1
|
Venkatachalam S, Krishnan SR, Sayed Y, Gromiha MM. Structural and Functional Studies on HIV Protease: Mechanism of Action, Subtypes, Inhibitors, and Drug Resistance. Methods Mol Biol 2025; 2867:185-200. [PMID: 39576582 DOI: 10.1007/978-1-0716-4196-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Human immunodeficiency virus (HIV) targets the host immune system causing acquired immunodeficiency syndrome (AIDS). Although significant advancements have been made on investigating HIV and related infections, eradicating the virus from the host immune system is still challenging. Nevertheless, the combination therapies using drugs targeting different stages in the viral life cycle are used for treatment in which HIV protease plays a vital role. Hence, it is essential to understand the structure and function of HIV protease. This review focuses on these aspects from different perspectives such as catalytic mechanism, subtypes and role of flaps in drug binding. Further, we highlight the factors affecting drug binding, evolution of drug resistance, and inhibitors reported in the literature using 3D QSAR studies.
Collapse
Affiliation(s)
- Sankaran Venkatachalam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sowmya Ramaswamy Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Nuwagaba J, Li JA, Ngo B, Sutton RE. 30 years of HIV therapy: Current and future antiviral drug targets. Virology 2024; 603:110362. [PMID: 39705895 DOI: 10.1016/j.virol.2024.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Significant advances in treatment have turned HIV-1 into a manageable chronic condition. This has been achieved due to highly active antiretroviral therapy (HAART), involving a combination regimen of medications, including drugs that target Reverse Transcriptase, Protease, Integrase, and viral entry, explored in this review. This paper also highlights novel therapies, such as Lenacapavir, and avenues toward functional cure targeting the CCR5 co-receptor, including the Δ32 mutation. Challenges of HAART include lifelong adherence, toxicity, drug interactions, and drug resistance. Future therapeutic strategies may focus on underexplored antiviral targets. HIV-1 Tat and Rev proteins have essential HIV-1 regulatory functions of transcriptional elongation of the viral long terminal repeat and nuclear export of intron-containing HIV-1 RNA, respectively. These non-enzymatic proteins should thus be investigated to identify small molecules that inhibit HIV-1 replication, without causing undue toxicity. Continued innovation is essential to address therapeutic gaps and bring us closer to a potential HIV-1 cure.
Collapse
Affiliation(s)
- Julius Nuwagaba
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Jessica A Li
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Brandon Ngo
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Richard E Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
3
|
Naumovich V, Kandagalla S, Grishina M. Machine learning-based prediction of bioactivity in HIV-1 protease: insights from electron density analysis. Future Med Chem 2024:1-9. [PMID: 39533796 DOI: 10.1080/17568919.2024.2419350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: To develop a model for predicting the biological activity of compounds targeting the HIV-1 protease and to establish factors influencing enzyme inhibition.Materials & methods: Machine learning models were built based on a combination of Richard Bader's theory of Atoms in Molecules and topological analysis of electron density using experimental x-ray 'protein-ligand' complexes and inhibition constants data.Results & conclusion: Among all the models tested, logistic regression achieved the highest accuracy of 0.76 on the test set. The model's ability to differentiate between less active and highly active classes was relatively good, as indicated by an AUC-ROC score of 0.77. The analysis identified several critical factors affecting the biological activity of HIV-1 protease inhibitors, including the electron density contribution of hydrogen atoms, bond-critical points and particular amino acid residues. These findings provide new insights into how these molecular factors influence HIV-1 protease inhibition, emphasizing the importance of hydrogen bonding, glycine's flexibility and hydrophobic interactions in ligand binding.
Collapse
Affiliation(s)
- Vladislav Naumovich
- Laboratory of Computational Modeling of Drugs, Higher Medical & Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | | | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical & Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| |
Collapse
|
4
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
5
|
Umumararungu T, Nyandwi JB, Katandula J, Twizeyimana E, Claude Tomani J, Gahamanyi N, Ishimwe N, Olawode EO, Habarurema G, Mpenda M, Uyisenga JP, Saeed SI. Current status of the small molecule anti-HIV drugs in the pipeline or recently approved. Bioorg Med Chem 2024; 111:117860. [PMID: 39094527 DOI: 10.1016/j.bmc.2024.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Human Immunodeficiency Virus (HIV) is the causative agent of Acquired Immunodeficiency Syndrome (AIDS) with high morbidity and mortality rates. Treatment of AIDS/HIV is being complicated by increasing resistance to currently used antiretroviral (ARV) drugs, mainly in low- and middle-income countries (LMICs) due to drug misuse, poor drug supply and poor treatment monitoring. However, progress has been made in the development of new ARV drugs, targeting different HIV components (Fig. 1). This review aims at presenting and discussing the progress made towards the discovery of new ARVs that are at different stages of clinical trials as of July 2024. For each compound, the mechanism of action, target biomolecule, genes associated with resistance, efficacy and safety, class, and phase of clinical trial are discussed. These compounds include analogues of nucleoside reverse transcriptase inhibitors (NRTIs) - islatravir and censavudine; non-nucleoside reverse transcriptase inhibitors (NNRTIs) - Rilpivirine, elsulfavirine and doravirine; integrase inhibitors namely cabotegravir and dolutegravir and chemokine coreceptors 5 and 2 (CC5/CCR2) antagonists for example cenicriviroc. Also, fostemsavir is being developed as an attachment inhibitor while lenacapavir, VH4004280 and VH4011499 are capsid inhibitors. Others are maturation inhibitors such as GSK-254, GSK3532795, GSK3739937, GSK2838232, and other compounds labelled as miscellaneous (do not belong to the classical groups of anti-HIV drugs or to the newer classes) such as obefazimod and BIT225. There is a considerable progress in the development of new anti-HIV drugs and the effort will continue since HIV infections has no cure or vaccine till now. Efforts are needed to reduce the toxicity of available drugs or discover new drugs with new classes which can delay the development of resistance.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Industrial Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Baptiste Nyandwi
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; East African Community Regional Centre of Excellence for Vaccines, Immunization and Health Supply Chain Management, Kigali, Rwanda
| | - Jonathan Katandula
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eric Twizeyimana
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Jean Claude Tomani
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Noël Gahamanyi
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Nestor Ishimwe
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Jeanne Primitive Uyisenga
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Shamsaldeen Ibrahim Saeed
- Faculty of Veterinary Science, University of Nyala, P.O. Box: 155, Nyala, Sudan; Nanotechnology in Veterinary Medicine (NanoVet) Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kelantan 16100, Pengkalan Chepa, Malaysia
| |
Collapse
|
6
|
Delgado R, Vishwakarma J, Moghadasi SA, Otsuka Y, Shumate J, Cuell A, Tansiongco M, Cooley CB, Chen Y, Dabrowska A, Basu R, Anindita PD, Luo D, Dosa PI, Harki DA, Bannister T, Scampavia L, Spicer TP, Harris RS. SARS-CoV-2 M pro inhibitor identification using a cellular gain-of-signal assay for high-throughput screening. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100181. [PMID: 39173830 PMCID: PMC11550483 DOI: 10.1016/j.slasd.2024.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, SARS2) is responsible for the COVID-19 pandemic and infections that continue to affect the lives of millions of people worldwide, especially those who are older and/or immunocompromised. The SARS2 main protease enzyme, Mpro (also called 3C-like protease, 3CLpro), is a bona fide drug target as evidenced by potent inhibition with nirmatrelvir and ensitrelvir, the active components of the drugs Paxlovid and Xocova, respectively. However, the existence of nirmatrelvir and ensitrelvir-resistant isolates underscores the need to develop next-generation drugs with different resistance profiles and/or distinct mechanisms of action. Here, we report the results of a high-throughput screen of 649,568 compounds using a cellular gain-of-signal assay. In this assay, Mpro inhibits expression of a luciferase reporter, and 8,777 small molecules were considered hits by causing a gain in luciferase activity 3x SD above the sample field activity (6.8% gain-of-signal relative to 100 µM GC376). Single concentration and dose-response gain-of-signal experiments confirmed 3,522/8,762 compounds as candidate inhibitors. In parallel, all initial high-throughput screening hits were tested in a peptide cleavage assay with purified Mpro and only 39/8,762 showed inhibition. Importantly, 19/39 compounds (49%) re-tested positive in both SARS2 assays, including two previously reported Mpro inhibitors, demonstrating the efficacy of the overall screening strategy. This approach led to the rediscovery of known Mpro inhibitors such as calpain inhibitor II, as well as to the discovery of novel compounds that provide chemical information for future drug development efforts.
