1
|
Dai B, Polack L, Sperl A, Dame H, Huynh T, Deveney C, Lee C, Doench JG, Heldwein EE. CLCC1 promotes membrane fusion during herpesvirus nuclear egress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614151. [PMID: 39386602 PMCID: PMC11463520 DOI: 10.1101/2024.09.23.614151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herpesvirales are an ancient viral order that infects species from mollusks to humans for life. During infection, these viruses translocate their large capsids from the nucleus to the cytoplasm independently from the canonical route through the nuclear pore. Instead, capsids dock at the inner nuclear membrane and bud into the perinuclear space. These perinuclear enveloped virions fuse with the outer nuclear membrane releasing the capsids into the cytoplasm for maturation into infectious virions. The budding stage is mediated by virally encoded proteins. But the mediator of the subsequent fusion stage is unknown. Here, using a whole-genome CRISPR screen with herpes simplex virus 1, we identified CLCC1 as an essential host factor for the fusion stage of nuclear egress. Loss of CLCC1 results in a defect in nuclear egress, accumulation of capsid-containing perinuclear vesicles, and a drop in viral titers. In uninfected cells, loss of CLCC1 causes a defect in nuclear pore complex insertion. Viral homologs of CLCC1 are present in herpesviruses that infect mollusks and fish. Our findings uncover an ancient cellular membrane fusion mechanism important for the fundamental cellular process of nuclear envelope morphogenesis that herpesviruses hijack for capsid transport.
Collapse
Affiliation(s)
- Bing Dai
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Genetics, Molecular, and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Lucas Polack
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Adrian Sperl
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Genetics, Molecular, and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Haley Dame
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Genetics, Molecular, and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Tien Huynh
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Chloe Deveney
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Chanyoung Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Genetics, Molecular, and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Kelnhofer-Millevolte LE, Arnold EA, Nguyen DH, Avgousti DC. Controlling Much? Viral Control of Host Chromatin Dynamics. Annu Rev Virol 2024; 11:171-191. [PMID: 38684115 DOI: 10.1146/annurev-virology-100422-011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Viruses are exemplary molecular biologists and have been integral to scientific discovery for generations. It is therefore no surprise that nuclear replicating viruses have evolved to systematically take over host cell function through astoundingly specific nuclear and chromatin hijacking. In this review, we focus on nuclear replicating DNA viruses-herpesviruses and adenoviruses-as key examples of viral invasion in the nucleus. We concentrate on critical features of nuclear architecture, such as chromatin and the nucleolus, to illustrate the complexity of the virus-host battle for resources in the nucleus. We conclude with a discussion of the technological advances that have enabled the discoveries we describe and upcoming steps in this burgeoning field.
Collapse
Affiliation(s)
- Laurel E Kelnhofer-Millevolte
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Edward A Arnold
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Daniel H Nguyen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Tillmanns J, Kicuntod J, Lösing J, Marschall M. 'Getting Better'-Is It a Feasible Strategy of Broad Pan-Antiherpesviral Drug Targeting by Using the Nuclear Egress-Directed Mechanism? Int J Mol Sci 2024; 25:2823. [PMID: 38474070 DOI: 10.3390/ijms25052823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Yao S, Kim SC, Li J, Tang S, Wang X. Phosphatidic acid signaling and function in nuclei. Prog Lipid Res 2024; 93:101267. [PMID: 38154743 PMCID: PMC10843600 DOI: 10.1016/j.plipres.2023.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Membrane lipidomes are dynamic and their changes generate lipid mediators affecting various biological processes. Phosphatidic acid (PA) has emerged as an important class of lipid mediators involved in a wide range of cellular and physiological responses in plants, animals, and microbes. The regulatory functions of PA have been studied primarily outside the nuclei, but an increasing number of recent studies indicates that some of the PA effects result from its action in nuclei. PA levels in nuclei are dynamic in response to stimuli. Changes in nuclear PA levels can result from activities of enzymes associated with nuclei and/or from movements of PA generated extranuclearly. PA has also been found to interact with proteins involved in nuclear functions, such as transcription factors and proteins undergoing nuclear translocation in response to stimuli. The nuclear action of PA affects various aspects of plant growth, development, and response to stress and environmental changes.
