in shellfish, human outbreaks still occur. After providing an overview showing their implication in disease, this review aims to highlight the diversity of the bacteria or enteric viruses detected in shellfish species, including emerging pathogens. After a critical discussion of the available methods and their limitations, we address the interest of technological developments using genomics to anticipate the emergence of pathogens. In the coming years, further research needs to be performed and methods need to be developed in order to design the future of surveillance and to help risk assessment studies, with the ultimate objective of protecting consumers and enhancing the microbial safety of bivalve molluscan shellfish as a healthy food.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Unité Microbiologie Aliment Santé et Environnement, RBE/LSEM, 44311 Nantes, France; (M.D.); (Y.R.); (C.P.)
| |
Collapse
|
6
|
Wasniewski M, Boué F, Richomme C, Simon-Lorière E, der Werf SV, Donati F, Enouf V, Blanchard Y, Beven V, Leperchois E, Leterrier B, Corbet S, Le Gouil M, Monchatre-Leroy E, Picard-Meyer E. Investigations into SARS-CoV-2 and other coronaviruses on mink farms in France late in the first year of the COVID-19 pandemic. PLoS One 2023; 18:e0290444. [PMID: 37624818 PMCID: PMC10456147 DOI: 10.1371/journal.pone.0290444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Soon after the beginning of the COVID-19 pandemic in early 2020, the Betacoronavirus SARS-CoV-2 infection of several mink farms breeding American minks (Neovison vison) for fur was detected in various European countries. The risk of a new reservoir being formed and of a reverse zoonosis from minks quickly became a major concern. The aim of this study was to investigate the four French mink farms to see whether SARS-CoV-2 was circulating there in late 2020. The investigations took place during the slaughtering period, thus facilitating different types of sampling (swabs and blood). On one of the four mink farms, 96.6% of serum samples were positive when tested with a SARS-CoV-2 ELISA coated with purified N protein recombinant antigen, and 54 out of 162 (33%) pharyngo-tracheal swabs were positive by RT-qPCR. The genetic variability among 12 SARS-CoV-2 genomes sequenced from this farm indicated the co-circulation of several lineages at the time of sampling. All the SARS-CoV-2 genomes detected were nested within the 20A clade (Nextclade), together with SARS-CoV-2 genomes from humans sampled during the same period. The percentage of SARS-CoV-2 seropositivity by ELISA varied between 0.3 and 1.1% on the other three farms. Interestingly, among these three farms, 11 pharyngo-tracheal swabs and 3 fecal pools from two farms were positive by end-point RT-PCR for an Alphacoronavirus very similar to a mink coronavirus sequence observed on Danish farms in 2015. In addition, a mink Caliciviridae was identified on one of the two farms positive for Alphacoronavirus. The clinical impact of these inapparent viral infections is not known. The co-infection of SARS-CoV-2 with other viruses on mink farms could help explain the diversity of clinical symptoms noted on different infected farms in Europe. In addition, the co-circulation of an Alphacoronavirus and SARS-CoV-2 on a mink farm would potentially increase the risk of viral recombination between alpha and betacoronaviruses as already suggested in wild and domestic animals, as well as in humans.