Collapse
Affiliation(s)
- Renee Delgado
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jyoti Vishwakarma
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Yuka Otsuka
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Justin Shumate
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Ashley Cuell
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Megan Tansiongco
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
| | | | - Yanjun Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Agnieszka Dabrowska
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Rahul Basu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paulina Duhita Anindita
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore; Institute of Structural Biology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore; Institute of Structural Biology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Peter I Dosa
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas Bannister
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Louis Scampavia
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Timothy P Spicer
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
Filippova TA, Masamrekh RA, Khudoklinova YY, Shumyantseva VV, Kuzikov AV. The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity. Biochimie 2024; 222:169-194. [PMID: 38494106 DOI: 10.1016/j.biochi.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Yulia Yu Khudoklinova
- Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia.
| |
Collapse
|
8
|
Chuntakaruk H, Boonpalit K, Kinchagawat J, Nakarin F, Khotavivattana T, Aonbangkhen C, Shigeta Y, Hengphasatporn K, Nutanong S, Rungrotmongkol T, Hannongbua S. Machine learning-guided design of potent darunavir analogs targeting HIV-1 proteases: A computational approach for antiretroviral drug discovery. J Comput Chem 2024; 45:953-968. [PMID: 38174739 DOI: 10.1002/jcc.27298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
In the pursuit of novel antiretroviral therapies for human immunodeficiency virus type-1 (HIV-1) proteases (PRs), recent improvements in drug discovery have embraced machine learning (ML) techniques to guide the design process. This study employs ensemble learning models to identify crucial substructures as significant features for drug development. Using molecular docking techniques, a collection of 160 darunavir (DRV) analogs was designed based on these key substructures and subsequently screened using molecular docking techniques. Chemical structures with high fitness scores were selected, combined, and one-dimensional (1D) screening based on beyond Lipinski's rule of five (bRo5) and ADME (absorption, distribution, metabolism, and excretion) prediction implemented in the Combined Analog generator Tool (CAT) program. A total of 473 screened analogs were subjected to docking analysis through convolutional neural networks scoring function against both the wild-type (WT) and 12 major mutated PRs. DRV analogs with negative changes in binding free energy (ΔΔ G bind ) compared to DRV could be categorized into four attractive groups based on their interactions with the majority of vital PRs. The analysis of interaction profiles revealed that potent designed analogs, targeting both WT and mutant PRs, exhibited interactions with common key amino acid residues. This observation further confirms that the ML model-guided approach effectively identified the substructures that play a crucial role in potent analogs. It is expected to function as a powerful computational tool, offering valuable guidance in the identification of chemical substructures for synthesis and subsequent experimental testing.
Collapse
Affiliation(s)
- Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Kajjana Boonpalit
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jiramet Kinchagawat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Fahsai Nakarin
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | | | - Sarana Nutanong
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Supot Hannongbua
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Center of Excellence in Computational Chemistry (CECC), Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Hernández Berthet AS, Aptekmann AA, Tejero J, Sánchez IE, Noguera ME, Roman EA. Associating protein sequence positions with the modulation of quantitative phenotypes. Arch Biochem Biophys 2024; 755:109979. [PMID: 38583654 DOI: 10.1016/j.abb.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Although protein sequences encode the information for folding and function, understanding their link is not an easy task. Unluckily, the prediction of how specific amino acids contribute to these features is still considerably impaired. Here, we developed a simple algorithm that finds positions in a protein sequence with potential to modulate the studied quantitative phenotypes. From a few hundred protein sequences, we perform multiple sequence alignments, obtain the per-position pairwise differences for both the sequence and the observed phenotypes, and calculate the correlation between these last two quantities. We tested our methodology with four cases: archaeal Adenylate Kinases and the organisms optimal growth temperatures, microbial rhodopsins and their maximal absorption wavelengths, mammalian myoglobins and their muscular concentration, and inhibition of HIV protease clinical isolates by two different molecules. We found from 3 to 10 positions tightly associated with those phenotypes, depending on the studied case. We showed that these correlations appear using individual positions but an improvement is achieved when the most correlated positions are jointly analyzed. Noteworthy, we performed phenotype predictions using a simple linear model that links per-position divergences and differences in the observed phenotypes. Predictions are comparable to the state-of-art methodologies which, in most of the cases, are far more complex. All of the calculations are obtained at a very low information cost since the only input needed is a multiple sequence alignment of protein sequences with their associated quantitative phenotypes. The diversity of the explored systems makes our work a valuable tool to find sequence determinants of biological activity modulation and to predict various functional features for uncharacterized members of a protein family.
Collapse
Affiliation(s)
- Ayelén S Hernández Berthet
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina.
| | - Ariel A Aptekmann
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina; Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08873, USA; Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ignacio E Sánchez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina.
| | - Martín E Noguera
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini, Junín 956, 1113AAD, C.A.B.A., Argentina; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina.
| | - Ernesto A Roman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini, Junín 956, 1113AAD, C.A.B.A., Argentina.
| |
Collapse
|
10
|
Sever B, Otsuka M, Fujita M, Ciftci H. A Review of FDA-Approved Anti-HIV-1 Drugs, Anti-Gag Compounds, and Potential Strategies for HIV-1 Eradication. Int J Mol Sci 2024; 25:3659. [PMID: 38612471 PMCID: PMC11012182 DOI: 10.3390/ijms25073659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Bioengineering Sciences, Izmir Katip Celebi University, Izmir 35620, Türkiye
| |
Collapse
|
11
|
Meng S, Gao Y, Qiang G, Hu Z, Shan Q, Wang J, Wang Y, Mou J. Rational design, synthesis and biological evaluation of novel HIV-1 protease inhibitors containing 2-phenylacetamide derivatives as P2 ligands with potent activity against DRV-Resistant HIV-1 variants. Bioorg Med Chem Lett 2024; 101:129651. [PMID: 38342391 DOI: 10.1016/j.bmcl.2024.129651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
A novel kind of potent HIV-1 protease inhibitors, containing diverse hydroxyphenylacetic acids as the P2-ligands and 4-substituted phenyl sulfonamides as the P2' ligands, were designed, synthesized and evaluated in this work. Majority of the target compounds exhibited good to excellent activity against HIV-1 protease with IC50 values below 200 nM. In particular, compound 18d with a 2-(3,4-dihydroxyphenyl) acetamide as the P2 ligand and a 4- methoxybenzene sulfonamide P2' ligand exhibited inhibitory activity IC50 value of 0.54 nM, which was better than that of the positive control darunavir (DRV). More importantly, no significant decline of the potency against HIV-1DRVRS (DRV-resistant mutation) and HIV-1NL4_3 variant (wild type) for 18d was detected. The molecular docking study of 18d with HIV-1 protease (PDB-ID: 1T3R, www.rcsb.org) revealed possible binding mode with the HIV-1 protease. These results suggested the validity of introducing phenol-derived moieties into the P2 ligand and deserve further optimization which was of great value for future discovery of novel HIV-1 protease.