Collapse
Affiliation(s)
- Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shan Tang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
5
|
Klupp BG, Mettenleiter TC. The Knowns and Unknowns of Herpesvirus Nuclear Egress. Annu Rev Virol 2023; 10:305-323. [PMID: 37040797 DOI: 10.1146/annurev-virology-111821-105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Nuclear egress of herpesvirus capsids across the intact nuclear envelope is an exceptional vesicle-mediated nucleocytoplasmic translocation resulting in the delivery of herpesvirus capsids into the cytosol. Budding of the (nucleo)capsid at and scission from the inner nuclear membrane (INM) is mediated by the viral nuclear egress complex (NEC) resulting in a transiently enveloped virus particle in the perinuclear space followed by fusion of the primary envelope with the outer nuclear membrane (ONM). The dimeric NEC oligomerizes into a honeycomb-shaped coat underlining the INM to induce membrane curvature and scission. Mutational analyses complemented structural data defining functionally important regions. Questions remain, including where and when the NEC is formed and how membrane curvature is mediated, vesicle formation is regulated, and directionality is secured. The composition of the primary enveloped virion and the machinery mediating fusion of the primary envelope with the ONM is still debated. While NEC-mediated budding apparently follows a highly conserved mechanism, species and/or cell type-specific differences complicate understanding of later steps.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | |
Collapse
|
6
|
Huang JR, Arii J, Hirai M, Nishimura M, Mori Y. Human herpesvirus 6A nuclear matrix protein U37 interacts with heat shock transcription factor 1 and activates the heat shock response. J Virol 2023; 97:e0071823. [PMID: 37671864 PMCID: PMC10537701 DOI: 10.1128/jvi.00718-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 09/07/2023] Open
Abstract
Nascent nucleocapsids of herpesviruses acquire a primary envelope during their nuclear export by budding through the inner nuclear membrane into the perinuclear space between the inner and outer nuclear membranes. This process is mediated by a conserved viral heterodimeric complex designated the nuclear egress complex, which consists of the nuclear matrix protein and the nuclear membrane protein. In addition to its essential roles during nuclear egress, the nuclear matrix protein has been shown to interact with intracellular signaling pathway molecules including NF-κB and IFN-β to affect viral or cellular gene expression. The human herpesvirus 6A (HHV-6A) U37 gene encodes a nuclear matrix protein, the role of which has not been analyzed. Here, we show that HHV-6A U37 activates the heat shock element promoter and induces the accumulation of the molecular chaperone Hsp90. Mechanistically, HHV-6A U37 interacts with heat shock transcription factor 1 (HSF1) and induces its phosphorylation at Ser-326. We report that pharmacological inhibition of HSF1, Hsp70, or Hsp90 decreases viral protein accumulation and viral replication. Taken together, our results lead us to propose a model in which HHV-6A U37 activates the heat shock response to support viral gene expression and replication. IMPORTANCE Human herpesvirus 6A (HHV-6A) is a dsDNA virus belonging to the Roseolovirus genus within the Betaherpesvirinae subfamily. It is frequently found in patients with neuroinflammatory disease, although its pathogenetic role, if any, awaits elucidation. The heat shock response is important for cell survival under stressful conditions that disrupt homeostasis. Our results indicate that HHV-6A U37 activates the heat shock element promoter and leads to the accumulation of heat shock proteins. Next, we show that the heat shock response is important for viral replication. Overall, our findings provide new insights into the function of HHV-6A U37 in host cell signaling and identify potential cellular targets involved in HHV-6A pathogenesis and replication.