Collapse
Affiliation(s)
- Marine Wasniewski
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Franck Boué
- Wildlife Surveillance and Eco-epidemiology Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Céline Richomme
- Wildlife Surveillance and Eco-epidemiology Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Etienne Simon-Lorière
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sylvie Van der Werf
- Molecular Genetics of RNA Viruses, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Flora Donati
- Molecular Genetics of RNA Viruses, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Enouf
- Molecular Genetics of RNA Viruses, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Mutualized Platform of Microbiology, Pasteur International Bioresources Network, Institut Pasteur, Université Paris Cité, Paris, France
| | - Yannick Blanchard
- Unit of Viral Genetics and Biosafety, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Véronique Beven
- Unit of Viral Genetics and Biosafety, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Estelle Leperchois
- DYNAMICURE INSERM U1311 UNIROUEN, Université de Caen, Caen, France
- Virology Department, Caen University Hospital, Caen, France
| | - Bryce Leterrier
- DYNAMICURE INSERM U1311 UNIROUEN, Université de Caen, Caen, France
- Virology Department, Caen University Hospital, Caen, France
| | | | - Meriadeg Le Gouil
- DYNAMICURE INSERM U1311 UNIROUEN, Université de Caen, Caen, France
- Virology Department, Caen University Hospital, Caen, France
| | | | - Evelyne Picard-Meyer
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| |
Collapse
|
7
|
Wasniewski M, Boué F, Richomme C, Simon-Lorière E, Van der Werf S, Donati F, Enouf V, Blanchard Y, Beven V, Leperchois E, Leterrier B, Corbet S, Le Gouil M, Monchatre-Leroy E, Picard-Meyer E. Investigations on SARS-CoV-2 and other coronaviruses in mink farms in France at the end of the first year of COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526749. [PMID: 36778275 PMCID: PMC9915642 DOI: 10.1101/2023.02.02.526749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Soon after the beginning of the COVID-19 pandemic in early 2020, the Betacoronavirus SARS-CoV-2 infection of several mink farms breeding American minks ( Neovison vison ) for fur was detected in several countries of Europe. The risk of a new reservoir formation and of a reverse zoonosis from minks was then a major concern. The aim of this study was to investigate the four French mink farms for the circulation of SARS-CoV-2 at the end of 2020. The investigations took place during the slaughtering period thus facilitating different types of sampling (swabs and blood). In one of the four mink farms, 96.6% of serum samples were positive in SARS-CoV-2 ELISA coated with purified N protein recombinant antigen and 54 out of 162 (33%) pharyngo-tracheal swabs were positive by RT-qPCR. The genetic variability among 12 SARS-CoV-2 genomes sequenced in this farm indicated the co-circulation of several lineages at the time of sampling. All SARS-CoV-2 genomes detected were nested within the 20A clade (Nextclade), together with SARS-CoV-2 genomes from humans sampled at the same period. The percentage of SARS-CoV-2 seropositivity by ELISA varied between 0.5 and 1.2% in the three other farms. Interestingly, among these three farms, 11 pharyngo-tracheal swabs and 3 fecal pools from two farms were positive by end-point RT-PCR for an Alphacoronavirus highly similar to a mink coronavirus sequence observed in Danish farms in 2015. In addition, a mink Caliciviridae was identified in one of the two positive farms for Alphacoronavirus . The clinical impact of these unapparent viral infections is not known. The co-infection of SARS-CoV-2 with other viruses in mink farms could contribute to explain the diversity of clinical symptoms noted in different infected farms in Europe. In addition, the co-circulation of an Alphacoronavirus and SARS-CoV-2 within a mink farm would increase potentially the risk of viral recombination between alpha and betacoronaviruses already suggested in wild and domestic animals, as well as in humans. Author summary France is not a country of major mink fur production. Following the SARS-CoV-2 contamination of mink farms in Denmark and the Netherlands, the question arose for the four French farms.The investigation conducted at the same time in the four farms revealed the contamination of one of them by a variant different from the one circulating at the same time in Denmark and the Netherlands mink farms. Investigation of three other farms free of SARS-CoV-2 contamination revealed the circulation of other viruses including a mink Alphacoronavirus and Caliciviridae , which could modify the symptomatology of SARS-CoV-2 infection in minks.