Collapse
Affiliation(s)
- Sihan Meng
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221006, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guowei Qiang
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221006, China
| | - Zhiwei Hu
- School of Basic Medicine, Xuzhou Medical University, Xuzhou 221006, China
| | - Qi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221006, China.
| |
Collapse
|
12
|
Nzengui-Nzengui GF, Mourembou G, M'boyis-Kamdem H, Kombila-Koumavor AC, Ndjoyi-Mbiguino A. HIV protease resistance mutations in patients receiving second-line antiretroviral therapy in Libreville, Gabon. BMC Infect Dis 2024; 24:316. [PMID: 38486188 PMCID: PMC10941465 DOI: 10.1186/s12879-024-09156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION In 2022, the WHO reported that 29.8 million people around the world were living with HIV (PLHIV) and receiving antiretroviral treatment (ART), including 25 375 people in Gabon (54% of all those living with HIV in the country). The literature reports a frequency of therapeutic failure with first-line antiretrovirals (ARVs) of between 20% and 82%. Unfortunately, data relating to the failure of second-line ARVs are scarce in Gabon. This study aims to determine the profiles of HIV drug resistance mutations related to protease inhibitors in Gabon. METHODOLOGY Plasma from 84 PLHIV receiving ARVs was collected from 2019 to 2021, followed by RNA extraction, amplification, and sequencing of the protease gene. ARV resistance profiles were generated using the Stanford interpretation algorithm version 8.9-1 ( https://hivdb.stanford.edu ) and statistical analyses were performed using EpiInfo software version 7.2.1.0 (CDC, USA). RESULTS Of 84 HIV plasma samples collected from 45 men and 39 women, 342 mutations were detected. Of these, 43.3% (148/342) were associated with nucleoside reverse transcriptase inhibitors (NRTIs), 30.4% (104/342) with non-nucleoside reverse transcriptase inhibitors (NNRTIs), and 26.3% (90/342) with protease inhibitors (PIs). Most NRTI mutations were associated with thymidine analogues (TAMs) (50.7%; 75/148), including T215F/V (14.9%; 22/148), D67DN/E/G/N/T (10.1%; 15/148), M41L (9.5%; 14/148), and K70E/KN/S/R (9.5%; 14/148). Resistance mutations related to non-TAM NRTIs (33.1%; 49/148) were M184V (29.1%; 43/148), and L74I/V (8.1%; 12/148). NNRTI mutations were predominantly K103N/S (32.7%; 34/104), V108I (10.6%; 11/104), A98G (10.6%; 11/104), and P225H (9.6%; 10/104). Minor mutations associated with PIs (60.0%; 54/90) were predominantly K20I (15.6%; 14/90) and L10F/I/V (14.5%; 13/90). The major mutations associated with PIs (40.0%; 36/90) were M41L (12.2%; 11/90), I84V (6.7%; 06/90), and V82A (6.7%; 06/90). The four most prescribed therapeutic regimens were TDF + 3TC + LPV/r (20.3%; 17/84), ABC + DDI + LPV/r (17.9%; 15/84), TDF + FTC + LPV/r (11.9%; 10/84), and ABC + 3TC + LPV/r (11.9%; 10/84). CONCLUSION This study revealed that HIV drug resistance mutations are common in Gabon. The major mutations associated with PIs were M41L, I84V, and V82A. There is a need for access to new NRTIs, NNRTIs, and PIs for a better therapeutic management of PLHIV in Gabon.
Collapse
Affiliation(s)
- Guy Francis Nzengui-Nzengui
- Département de Bactériologie- Virologie, Laboratoire National de Référence IST/VIH/Sida, Université des Sciences de la Santé, Libreville, Gabon
| | - Gaël Mourembou
- Département de Bactériologie- Virologie, Laboratoire National de Référence IST/VIH/Sida, Université des Sciences de la Santé, Libreville, Gabon
| | - Hervé M'boyis-Kamdem
- Département de Bactériologie- Virologie, Laboratoire National de Référence IST/VIH/Sida, Université des Sciences de la Santé, Libreville, Gabon
| | - Ayawa Claudine Kombila-Koumavor
- Département de Bactériologie- Virologie, Laboratoire National de Référence IST/VIH/Sida, Université des Sciences de la Santé, Libreville, Gabon
| | - Angélique Ndjoyi-Mbiguino
- Département de Bactériologie- Virologie, Laboratoire National de Référence IST/VIH/Sida, Université des Sciences de la Santé, Libreville, Gabon.
| |
Collapse
|
13
|
Du S, Hu X, Menéndez-Arias L, Zhan P, Liu X. Target-based drug design strategies to overcome resistance to antiviral agents: opportunities and challenges. Drug Resist Updat 2024; 73:101053. [PMID: 38301487 DOI: 10.1016/j.drup.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Viral infections have a major impact in human health. Ongoing viral transmission and escalating selective pressure have the potential to favor the emergence of vaccine- and antiviral drug-resistant viruses. Target-based approaches for the design of antiviral drugs can play a pivotal role in combating drug-resistant challenges. Drug design computational tools facilitate the discovery of novel drugs. This review provides a comprehensive overview of current drug design strategies employed in the field of antiviral drug resistance, illustrated through the description of a series of successful applications. These strategies include technologies that enhance compound-target affinity while minimizing interactions with mutated binding pockets. Furthermore, emerging approaches such as virtual screening, targeted protein/RNA degradation, and resistance analysis during drug design have been harnessed to curtail the emergence of drug resistance. Additionally, host targeting antiviral drugs offer a promising avenue for circumventing viral mutation. The widespread adoption of these refined drug design strategies will effectively address the prevailing challenge posed by antiviral drug resistance.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, PR China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
14
|
Borges PHO, Ferreira SB, Silva FP. Recent Advances on Targeting Proteases for Antiviral Development. Viruses 2024; 16:366. [PMID: 38543732 PMCID: PMC10976044 DOI: 10.3390/v16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Borges
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Sabrina Baptista Ferreira
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Floriano Paes Silva
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
15
|
Lotke R, Petersen M, Sauter D. Restriction of Viral Glycoprotein Maturation by Cellular Protease Inhibitors. Viruses 2024; 16:332. [PMID: 38543698 PMCID: PMC10975521 DOI: 10.3390/v16030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
The human genome is estimated to encode more than 500 proteases performing a wide range of important physiological functions. They digest proteins in our food, determine the activity of hormones, induce cell death and regulate blood clotting, for example. During viral infection, however, some proteases can switch sides and activate viral glycoproteins, allowing the entry of virions into new target cells and the spread of infection. To reduce unwanted effects, multiple protease inhibitors regulate the proteolytic processing of self and non-self proteins. This review summarizes our current knowledge of endogenous protease inhibitors, which are known to limit viral replication by interfering with the proteolytic activation of viral glycoproteins. We describe the underlying molecular mechanisms and highlight the diverse strategies by which protease inhibitors reduce virion infectivity. We also provide examples of how viruses evade the restriction imposed by protease inhibitors. Finally, we briefly outline how cellular protease inhibitors can be modified and exploited for therapeutic purposes. In summary, this review aims to summarize our current understanding of cellular protease inhibitors as components of our immune response to a variety of viral pathogens.