Collapse
Affiliation(s)
- Jing Rin Huang
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jun Arii
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mansaku Hirai
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
7
|
Xia P, Dubrovska A. CD98 heavy chain as a prognostic biomarker and target for cancer treatment. Front Oncol 2023; 13:1251100. [PMID: 37823053 PMCID: PMC10562705 DOI: 10.3389/fonc.2023.1251100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
The SLC3A2 gene encodes for a cell-surface transmembrane protein CD98hc (4F2). CD98hc serves as a chaperone for LAT1 (SLC7A5), LAT2 (SLC7A8), y+LAT1 (SLC7A7), y+LAT2 (SLC7A6), xCT (SLC7A11) and Asc1 (SLC7A10) providing their recruitment to the plasma membrane. Together with the light subunits, it constitutes heterodimeric transmembrane amino acid transporters. CD98hc interacts with other surface molecules, such as extracellular matrix metalloproteinase inducer CD147 (EMMPRIN) and adhesion receptors integrins, and regulates glucose uptake. In this way, CD98hc connects the signaling pathways sustaining cell proliferation and migration, biosynthesis and antioxidant defense, energy production, and stem cell properties. This multifaceted role makes CD98hc one of the critical regulators of tumor growth, therapy resistance, and metastases. Indeed, the high expression levels of CD98hc were confirmed in various tumor tissues, including head and neck squamous cell carcinoma, glioblastoma, colon adenocarcinoma, pancreatic ductal adenocarcinoma, and others. A high expression of CD98hc has been linked to clinical prognosis and response to chemo- and radiotherapy in several types of cancer. In this mini-review, we discuss the physiological functions of CD98hc, its role in regulating tumor stemness, metastases, and therapy resistance, and the clinical significance of CD98hc as a tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Pu Xia
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
8
|
Lewis HC, Kelnhofer-Millevolte LE, Brinkley MR, Arbach HE, Arnold EA, Sanders S, Bosse JB, Ramachandran S, Avgousti DC. HSV-1 exploits host heterochromatin for nuclear egress. J Cell Biol 2023; 222:e202304106. [PMID: 37516914 PMCID: PMC10373338 DOI: 10.1083/jcb.202304106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/31/2023] Open
Abstract
Herpes simplex virus (HSV-1) progeny form in the nucleus and exit to successfully infect other cells. Newly formed capsids navigate complex chromatin architecture to reach the inner nuclear membrane (INM) and egress. Here, we demonstrate by transmission electron microscopy (TEM) that HSV-1 capsids traverse heterochromatin associated with trimethylation on histone H3 lysine 27 (H3K27me3) and the histone variant macroH2A1. Through chromatin profiling during infection, we revealed global redistribution of these marks whereby massive host genomic regions bound by macroH2A1 and H3K27me3 correlate with decreased host transcription in active compartments. We found that the loss of these markers resulted in significantly lower viral titers but did not impact viral genome or protein accumulation. Strikingly, we discovered that loss of macroH2A1 or H3K27me3 resulted in nuclear trapping of capsids. Finally, by live-capsid tracking, we quantified this decreased capsid movement. Thus, our work demonstrates that HSV-1 takes advantage of the dynamic nature of host heterochromatin formation during infection for efficient nuclear egress.