Collapse
Affiliation(s)
- Marine Wasniewski
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Franck Boué
- Wildlife Surveillance and Eco-epidemiology Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Céline Richomme
- Wildlife Surveillance and Eco-epidemiology Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Etienne Simon-Lorière
- G5 Evolutionary Genomics of RNA Viruses, Université Paris Cité, Institut Pasteur, Paris, France
| | - Sylvie Van der Werf
- Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université Paris Cité, Institut Pasteur, Paris, France
- National Reference Center for Respiratory viruses, Université Paris Cité, Institut Pasteur, Paris, France
| | - Flora Donati
- Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université Paris Cité, Institut Pasteur, Paris, France
- National Reference Center for Respiratory viruses, Université Paris Cité, Institut Pasteur, Paris, France
| | - Vincent Enouf
- Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université Paris Cité, Institut Pasteur, Paris, France
- National Reference Center for Respiratory viruses, Université Paris Cité, Institut Pasteur, Paris, France
- Mutualized Platform of Microbiology, Pasteur International Bioresources Network, Université Paris Cité, Institut Pasteur, Paris, France
| | - Yannick Blanchard
- Unit of Viral Genetics and Biosafety, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Véronique Beven
- Unit of Viral Genetics and Biosafety, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Estelle Leperchois
- INSERM U1311 DynaMicURe, UNICAEN, UNIROUEN, Normandie University, Caen, France
- Virology Department, Caen University Hospital, Caen, France
| | - Bryce Leterrier
- INSERM U1311 DynaMicURe, UNICAEN, UNIROUEN, Normandie University, Caen, France
- Virology Department, Caen University Hospital, Caen, France
| | | | - Meriadeg Le Gouil
- INSERM U1311 DynaMicURe, UNICAEN, UNIROUEN, Normandie University, Caen, France
- Virology Department, Caen University Hospital, Caen, France
| | | | - Evelyne Picard-Meyer
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| |
Collapse
|
8
|
In Vitro Replication of Swine Hepatitis E Virus (HEV): Production of Cell-Adapted Strains. Animals (Basel) 2023; 13:ani13020276. [PMID: 36670816 PMCID: PMC9854997 DOI: 10.3390/ani13020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The hepatitis E caused by the virus HEV of genotypes HEV-3 and HEV-4 is a zoonotic foodborne disease spread worldwide. HEV is currently classified into eight different genotypes (HEV-1-8). Genotypes HEV-3 and HEV-4 are zoonotic and are further divided into subtypes. Most of the information on HEV replication remains unknown due to the lack of an efficient cell cultivation system. Over the last couple of years, several protocols for HEV cultivation have been developed on different cell lines; even if they were troublesome, long, and scarcely reproducible, they offered the opportunity to study the replicative cycle of the virus. In the present study, we aimed to obtain a protocol ready to use viral stock in serum free medium that can be used with reduced time of growth and without any purification steps. The employed method allowed isolation and cell adaptation of four swine HEV-3 strains, belonging to three different subtypes. Phylogenetic analyses conducted on partial genome sequences of in vitro isolated strains did not reveal any insertion in the hypervariable region (HVR) of the genomes. A limited number of mutations was acquired in the genome during the virus growth in the partial sequences of Methyltransferase (Met) and ORF2 coding genes.
Collapse
|
9
|
Zhang F, Wang Y. HEV Cell Culture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:119-131. [PMID: 37223862 DOI: 10.1007/978-981-99-1304-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cell culture is an important research method in virology. Although many attempts have been conducted to culture HEV in cells, only a few cell culture systems were considered to be efficient enough for usage. Concentration of virus stocks, host cells, and medium components affects the culture efficiency and the genetic mutations during HEV passage were found to be associated with the increased virulence in cell culture. As an alternative method for traditional cell culture, the infectious cDNA clones were constructed. The viral thermal stability, factors that impact the host range, post-translation of viral proteins, and function of different viral proteins were studied using the infectious cDNA clones. HEV cell culture studies on progeny virus showed that the viruses secreted from host cells have an envelope and its formation was associated with pORF3. This result explained the phenomenon that virus could infect host cells in the presence of anti-HEV antibodies.
Collapse
Affiliation(s)
- Feng Zhang
- Division of Therapeutical Monoclonal Antibodies, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan Province, China.