Collapse
Affiliation(s)
| | | | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Sankaran S, Krishnan SR, Sayed Y, Gromiha MM. Mechanism of drug resistance in HIV-1 protease subtype C in the presence of Atazanavir. Curr Res Struct Biol 2024; 7:100132. [PMID: 38435053 PMCID: PMC10907180 DOI: 10.1016/j.crstbi.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
AIDS is one of the deadliest diseases in the history of humankind caused by HIV. Despite the technological development, curtailing the viral infection inside human host still remains a challenge. Therapies such as HAART uses a combination of drugs to inhibit the viral activity. One of the important targets includes HIV protease and inhibiting its activity will minimize the production of mature structural proteins. However, the genetic diversity and the occurrence of drug resistant mutations adds complexity to effective drug design. In this study, we aimed at understanding the drug binding mechanism of one such subtype, namely subtype C and its insertion variant L38HL. We performed multiple molecular dynamics simulations along with binding free energy analysis of wild-type and L38HL bound to Atazanavir (ATV). From the analysis, we revealed that the insertion alters the hydrogen bond and hydrophobic interaction networks. The alterations in the interaction networks increase flexibility at the hinge-fulcrum interface. Further, the effects of these changes affect flap tip curling. Moreover, the changes in the hinge-fulcrum-cantilever interface alters the concerted motion of the functional regions leading to change in the direction of flap movement thus causing a subtle change in the active site volume. Additionally, formation of intramolecular hydrogen bonds in the ATV docked to L38HL restricted the movement of R1 and R2 groups thereby altering the interactions. Overall, the changes in the flexibility of flap together with the changes in the active site volume and compactness of the ligand provide insights for increased binding affinity of ATV with L38HL.
Collapse
Affiliation(s)
- S.V. Sankaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sowmya R. Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
17
|
Chuntakaruk H, Hengphasatporn K, Shigeta Y, Aonbangkhen C, Lee VS, Khotavivattana T, Rungrotmongkol T, Hannongbua S. FMO-guided design of darunavir analogs as HIV-1 protease inhibitors. Sci Rep 2024; 14:3639. [PMID: 38351065 PMCID: PMC10864397 DOI: 10.1038/s41598-024-53940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
The prevalence of HIV-1 infection continues to pose a significant global public health issue, highlighting the need for antiretroviral drugs that target viral proteins to reduce viral replication. One such target is HIV-1 protease (PR), responsible for cleaving viral polyproteins, leading to the maturation of viral proteins. While darunavir (DRV) is a potent HIV-1 PR inhibitor, drug resistance can arise due to mutations in HIV-1 PR. To address this issue, we developed a novel approach using the fragment molecular orbital (FMO) method and structure-based drug design to create DRV analogs. Using combinatorial programming, we generated novel analogs freely accessible via an on-the-cloud mode implemented in Google Colab, Combined Analog generator Tool (CAT). The designed analogs underwent cascade screening through molecular docking with HIV-1 PR wild-type and major mutations at the active site. Molecular dynamics (MD) simulations confirmed the assess ligand binding and susceptibility of screened designed analogs. Our findings indicate that the three designed analogs guided by FMO, 19-0-14-3, 19-8-10-0, and 19-8-14-3, are superior to DRV and have the potential to serve as efficient PR inhibitors. These findings demonstrate the effectiveness of our approach and its potential to be used in further studies for developing new antiretroviral drugs.
Collapse
Affiliation(s)
- Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vannajan Sanghiran Lee
- Chemistry Department, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Tran TT, Fanucci GE. Natural Polymorphisms D60E and I62V Stabilize a Closed Conformation in HIV-1 Protease in the Absence of an Inhibitor or Substrate. Viruses 2024; 16:236. [PMID: 38400012 PMCID: PMC10892587 DOI: 10.3390/v16020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
HIV infection remains a global health issue plagued by drug resistance and virological failure. Natural polymorphisms (NPs) contained within several African and Brazilian protease (PR) variants have been shown to induce a conformational landscape of more closed conformations compared to the sequence of subtype B prevalent in North America and Western Europe. Here we demonstrate through experimental pulsed EPR distance measurements and molecular dynamic (MD) simulations that the two common NPs D60E and I62V found within subtypes F and H can induce a closed conformation when introduced into HIV-1PR subtype B. Specifically, D60E alters the conformation in subtype B through the formation of a salt bridge with residue K43 contained within the nexus between the flap and hinge region of the HIV-1 PR fold. On the other hand, I62V modulates the packing of the hydrophobic cluster of the cantilever and fulcrum, also resulting in a more closed conformation.
Collapse
Affiliation(s)
| | - Gail E. Fanucci
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
19
|
Shi D, Xu S, Ding D, Tang K, Zhou Y, Jiang X, Wang S, Liu X, Zhan P. Advances in drug structure-activity-relationships for the development of selenium-based compounds against HIV. Expert Opin Drug Discov 2024; 19:139-146. [PMID: 37988053 DOI: 10.1080/17460441.2023.2284830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Selenium possesses numerous advantageous properties in the field of medicine, and a variety of selenium-containing compounds have been documented to exhibit anti-HIV activity. This paper aims to categorize these compounds and conduct SAR analysis to offer guidance for drug design and optimization. AREAS COVERED The authors present a comprehensive review of the reported SAR analysis conducted on selenium-based compounds against HIV, accompanied by a concise discussion regarding the pivotal role of selenium in drug development. EXPERT OPINION In addition to the conventional bioisosterism strategy, advanced strategies such as covalent inhibition, fragment-based growth and drug repositioning can also be incorporated into research on selenium-containing anti-HIV drugs. Ebselen, which acts as an HIV capsid inhibitor, serves as a valuable probe compound for the discovery of novel HIV integrase inhibitors. Furthermore, it is crucial not to underestimate the potential toxicity associated with organic selenium compounds despite no reported instances of severe toxicity.