Collapse
Affiliation(s)
- Hannah C Lewis
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology, Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laurel E Kelnhofer-Millevolte
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology, Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- UW Medical Scientist Training Program , Seattle, WA, USA
| | - Mia R Brinkley
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hannah E Arbach
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Edward A Arnold
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Microbiology Graduate Program, University of Washington , Seattle, WA, USA
| | - Saskia Sanders
- Institute of Virology, Hannover Medical School , Hannover, Germany
- Leibniz Institute of Virology (LIV) , Hamburg, Germany
- Centre for Structural Systems Biology , Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School , Hannover, Germany
| | - Jens B Bosse
- Institute of Virology, Hannover Medical School , Hannover, Germany
- Leibniz Institute of Virology (LIV) , Hamburg, Germany
- Centre for Structural Systems Biology , Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School , Hannover, Germany
| | - Srinivas Ramachandran
- RNA Bioscience Initiative, University of Colorado School of Medicine , Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
9
|
Ma Y, Deng X, Zhou L, Dong H, Xu P. HSV-1 selectively packs the transcription factor Oct-1 into EVs to facilitate its infection. Front Microbiol 2023; 14:1205906. [PMID: 37396389 PMCID: PMC10309031 DOI: 10.3389/fmicb.2023.1205906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
HSV-1 hijacks the cellular vesicular secretion system and promotes the secretion of extracellular vesicles (EVs) from infected cells. This is believed to facilitate the maturation, secretion, intracellular transportation and immune evasion of the virus. Intriguingly, previous studies have shown that noninfectious EVs from HSV-1-infected cells exert antiviral effects on HSV-1 and have identified host restrictive factors, such as STING, CD63, and Sp100 packed in these lipid bilayer-enclosed vesicles. Octamer-binding transcription factor-1 (Oct-1) is shown here to be a pro-viral cargo in non-virion-containing EVs during HSV-1 infection and serves to facilitate virus dissemination. Specifically, during HSV-1 infection, the nuclear localized transcription factor Oct-1 displayed punctate cytosolic staining that frequently colocalized with VP16 and was increasingly secreted into the extracellular space. HSV-1 grown in cells bereft of Oct-1 (Oct-1 KO) was significantly less efficient at transcribing viral genes during the next round of infection. In fact, HSV-1 promoted increased exportation of Oct-1 in non-virion-containing EVs, but not the other VP16-induced complex (VIC) component HCF-1, and EV-associated Oct-1 was promptly imported into the nucleus of recipient cells to facilitate the next round of HSV-1 infection. Interestingly, we also found that EVs from HSV-1-infected cells primed cells for infection by another RNA virus, vesicular stomatitis virus. In summary, this investigation reports one of the first pro-viral host proteins packed into EVs during HSV-1 infection and underlines the heterogenetic nature and complexity of these noninfectious double-lipid particles.
Collapse
|
10
|
Kong X, Chen G, Li J, Li Y, Wu X. Identification and characterization of BmNPV Bm5 protein required for the formation of nuclear vesicle structures. J Gen Virol 2023; 104. [PMID: 37185135 DOI: 10.1099/jgv.0.001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
BmNPV infection induces nuclear vesicle-like structures and its Bm5 protein mediates the intranuclear lipid accumulation, which is thought to participate in the formation of nuclear vesicles. However, the relationship between viral-induced nuclear vesicles and Bm5 protein is still unclear. Here, our results indicated that BmNPV Bm5 protein participated in the baculovirus infection-induced nuclear vesicle-like structures' invagination thereby influencing the production of occlusion-derived virion (ODV) and occlusion body (OB). The process of nuclear vesicle-like structures' formation was dispensable for the transport or recruitment of ODV major envelope proteins, such as P74 and Bm14. Furthermore, baculovirus-induced nuclear F-actin might provide a direct mechanical force to mediate the scission of large vesicle-like structures from the nuclear membrane. Collectively, these findings illustrated a BmNPV Bm5 protein-induced nuclear membrane invagination pathway and revealed the function of nuclear vesicle-like structures in ODV production.