| |
Collapse
|
10
|
Pellerin M, Trabucco B, Capai L, Laval M, Maestrini O, Jori F, Falchi A, Doceul V, Charrier F, Casabianca F, Pavio N. Low prevalence of hepatitis E virus in the liver of Corsican pigs slaughtered after 12 months despite high antibody seroprevalence. Transbound Emerg Dis 2022; 69:e2706-e2718. [PMID: 35689821 PMCID: PMC9796636 DOI: 10.1111/tbed.14621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023]
Abstract
Hepatitis E virus (HEV) infection can be acute and benign or evolve to chronic hepatitis with rapid progression toward cirrhosis or liver failure in humans. Hence, hepatitis E (HE) disease is a major public health concern. In countries where pig populations are highly contaminated with HEV, human cases of HE are mainly foodborne, occurring frequently after consumption of raw or undercooked pork products or liver. Among factors associated to the presence of HEV in pork livers from intensive rearing systems, early slaughter (≤6 months) seems to be major. In Corsica, local pigs are raised in extensive farming systems and slaughtered after 12 months. To evaluate if slaughter of pigs over 12 months reduces the risk of HEV presence in livers, 1197 liver samples were randomly collected in 2 Corsican slaughterhouses. Presence of HEV RNA was detected in liver and HEV seroprevalence was determined in paired serum. The sampling included 1083 livers from animals between 12 and 48 months and 114 livers from animals <12 months. The samples were predominantly from semi-extensive and extensive farms (n = 1154). Estimated HEV seroprevalence was high, that is, >88%, and HEV RNA prevalence in adult pig livers (>12 months old) was low, that is, 0.18%. However, in livers from younger animals (<12 months), including piglets below 6 months old, 5.3% (6/114) of the samples were positive for HEV RNA. Sequences recovered from positive livers belonged to HEV genotype 3c and 3f. The presence of infectious HEV was confirmed in two livers by the detection of HEV replication in HepaRG cell cultures. Thus, this study demonstrates the low prevalence of HEV in livers of pigs over 12 months, even in farms with high HEV circulation. This observation may open new perspectives on the preferential use of livers from animals older than 12 months in raw pork liver products.
Collapse
Affiliation(s)
- Marie Pellerin
- UMR VirologieANSES, INRAE, ENVALaboratoire de Santé AnimaleMaisons‐AlfortFrance
| | | | - Lisandru Capai
- Laboratoire de VirologieUniversité de Corse Pasquale PaoliUR BIOSCOPE 7310CorteFrance,Institute of Virology, University of Charité BerlinAG Junglen10117BerlinGermany
| | | | | | - Ferran Jori
- UMR ASTRE (Animaux, Santé, Territoire, Risques et Ecosystèmes), CIRADINRAEUniversité de MontpellierCampus International de BaillarguetMontpellierFrance
| | - Alessandra Falchi
- Laboratoire de VirologieUniversité de Corse Pasquale PaoliUR BIOSCOPE 7310CorteFrance
| | - Virginie Doceul
- UMR VirologieANSES, INRAE, ENVALaboratoire de Santé AnimaleMaisons‐AlfortFrance
| | - François Charrier
- UR SELMET‐LRDEINRAECorteFrance,UMR LISIS, Université Gustave EiffelINRAECNRSMarne‐la‐ValléeFrance
| | | | - Nicole Pavio
- UMR VirologieANSES, INRAE, ENVALaboratoire de Santé AnimaleMaisons‐AlfortFrance
| |
Collapse
|
11
|
Khoshdel-Rad N, Zahmatkesh E, Bikmulina P, Peshkova M, Kosheleva N, Bezrukov EA, Sukhanov RB, Solovieva A, Shpichka A, Timashev P, Vosough M. Modeling Hepatotropic Viral Infections: Cells vs. Animals. Cells 2021; 10:1726. [PMID: 34359899 PMCID: PMC8305759 DOI: 10.3390/cells10071726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The lack of an appropriate platform for a better understanding of the molecular basis of hepatitis viruses and the absence of reliable models to identify novel therapeutic agents for a targeted treatment are the two major obstacles for launching efficient clinical protocols in different types of viral hepatitis. Viruses are obligate intracellular parasites, and the development of model systems for efficient viral replication is necessary for basic and applied studies. Viral hepatitis is a major health issue and a leading cause of morbidity and mortality. Despite the extensive efforts that have been made on fundamental and translational research, traditional models are not effective in representing this viral infection in a laboratory. In this review, we discuss in vitro cell-based models and in vivo animal models, with their strengths and weaknesses. In addition, the most important findings that have been retrieved from each model are described.
Collapse
Affiliation(s)
- Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Nastasia Kosheleva
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- FSBSI ‘Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Evgeny A. Bezrukov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Anna Solovieva
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|