Collapse
Affiliation(s)
- Dazhou Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yang Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
20
|
Burra VLSP, Sahoo PS, Dhankhar A, Jhajj J, Kasamuthu PS, K SSVK, Macha SKR. Understanding the structural basis of the binding specificity of c-di-AMP to M. smegmatis RecA using computational biology approach. J Biomol Struct Dyn 2024; 42:2043-2057. [PMID: 38093709 DOI: 10.1080/07391102.2023.2227709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/09/2023] [Indexed: 02/21/2024]
Abstract
Mycobacterium tuberculosis RecA (MtRecA), a protein involved in DNA repair, homologous recombination and SOS pathway, contributes to the development of multidrug resistance. ATP binding-site in RecA has been a drug target to disable RecA dependent DNA repair. For the first time, experiments have shown the existence and binding of c-di-AMP to a novel allosteric site in the C-terminal-Domain (CTD) of Mycobacterium smegmatis RecA (MsRecA), a close homolog of MtRecA. In addition, it was observed that the c-di-AMP was not binding to Escherichia coli RecA (EcRecA). This article analyses the possible interactions of the three RecA homologs with the various c-di-AMP conformations to gain insights into the structural basis of the natural preference of c-di-AMP to MsRecA and not to EcRecA, using the structural biology tools. The comparative analysis, based on amino acid composition, homology, motifs, residue types, docking, molecular dynamics simulations and binding free energy calculations, indeed, conclusively indicates strong binding of c-di-AMP to MsRecA. Having very similar results as MsRecA, it is highly plausible for c-di-AMP to strongly bind MtRecA as well. These insights from the in-silico studies adds a new therapeutic approach against TB through design and development of novel allosteric inhibitors for the first time against MtRecA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V L S Prasad Burra
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - Partha Sarathi Sahoo
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - Amit Dhankhar
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - Jatinder Jhajj
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - Prasanna Sudharson Kasamuthu
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - S S V Kiran K
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - Samuel Krupa Rakshan Macha
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
21
|
Hossain MI, Asha AT, Hossain MA, Mahmud S, Chowdhury K, Mohiuddin RB, Nahar N, Sarker S, Napis S, Hossain MS, Mohiuddin A. Investigating the role of hypothetical protein (AAB33144.1) in HIV-1 virus pathogenicity: A comparative study with FDA-Approved inhibitor compounds through In silico analysis and molecular docking. Heliyon 2024; 10:e23183. [PMID: 38163140 PMCID: PMC10755284 DOI: 10.1016/j.heliyon.2023.e23183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Aim and objective Due to the a lot of unexplored proteins in HIV-1, this research aimed to explore the functional roles of a hypothetical protein (AAB33144.1) that might play a key role in HIV-1 pathogenicity. Methods The homologous protein was identified along with building and validating the 3D structure by searching several bioinformatics tools. Results Retroviral aspartyl protease and retropepsin like functional domains and motifs, folding pattern (cupredoxins), and subcellular localization in cytoplasmic membrane were determined as biological activity. Besides, the functional annotation revealed that the chosen hypothetical protein possessed protease-like activity. To validate our generated protein 3D structure, molecular docking was performed with five compounds where nelfinavir showed (-8.2 kcal/mol) best binding affinity against HXB2 viral protease (PDB ID: 7SJX) and main protease (PDB ID: 4EYR) protein. Conclusions This study suggests that the annotated hypothetical protein related to protease action, which may be useful in viral genetics and drug discovery.
Collapse
Affiliation(s)
- Md. Imran Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Anika Tabassum Asha
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Kamal Chowdhury
- Biology Department, Claflin University, 400 Magnolia St, Orangeburg, SC 29115, USA
| | - Ramisa Binti Mohiuddin
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Nazneen Nahar
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Saborni Sarker
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Suhaimi Napis
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor D.E., Malaysia
| | - Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan 26300, Malaysia
| | - A.K.M. Mohiuddin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| |
Collapse
|
22
|
Menéndez-Arias L, Gago F. Antiviral Agents: Structural Basis of Action and Rational Design. Subcell Biochem 2024; 105:745-784. [PMID: 39738962 DOI: 10.1007/978-3-031-65187-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g., oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e., the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs acting against hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy. The recent approval of the antiretroviral drug lenacapavir illustrates the successful application of this knowledge.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
| | - Federico Gago
- Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
23
|
Taghizadeh MS, Niazi A, Afsharifar A. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus. Vaccine X 2024; 16:100440. [PMID: 38283623 PMCID: PMC10811427 DOI: 10.1016/j.jvacx.2024.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
The global poultry industry plays a pivotal role in providing eggs and meat for human consumption. However, outbreaks of viral disease, especially Newcastle virus disease (NDV), within poultry farms have detrimental effects on various zootechnical parameters, such as body weight gain, feed intake, feed conversion ratio, as well as the quality of egg and meat production. Cases of vaccine failure have been reported in regions where highly pathogenic strains of NDV are prevalent. To tackle this challenge, virus-like particles (VLPs) have emerged as a potential solution. VLPs closely resemble natural viruses, offering biocompatibility and immune-stimulating properties that make them highly promising for therapeutic applications against NDV. Hence, this review emphasizes the significance of NDV and the need for effective treatments. The manuscript will contain several key aspects, starting with an exploration of the structure and properties of NDV. Subsequently, the paper will delve into the characteristics and benefits of VLPs compared to conventional drug delivery systems. A comprehensive analysis of VLPs as potential vaccine candidates targeting NDV will be presented, along with a discussion on strategies for loading cargo into these NDV-targeting VLPs. The review will also examine various expression systems utilized in the production of NDV-targeting VLPs. Additionally, the manuscript will address future prospects and challenges in the field, concluding with recommendations for further research.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virus Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
24
|
Choi K. The Structure-property Relationships of Clinically Approved Protease Inhibitors. Curr Med Chem 2024; 31:1441-1463. [PMID: 37031455 DOI: 10.2174/0929867330666230409232655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/17/2023] [Accepted: 02/24/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Proteases play important roles in the regulation of many physiological processes, and protease inhibitors have become one of the important drug classes. Especially because the development of protease inhibitors often starts from a substrate- based peptidomimetic strategy, many of the initial lead compounds suffer from pharmacokinetic liabilities. OBJECTIVE To reduce drug attrition rates, drug metabolism and pharmacokinetics studies are fully integrated into modern drug discovery research, and the structure-property relationship illustrates how the modification of the chemical structure influences the pharmacokinetic and toxicological properties of drug compounds. Understanding the structure- property relationships of clinically approved protease inhibitor drugs and their analogues could provide useful information on the lead-to-candidate optimization strategies. METHODS About 70 inhibitors against human or pathogenic viral proteases have been approved until the end of 2021. In this review, 17 inhibitors are chosen for the structure- property relationship analysis because detailed pharmacological and/or physicochemical data have been disclosed in the medicinal chemistry literature for these inhibitors and their close analogues. RESULTS The compiled data are analyzed primarily focusing on the pharmacokinetic or toxicological deficiencies found in lead compounds and the structural modification strategies used to generate candidate compounds. CONCLUSION The structure-property relationships hereby summarized how the overall druglike properties could be successfully improved by modifying the structure of protease inhibitors. These specific examples are expected to serve as useful references and guidance for developing new protease inhibitor drugs in the future.
Collapse
Affiliation(s)
- Kihang Choi
- Department of Chemistry, Korea University, Seoul, 02841, Korea (ROK)
| |
Collapse
|
25
|
Kim J, Kwak S, Lee J, Park IH, Lee SH, Shin JM, Kim TH. Eosinophilic Chronic Rhinosinusitis and Pathogenic Role of Protease. Int J Mol Sci 2023; 24:17372. [PMID: 38139201 PMCID: PMC10744023 DOI: 10.3390/ijms242417372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is an inflammation of the nasal and paranasal sinus mucosa, and eosinophilic CRS (eCRS) is a subtype characterized by significant eosinophil infiltration and immune response by T-helper-2 cells. The pathogenesis of eCRS is heterogeneous and involves various environmental and host factors. Proteases from external sources, such as mites, fungi, and bacteria, have been implicated in inducing type 2 inflammatory reactions. The balance between these proteases and endogenous protease inhibitors (EPIs) is considered important, and their imbalance can potentially lead to type 2 inflammatory reactions, such as eCRS. In this review, we discuss various mechanisms by which exogenous proteases influence eCRS and highlight the emerging role of endogenous protease inhibitors in eCRS pathogenesis.