Collapse
Affiliation(s)
- Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Jiale Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Yuedong Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| |
Collapse
|
11
|
Kicuntod J, Häge S, Lösing J, Kopar S, Muller YA, Marschall M. An antiviral targeting strategy based on the inducible interference with cytomegalovirus nuclear egress complex. Antiviral Res 2023; 212:105557. [PMID: 36796541 DOI: 10.1016/j.antiviral.2023.105557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The nucleocytoplasmic capsid egress of herpesviruses like the human cytomegalovirus (HCMV) is based on a uniquely regulated process. The core nuclear egress complex (NEC) of HCMV, represented by the pUL50-pUL53 heterodimer, is able to oligomerize and thus to build hexameric lattices. Recently, we and others validated the NEC as a novel target for antiviral strategies. So far, the experimental targeting approaches included the development of NEC-directed small molecules, cell-penetrating peptides and NEC-directed mutagenesis. Our postulate states that an interference with the hook-into-groove interaction of pUL50-pUL53 prevents NEC formation and strictly limits viral replication efficiency. Here, we provide an experimental proof-of-concept of the antiviral strategy: the inducible intracellular expression of a NLS-Hook-GFP construct exerted a pronounced level of antiviral activity. The data provide evidence for the following points: (i) generation of a primary fibroblast population with inducible NLS-Hook-GFP expression showed nuclear localization of the construct, (ii) interaction between NLS-Hook-GFP and the viral core NEC was found specific for cytomegaloviruses but not for other herpesviruses, (iii) construct overexpression exerted a strong antiviral activity against three strains of HCMV, (iv) confocal imaging demonstrated the interference with NEC nuclear rim formation in HCMV-infected cells, and (v) quantitative nuclear egress assay confirmed the block of viral nucleocytoplasmic transition and, consequently, an inhibitory effect onto viral cytoplasmic virion assembly complex (cVAC). Combined, data confirmed that the specific interference with protein-protein interaction of the HCMV core NEC represents an efficient antiviral targeting strategy.
Collapse
Affiliation(s)
- Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Serli Kopar
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, FAU, Erlangen, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
12
|
Jadhav AC, Kounatidis I. Correlative Cryo-imaging Using Soft X-Ray Tomography for the Study of Virus Biology in Cells and Tissues. Subcell Biochem 2023; 106:169-196. [PMID: 38159227 DOI: 10.1007/978-3-031-40086-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are obligate intracellular pathogens that depend on their host cell machinery and metabolism for their replicative life cycle. Virus entry, replication, and assembly are dynamic processes that lead to the reorganisation of host cell components. Therefore, a complete understanding of the viral processes requires their study in the cellular context where advanced imaging has been proven valuable in providing the necessary information. Among the available imaging techniques, soft X-ray tomography (SXT) at cryogenic temperatures can provide three-dimensional mapping to 25 nm resolution and is ideally suited to visualise the internal organisation of virus-infected cells. In this chapter, the principles and practices of synchrotron-based cryo-soft X-ray tomography (cryo-SXT) in virus research are presented. The potential of the cryo-SXT in correlative microscopy platforms is also demonstrated through working examples of reovirus and hepatitis research at Beamline B24 (Diamond Light Source Synchrotron, UK) and BL09-Mistral beamline (ALBA Synchrotron, Spain), respectively.
Collapse
Affiliation(s)
- Archana C Jadhav
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
13
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
In Vitro Evaluation of Antiviral Activity Effect of Selenium, Bacillus clausii Supernatant, and Their Combination on the Replication of Herpes Simplex Virus 1. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: About 70% of individuals worldwide suffer from herpes simplex virus 1 (HSV-1). Several studies have reported that selenium and supernatant of probiotic bacteria are antiviral; nevertheless, their effect alone or synergistically on HSV-1 is unknown. Objectives: The present study aimed to evaluate the antiviral effects of Bacillus clausii supernatant, selenium (Se), and their combination on HSV-1. Methods: After determining cytotoxicity by the MTT assay, selenium and B. clausii supernatants were added to HeLa cells 24 hours before (pre-infection treatment) and after (post-infection treatment) HSV-1 inoculation. After 47 hours of incubation at 37°C, the viral titer and expression levels of the unique long 47 (UL47) gene were determined by the 50% tissue culture infectious dose (TCID50) and real-time polymerase chain reaction methods, respectively. Results: The bacterial supernatant in dilutions of 1:4 and 1:8, selenium in concentrations of 0.5 and 1 μM, and a combination of them had a cytotoxicity level lower than 80% in HeLa cells. The HSV-1 titers in pre-infection and post-infection assays with a dilution of 1:4 supernatant decreased by about 2.16 and 1 log10 TCID50/mL, respectively. Moreover, 1 μM Se could reduce the virus titer by 2.33 log10 TCID50/mL. The virus titer showed a greater decrease when Se and the bacterial supernatants were combined than when only one of the two was used. The highest selectivity index (SI) was obtained when selenium and bacterial supernatant were combined (SI = 29.2). The combined use of 1 μM Se and a 1:4 dilution of B. clausii supernatant caused the greatest drop in virus titer (3.3 log10 TCID50/mL) in comparison to other treatment conditions. The UL47 gene expression was reduced by Se at concentrations of 0.5 and 1 μM by about 1.6- and 2-fold, respectively. The UL47 expression showed a higher decline when selenium and bacterial supernatant were combined than when only one of the two was employed, which is similar to viral titer data. Conclusions: Selenium and the supernatant of B. clausii have potent antiviral activity against HSV-1. The combination of selenium and the bacterial supernatant has a synergistic effect in reducing HSV-1 replication. However, further research is required to fully understand how they inhibit viruses.
Collapse
|
15
|
Sharma P, Kapoor D, Shukla D. Role of Heparanase and Syndecan-1 in HSV-1 Release from Infected Cells. Viruses 2022; 14:2156. [PMID: 36298711 PMCID: PMC9612286 DOI: 10.3390/v14102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Herpes Simplex Virus 1 (HSV-1) is a neurotropic human virus that belongs to the Alphaherpesvirinae subfamily of Herpesviridae. Establishment of its productive infection and progression of disease pathologies depend largely on successful release of virions from the virus-producing cells. HSV-1 is known to exploit many host factors for its release. Recent studies have shown that heparanase (HPSE) is one such host enzyme that is recruited for this purpose. It is an endoglycosidase that cleaves heparan sulfate (HS) from the surface of infected cells. HS is a virus attachment coreceptor that is commonly found on cell surfaces as HS proteoglycans e.g., syndecan-1 (SDC-1). The current model suggests that HSV-1 during the late stage of infection upregulates HPSE, which in turn enhances viral release by removing the virus-trapping HS moieties. In addition to its role in directly enabling viral release, HPSE accelerates the shedding of HS-containing ectodomains of SDC-1, which enhances HSV-1 release via a similar mechanism by upregulating CREB3 and COPII proteins. This review outlines the role of HPSE and SDC-1 as newly assigned host factors that facilitate HSV-1 release during a lytic infection cycle.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Divya Kapoor
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
16
|
‘Come Together’—The Regulatory Interaction of Herpesviral Nuclear Egress Proteins Comprises both Essential and Accessory Functions. Cells 2022; 11:cells11111837. [PMID: 35681532 PMCID: PMC9180862 DOI: 10.3390/cells11111837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Herpesviral nuclear egress is a fine-tuned regulatory process that defines the nucleocytoplasmic release of viral capsids. Nuclear capsids are unable to traverse via nuclear pores due to the fact of their large size; therefore, herpesviruses evolved to develop a vesicular transport pathway mediating the transition across the two leaflets of the nuclear membrane. The entire process involves a number of regulatory proteins, which support the local distortion of the nuclear envelope. In the case of the prototype species of β-Herpesvirinae, the human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the core proteins pUL50 and pUL53 that oligomerize, form capsid docking lattices and mediate multicomponent assembly with NEC-associated viral and cellular proteins. The NEC-binding principle is based on the hook-into-groove interaction through an N-terminal hook-like pUL53 protrusion that embraces an α-helical pUL50 binding groove. Thus far, the function and characteristics of herpesviral core NECs have been well studied and point to the groove proteins, such as pUL50, as the multi-interacting, major determinants of NEC formation and egress. This review provides closer insight into (i) sequence and structure conservation of herpesviral core NEC proteins, (ii) experimentation on cross-viral core NEC interactions, (iii) the essential functional roles of hook and groove proteins for viral replication, (iv) an establishment of assay systems for NEC-directed antiviral research and (v) the validation of NEC as putative antiviral drug targets. Finally, this article provides new insights into the conservation, function and antiviral targeting of herpesviral core NEC proteins and, into the complex regulatory role of hook and groove proteins during the assembly, egress and maturation of infectious virus.