Collapse
Affiliation(s)
- Jaehyeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sooun Kwak
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Juhyun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Jae Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
26
|
Lima JCB, Barbosa JARG. Interaction models between peptide substrate and Alphavirus Protease nsP2 of Chikungunya and Mayaro and implications to the mechanism of action. J Biomol Struct Dyn 2023; 41:10851-10858. [PMID: 36562200 DOI: 10.1080/07391102.2022.2158941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The Arbovirus (Arthropod-borne virus) is a group which comprises viruses whose transmission is carried out by arthropod vectors infecting vertebrates. Some arboviruses related to human diseases have been given considerable relevance as Chikungunya and Mayaro of the family Togaviridae, genus Alphavirus. The lack of proper specific treatment has prompted the requirement for deeper structural studies that could unveil leads to new drugs. Among possible targets, viral proteases are recognized as proteins with big potential. These proteins, termed nsP2 in Alphavirus, have the function of cleaving certain regions of the viral polyprotein, being vital to the viral cycle. In this research, we used docking and molecular dynamics to analyze the contact between the protease nsP2 of Alphavirus Chikungunya and Mayaro and substrates formed by peptides with ten amino acid residues. A model of the Mayaro nsP2 was constructed based on homologous proteases. Our study suggests that the glycine specificity motif, a region where a highly conserved glycine residue in position P2 of the protease substrate is positioned, facilitates the nucleophilic attack by assisting in placing the P1 carbonyl group carbon. Stabilization of different substrate regions maybe explained by relevant contacts with the enzyme. Besides that, the phi and psi angles in the outlier region of the Ramachandran plot found for the P2 glycine of the Chikungunya substrate seems to indicate the necessity of this residue that can accommodate angles not allowed to other residues.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jônatas Cunha Barbosa Lima
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, DF, Brazil
| | | |
Collapse
|
27
|
Kosenko M, Onkhonova G, Susloparov I, Ryzhikov A. SARS-CoV-2 proteins structural studies using synchrotron radiation. Biophys Rev 2023; 15:1185-1194. [PMID: 37974992 PMCID: PMC10643813 DOI: 10.1007/s12551-023-01153-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
In the process of the development of structural biology, both the size and the complexity of the determined macromolecular structures have grown significantly. As a result, the range of application areas for the results of structural studies of biological macromolecules has expanded. Significant progress in the development of structural biology methods has been largely achieved through the use of synchrotron radiation. Modern sources of synchrotron radiation allow to conduct high-performance structural studies with high temporal and spatial resolution. Thus, modern techniques make it possible to obtain not only static structures, but also to study dynamic processes, which play a key role in understanding biological mechanisms. One of the key directions in the development of structural research is the drug design based on the structures of biomolecules. Synchrotron radiation offers insights into the three-dimensional time-resolved structure of individual viral proteins and their complexes at atomic resolution. The rapid and accurate determination of protein structures is crucial for understanding viral pathogenicity and designing targeted therapeutics. Through the application of experimental techniques, including X-ray crystallography and small-angle X-ray scattering (SAXS), it is possible to elucidate the structural details of SARS-CoV-2 virion containing 4 structural, 16 nonstructural proteins (nsp), and several accessory proteins. The most studied potential targets for vaccines and drugs are the structural spike (S) protein, which is responsible for entering the host cell, as well as nonstructural proteins essential for replication and transcription, such as main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp). This article provides a brief overview of structural analysis techniques, with focus on synchrotron radiation-based methods applied to the analysis of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Maksim Kosenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Galina Onkhonova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Ivan Susloparov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexander Ryzhikov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| |
Collapse
|
28
|
Saki M, De Villiers H, Ntsapi C, Tiloke C. The Hepatoprotective Effects of Moringa oleifera against Antiretroviral-Induced Cytotoxicity in HepG 2 Cells: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3235. [PMID: 37765399 PMCID: PMC10537654 DOI: 10.3390/plants12183235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
The untreated human immunodeficiency virus (HIV), a lentivirus species that attacks immune cells (CD4+ T cells), causes acquired immunodeficiency syndrome (AIDS). HIV-positive people manage HIV/AIDS by using antiretroviral therapy (ART). The ART treatment regimen contains two nucleoside reverse transcriptase inhibitors (NRTIs) and one non-nucleoside reverse transcriptase inhibitor/integrase strand transfer inhibitor. Tenofovir, an NRTI approved for managing HIV infection, is associated with hepatic steatosis and lactic acidosis, which are linked to mitochondrial toxicity and oxidative stress. Due to side-effects associated with ART, people living with HIV often use medicinal plants or a combination of medicinal plants with ART to promote adherence and diminish the side-effects and cytotoxicity. The Moringa oleifera (MO) tree from the family of Moringaceae is among the medicinal trees studied in managing HIV/AIDS in sub-Saharan Africa. The MO tree extracts have been reported to have inhibitory activity primarily against HIV due to their bioactive compounds. However, there is a scarcity of knowledge about the use of the MO tree amongst HIV/AIDS patients receiving ART in South Africa and its effect on patient compliance and outcomes. Thus, this review aims to outline the impact of MO aqueous leaf extract on oxidative stress and antioxidant responses in human HepG2 liver cells after exposure to antiretrovirals such as tenofovir. The review will contribute to a comprehensive understanding of the potential protective effect of MO aqueous leaf extract on tenofovir-induced cytotoxicity.
Collapse
Affiliation(s)
| | | | | | - Charlette Tiloke
- Department of Basic Medical Sciences, School of Biomedical Sciences, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (M.S.); (H.D.V.); (C.N.)
| |
Collapse
|
29
|
Puhl AC, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Oliva G, Ekins S. Discovery of PL pro and M pro Inhibitors for SARS-CoV-2. ACS OMEGA 2023; 8:22603-22612. [PMID: 37387790 PMCID: PMC10275482 DOI: 10.1021/acsomega.3c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
There are very few small-molecule antivirals for SARS-CoV-2 that are either currently approved (or emergency authorized) in the US or globally, including remdesivir, molnupiravir, and paxlovid. The increasing number of SARS-CoV-2 variants that have appeared since the outbreak began over three years ago raises the need for continual development of updated vaccines and orally available antivirals in order to fully protect or treat the population. The viral main protease (Mpro) and the papain-like protease (PLpro) are key for viral replication; therefore, they represent valuable targets for antiviral therapy. We herein describe an in vitro screen performed using the 2560 compounds from the Microsource Spectrum library against Mpro and PLpro in an attempt to identify additional small-molecule hits that could be repurposed for SARS-CoV-2. We subsequently identified 2 hits for Mpro and 8 hits for PLpro. One of these hits was the quaternary ammonium compound cetylpyridinium chloride with dual activity (IC50 = 2.72 ± 0.09 μM for PLpro and IC50 = 7.25 ± 0.15 μM for Mpro). A second inhibitor of PLpro was the selective estrogen receptor modulator raloxifene (IC50 = 3.28 ± 0.29 μM for PLpro and IC50 = 42.8 ± 6.7 μM for Mpro). We additionally tested several kinase inhibitors and identified olmutinib (IC50 = 0.54 ± 0.04 μM), bosutinib (IC50 = 4.23 ± 0.28 μM), crizotinib (IC50 = 3.81 ± 0.04 μM), and dacominitinib (IC50 = IC50 3.33 ± 0.06 μM) as PLpro inhibitors for the first time. In some cases, these molecules have also been tested by others for antiviral activity for this virus, or we have used Calu-3 cells infected with SARS-CoV-2. The results suggest that approved drugs can be identified with promising activity against these proteases, and in several cases we or others have validated their antiviral activity. The additional identification of known kinase inhibitors as molecules targeting PLpro may provide new repurposing opportunities or starting points for chemical optimization.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Andre S. Godoy
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Gabriela D. Noske
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Aline M. Nakamura
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Victor O. Gawriljuk
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Rafaela S. Fernandes
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Glaucius Oliva
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
30
|
Arrigoni R, Santacroce L, Ballini A, Palese LL. AI-Aided Search for New HIV-1 Protease Ligands. Biomolecules 2023; 13:biom13050858. [PMID: 37238727 DOI: 10.3390/biom13050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The availability of drugs capable of blocking the replication of microorganisms has been one of the greatest triumphs in the history of medicine, but the emergence of an ever-increasing number of resistant strains poses a serious problem for the treatment of infectious diseases. The search for new potential ligands for proteins involved in the life cycle of pathogens is, therefore, an extremely important research field today. In this work, we have considered the HIV-1 protease, one of the main targets for AIDS therapy. Several drugs are used today in clinical practice whose mechanism of action is based on the inhibition of this enzyme, but after years of use, even these molecules are beginning to be interested by resistance phenomena. We used a simple artificial intelligence system for the initial screening of a data set of potential ligands. These results were validated by docking and molecular dynamics, leading to the identification of a potential new ligand of the enzyme which does not belong to any known class of HIV-1 protease inhibitors. The computational protocol used in this work is simple and does not require large computational power. Furthermore, the availability of a large number of structural information on viral proteins and the presence of numerous experimental data on their ligands, with which it is possible to compare the results obtained with computational methods, make this research field the ideal terrain for the application of these new computational techniques.