Collapse
|
17
|
Role of the Orphan Transporter SLC35E1 in the Nuclear Egress of Herpes Simplex Virus 1. J Virol 2022; 96:e0030622. [PMID: 35475666 DOI: 10.1128/jvi.00306-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study developed a system consisting of two rounds of screening cellular proteins involved in the nuclear egress of herpes simplex virus 1 (HSV-1). Using this system, we first screened cellular proteins that interacted with the HSV-1 nuclear egress complex (NEC) consisting of UL34 and UL31 in HSV-1-infected cells, which are critical for the nuclear egress of HSV-1, by tandem affinity purification coupled with mass spectrometry-based proteomics technology. Next, we performed CRISPR/Cas9-based screening of live HSV-1-infected reporter cells under fluorescence microscopy using single guide RNAs targeting the cellular proteins identified in the first proteomic screening to detect the mislocalization of the lamin-associated protein emerin, which is a phenotype for defects in HSV-1 nuclear egress. This study focused on a cellular orphan transporter SLC35E1, one of the cellular proteins identified by the screening system. Knockout of SLC35E1 reduced HSV-1 replication and induced membranous invaginations containing perinuclear enveloped virions (PEVs) adjacent to the nuclear membrane (NM), aberrant accumulation of PEVs in the perinuclear space between the inner and outer NMs and the invagination structures, and mislocalization of the NEC. These effects were similar to those of previously reported mutation(s) in HSV-1 proteins and depletion of cellular proteins that are important for HSV-1 de-envelopment, one of the steps required for HSV-1 nuclear egress. Our newly established screening system enabled us to identify a novel cellular protein required for efficient HSV-1 de-envelopment. IMPORTANCE The identification of cellular protein(s) that interact with viral effector proteins and function in important viral procedures is necessary for enhancing our understanding of the mechanics of various viral processes. In this study, we established a new system consisting of interactome screening for the herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), followed by loss-of-function screening to target the identified putative NEC-interacting cellular proteins to detect a defect in HSV-1 nuclear egress. This newly established system identified SLC35E1, an orphan transporter, as a novel cellular protein required for efficient HSV-1 de-envelopment, providing an insight into the mechanisms involved in this viral procedure.
Collapse
|
18
|
Aho V, Salminen S, Mattola S, Gupta A, Flomm F, Sodeik B, Bosse JB, Vihinen-Ranta M. Infection-induced chromatin modifications facilitate translocation of herpes simplex virus capsids to the inner nuclear membrane. PLoS Pathog 2021; 17:e1010132. [PMID: 34910768 PMCID: PMC8673650 DOI: 10.1371/journal.ppat.1010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Herpes simplex virus capsids are assembled and packaged in the nucleus and move by diffusion through the nucleoplasm to the nuclear envelope for egress. Analyzing their motion provides conclusions not only on capsid transport but also on the properties of the nuclear environment during infection. We utilized live-cell imaging and single-particle tracking to characterize capsid motion relative to the host chromatin. The data indicate that as the chromatin was marginalized toward the nuclear envelope it presented a restrictive barrier to the capsids. However, later in infection this barrier became more permissive and the probability of capsids to enter the chromatin increased. Thus, although chromatin marginalization initially restricted capsid transport to the nuclear envelope, a structural reorganization of the chromatin counteracted that to promote capsid transport later. Analyses of capsid motion revealed that it was subdiffusive, and that the diffusion coefficients were lower in the chromatin than in regions lacking chromatin. In addition, the diffusion coefficient in both regions increased during infection. Throughout the infection, the capsids were never enriched at the nuclear envelope, which suggests that instead of nuclear export the transport through the chromatin is the rate-limiting step for the nuclear egress of capsids. This provides motivation for further studies by validating the importance of intranuclear transport to the life cycle of HSV-1.
Collapse
Affiliation(s)
- Vesa Aho
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Salla Mattola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Felix Flomm
- HPI, Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Jens B. Bosse
- HPI, Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
19
|
Herpesvirus Nuclear Egress across the Outer Nuclear Membrane. Viruses 2021; 13:v13122356. [PMID: 34960625 PMCID: PMC8706699 DOI: 10.3390/v13122356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Herpesvirus capsids are assembled in the nucleus and undergo a two-step process to cross the nuclear envelope. Capsids bud into the inner nuclear membrane (INM) aided by the nuclear egress complex (NEC) proteins UL31/34. At that stage of egress, enveloped virions are found for a short time in the perinuclear space. In the second step of nuclear egress, perinuclear enveloped virions (PEVs) fuse with the outer nuclear membrane (ONM) delivering capsids into the cytoplasm. Once in the cytoplasm, capsids undergo re-envelopment in the Golgi/trans-Golgi apparatus producing mature virions. This second step of nuclear egress is known as de-envelopment and is the focus of this review. Compared with herpesvirus envelopment at the INM, much less is known about de-envelopment. We propose a model in which de-envelopment involves two phases: (i) fusion of the PEV membrane with the ONM and (ii) expansion of the fusion pore leading to release of the viral capsid into the cytoplasm. The first phase of de-envelopment, membrane fusion, involves four herpes simplex virus (HSV) proteins: gB, gH/gL, gK and UL20. gB is the viral fusion protein and appears to act to perturb membranes and promote fusion. gH/gL may also have similar properties and appears to be able to act in de-envelopment without gB. gK and UL20 negatively regulate these fusion proteins. In the second phase of de-envelopment (pore expansion and capsid release), an alpha-herpesvirus protein kinase, US3, acts to phosphorylate NEC proteins, which normally produce membrane curvature during envelopment. Phosphorylation of NEC proteins reverses tight membrane curvature, causing expansion of the membrane fusion pore and promoting release of capsids into the cytoplasm.
Collapse
|
20
|
Dorsch AD, Hölper JE, Franzke K, Zaeck LM, Mettenleiter TC, Klupp BG. Role of Vesicle-Associated Membrane Protein-Associated Proteins (VAP) A and VAPB in Nuclear Egress of the Alphaherpesvirus Pseudorabies Virus. Viruses 2021; 13:v13061117. [PMID: 34200728 PMCID: PMC8229525 DOI: 10.3390/v13061117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanism affecting translocation of newly synthesized herpesvirus nucleocapsids from the nucleus into the cytoplasm is still not fully understood. The viral nuclear egress complex (NEC) mediates budding at and scission from the inner nuclear membrane, but the NEC is not sufficient for efficient fusion of the primary virion envelope with the outer nuclear membrane. Since no other viral protein was found to be essential for this process, it was suggested that a cellular machinery is recruited by viral proteins. However, knowledge on fusion mechanisms involving the nuclear membranes is rare. Recently, vesicle-associated membrane protein-associated protein B (VAPB) was shown to play a role in nuclear egress of herpes simplex virus 1 (HSV-1). To test this for the related alphaherpesvirus pseudorabies virus (PrV), we mutated genes encoding VAPB and VAPA by CRISPR/Cas9-based genome editing in our standard rabbit kidney cells (RK13), either individually or in combination. Single as well as double knockout cells were tested for virus propagation and for defects in nuclear egress. However, no deficiency in virus replication nor any effect on nuclear egress was obvious suggesting that VAPB and VAPA do not play a significant role in this process during PrV infection in RK13 cells.
Collapse
Affiliation(s)
- Anna D. Dorsch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
- Correspondence:
| |
Collapse
|