Collapse
Affiliation(s)
- Roberto Arrigoni
- Bioenergetics and Molecular Biotechnologies (IBIOM), CNR Institute of Biomembranes, 70125 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Luigi Leonardo Palese
- Department of Translational Biomedicine and Neurosciences-(DiBraiN), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
31
|
Beninger P. Drug-drug Interactions: An Overlooked Dimension of the COVID-19 Pandemic. Clin Ther 2023:S0149-2918(23)00137-6. [PMID: 37164778 PMCID: PMC10133883 DOI: 10.1016/j.clinthera.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Affiliation(s)
- Paul Beninger
- Public Health & Community Medicine, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
32
|
Hu S, Chen J, Cao JX, Zhang SS, Gu SX, Chen FE. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities. Bioorg Chem 2023; 136:106549. [PMID: 37119785 DOI: 10.1016/j.bioorg.2023.106549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1), a lentivirus that causes acquired immunodeficiency syndrome (AIDS), poses a serious threat to global public health. Since the advent of the first drug zidovudine, a number of anti-HIV agents acting on different targets have been approved to combat HIV/AIDS. Among the abundant heterocyclic families, quinoline and isoquinoline moieties are recognized as promising scaffolds for HIV inhibition. This review intends to highlight the advances in diverse chemical structures and abundant biological activity of quinolines and isoquinolines as anti-HIV agents acting on different targets, which aims to provide useful references and inspirations to design and develop novel HIV inhibitors for medicinal chemists.
Collapse
Affiliation(s)
- Sha Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiong Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xu Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Fen-Er Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
33
|
Venkatachalam S, Murlidharan N, Krishnan SR, Ramakrishnan C, Setshedi M, Pandian R, Barh D, Tiwari S, Azevedo V, Sayed Y, Gromiha MM. Understanding Drug Resistance of Wild-Type and L38HL Insertion Mutant of HIV-1 C Protease to Saquinavir. Genes (Basel) 2023; 14:533. [PMID: 36833460 PMCID: PMC9957153 DOI: 10.3390/genes14020533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is one of the most challenging infectious diseases to treat on a global scale. Understanding the mechanisms underlying the development of drug resistance is necessary for novel therapeutics. HIV subtype C is known to harbor mutations at critical positions of HIV aspartic protease compared to HIV subtype B, which affects the binding affinity. Recently, a novel double-insertion mutation at codon 38 (L38HL) was characterized in HIV subtype C protease, whose effects on the interaction with protease inhibitors are hitherto unknown. In this study, the potential of L38HL double-insertion in HIV subtype C protease to induce a drug resistance phenotype towards the protease inhibitor, Saquinavir (SQV), was probed using various computational techniques, such as molecular dynamics simulations, binding free energy calculations, local conformational changes and principal component analysis. The results indicate that the L38HL mutation exhibits an increase in flexibility at the hinge and flap regions with a decrease in the binding affinity of SQV in comparison with wild-type HIV protease C. Further, we observed a wide opening at the binding site in the L38HL variant due to an alteration in flap dynamics, leading to a decrease in interactions with the binding site of the mutant protease. It is supported by an altered direction of motion of flap residues in the L38HL variant compared with the wild-type. These results provide deep insights into understanding the potential drug resistance phenotype in infected individuals.
Collapse
Affiliation(s)
- Sankaran Venkatachalam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nisha Murlidharan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sowmya R. Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - C. Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mpho Setshedi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ramesh Pandian
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Debmalya Barh
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
| | - Sandeep Tiwari
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
- Institute of Biology, Federal University of Bahia, Salvador, BA 40110-909, Brazil
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA 40110-909, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
34
|
Madhu P, Davey NE, Ivarsson Y. How viral proteins bind short linear motifs and intrinsically disordered domains. Essays Biochem 2022; 66:EBC20220047. [PMID: 36504386 DOI: 10.1042/ebc20220047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 02/11/2024]
Abstract
Viruses are the obligate intracellular parasites that exploit the host cellular machinery to replicate their genome. During the viral life cycle viruses manipulate the host cell through interactions with host proteins. Many of these protein-protein interactions are mediated through the recognition of host globular domains by short linear motifs (SLiMs), or longer intrinsically disordered domains (IDD), in the disordered regions of viral proteins. However, viruses also employ their own globular domains for binding to SLiMs and IDDs present in host proteins or virus proteins. In this review, we focus on the different strategies adopted by viruses to utilize proteins or protein domains for binding to the disordered regions of human or/and viral ligands. With a set of examples, we describe viral domains that bind human SLiMs. We also provide examples of viral proteins that bind to SLiMs, or IDDs, of viral proteins as a part of complex assembly and regulation of protein functions. The protein-protein interactions are often crucial for viral replication, and may thus offer possibilities for innovative inhibitor design.
Collapse
Affiliation(s)
- Priyanka Madhu
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, U.K
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Ferreiro D, Khalil R, Gallego MJ, Osorio NS, Arenas M. The evolution of the HIV-1 protease folding stability. Virus Evol 2022; 8:veac115. [PMID: 36601299 PMCID: PMC9802575 DOI: 10.1093/ve/veac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/10/2022] [Accepted: 12/03/2022] [Indexed: 12/11/2022] Open
Abstract
The evolution of structural proteins is generally constrained by the folding stability. However, little is known about the particular capacity of viral proteins to accommodate mutations that can potentially affect the protein stability and, in general, the evolution of the protein stability over time. As an illustrative model case, here, we investigated the evolution of the stability of the human immunodeficiency virus (HIV-1) protease (PR), which is a common HIV-1 drug target, under diverse evolutionary scenarios that include (1) intra-host virus evolution in a cohort of seventy-five patients sampled over time, (2) intra-host virus evolution sampled before and after specific PR-based treatments, and (3) inter-host evolution considering extant and ancestral (reconstructed) PR sequences from diverse HIV-1 subtypes. We also investigated the specific influence of currently known HIV-1 PR resistance mutations on the PR folding stability. We found that the HIV-1 PR stability fluctuated over time within a constant and wide range in any studied evolutionary scenario, accommodating multiple mutations that partially affected the stability while maintaining activity. We did not identify relationships between change of PR stability and diverse clinical parameters such as viral load, CD4+ T-cell counts, and a surrogate of time from infection. Counterintuitively, we predicted that nearly half of the studied HIV-1 PR resistance mutations do not significantly decrease stability, which, together with compensatory mutations, would allow the protein to adapt without requiring dramatic stability changes. We conclude that the HIV-1 PR presents a wide structural plasticity to acquire molecular adaptations without affecting the overall evolution of stability.
Collapse
Affiliation(s)
- David Ferreiro
- CINBIO, Universidade de Vigo, Vigo 36310, Spain,Departamento de Bioquímica, Genética e Inmunología, Universidade de Vigo, Vigo 36310, Spain
| | - Ruqaiya Khalil
- CINBIO, Universidade de Vigo, Vigo 36310, Spain,Departamento de Bioquímica, Genética e Inmunología, Universidade de Vigo, Vigo 36310, Spain
| | - María J Gallego
- CINBIO, Universidade de Vigo, Vigo 36310, Spain,Departamento de Bioquímica, Genética e Inmunología, Universidade de Vigo, Vigo 36310, Spain
| | - Nuno S Osorio
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal,ICVS/3Bs—PT Government Associate Laboratory, Guimarães 4806-909, Portugal
| | | |
Collapse
|
36
|
Chaves OA, Lima CR, Fintelman-Rodrigues N, Sacramento CQ, de Freitas CS, Vazquez L, Temerozo JR, Rocha ME, Dias SS, Carels N, Bozza PT, Castro-Faria-Neto HC, Souza TML. Agathisflavone, a natural biflavonoid that inhibits SARS-CoV-2 replication by targeting its proteases. Int J Biol Macromol 2022; 222:1015-1026. [PMID: 36183752 PMCID: PMC9525951 DOI: 10.1016/j.ijbiomac.2022.09.204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
Despite the fast development of vaccines, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still circulates through variants of concern (VoC) and escape the humoral immune response. SARS-CoV-2 has provoked over 200,000 deaths/months since its emergence and only a few antiviral drugs showed clinical benefit up to this moment. Thus, chemical structures endowed with anti-SARS-CoV-2 activity are important for continuous antiviral development and natural products represent a fruitful source of substances with biological activity. In the present study, agathisflavone (AGT), a biflavonoid from Anacardium occidentale was investigated as a candidate anti-SARS-CoV-2 compound. In silico and enzymatic analysis indicated that AGT may target mainly the viral main protease (Mpro) and not the papain-like protease (PLpro) in a non-competitive way. Cell-based assays in type II pneumocytes cell lineage (Calu-3) showed that SARS-CoV-2 is more susceptible to AGT than to apigenin (APG, monomer of AGT), in a dose-dependent manner, with an EC50 of 4.23 ± 0.21 μM and CC50 of 61.3 ± 0.1 μM and with a capacity to inhibit the level of pro-inflammatory mediator tumor necrosis factor-alpha (TNF-α). These results configure AGT as an interesting chemical scaffold for the development of novel semisynthetic antivirals against SARS-CoV-2.
Collapse
|
37
|
Wong-Sam A, Wang YF, Kneller DW, Kovalevsky AY, Ghosh AK, Harrison RW, Weber IT. HIV-1 protease with 10 lopinavir and darunavir resistance mutations exhibits altered inhibition, structural rearrangements and extreme dynamics. J Mol Graph Model 2022; 117:108315. [PMID: 36108568 PMCID: PMC10091457 DOI: 10.1016/j.jmgm.2022.108315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/14/2023]
Abstract
Antiretroviral drug resistance is a therapeutic obstacle for people with HIV. HIV protease inhibitors darunavir and lopinavir are recommended for resistant infections. We characterized a protease mutant (PR10x) derived from a highly resistant clinical isolate including 10 mutations associated with resistance to lopinavir and darunavir. Compared to the wild-type protease, PR10x exhibits ∼3-fold decrease in catalytic efficiency and Ki values of 2-3 orders of magnitude worse for darunavir, lopinavir, and potent investigational inhibitor GRL-519. Crystal structures of the mutant were solved in a ligand-free form and in complex with GRL-519. The structures show altered interactions in the active site, flap-core interface, hydrophobic core, hinge region, and 80s loop compared to the corresponding wild-type protease structures. The ligand-free crystal structure exhibits a highly curled flap conformation which may amplify drug resistance. Molecular dynamics simulations performed for 1 μs on ligand-free dimers showed extremely large fluctuations in the flaps for PR10x compared to equivalent simulations on PR with a single L76V mutation or wild-type protease. This analysis offers insight about the synergistic effects of mutations in highly resistant variants.
Collapse
Affiliation(s)
- Andres Wong-Sam
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Daniel W Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrey Y Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert W Harrison
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA; Department of Computer Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA; Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
38
|
Virus-Like Particles as Nanocarriers for Intracellular Delivery of Biomolecules and Compounds. Viruses 2022; 14:v14091905. [PMID: 36146711 PMCID: PMC9503347 DOI: 10.3390/v14091905] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Virus-like particles (VLPs) are nanostructures assemble from viral proteins. Besides widely used for vaccine development, VLPs have also been explored as nanocarriers for cargo delivery as they combine the key advantages of viral and non-viral vectors. While it protects cargo molecules from degradation, the VLP has good cell penetrating property to mediate cargo passing the cell membrane and released into cells, making the VLP an ideal tool for intracellular delivery of biomolecules and drugs. Great progresses have been achieved and multiple challenges are still on the way for broad applications of VLP as delivery vectors. Here we summarize current advances and applications in VLP as a delivery vector. Progresses on delivery of different types of biomolecules as well as drugs by VLPs are introduced, and the strategies for cargo packaging are highlighted which is one of the key steps for VLP mediated intracellular delivery. Production and applications of VLPs are also briefly reviewed, with a discussion on future challenges in this rapidly developing field.
Collapse
|
39
|
Mótyán JA, Kassay N, Matúz K, Tőzsér J. Different Mutation Tolerance of Lentiviral (HIV-1) and Deltaretroviral (BLV and HTLV) Protease Precursors. Viruses 2022; 14:v14091888. [PMID: 36146695 PMCID: PMC9505669 DOI: 10.3390/v14091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The bovine leukemia virus (BLV) and the human T-lymphothropic viruses (HTLVs) are members of the deltaretrovirus genus of Retroviridae family. An essential event of the retroviral life cycle is the processing of the polyproteins by the viral protease (PR); consequently, these enzymes became important therapeutic targets of the anti-retroviral drugs. As compared to human immunodeficiency viruses (HIVs), the deltaretroviruses have a different replication strategy, as they replicate predominantly in the DNA form, by forcing the infected cell to divide, unlike HIV-1, which replicates mainly by producing a vast number of progeny virions and by reinfection. Due to bypassing the error-prone reverse transcription step of replication, the PRs of deltaretroviruses did not undergo such extensive evolution as HIV PRs and remained more highly conserved. In this work, we studied the abilities of wild-type and modified BLV, HTLV (type 1, 2 and 3), and HIV-1 PRs (fused to an N-terminal MBP tag) for self-processing. We designed a cleavage site mutant MBP-fused BLV PR precursor as well, this recombinant enzyme was unable for self-proteolysis, the MBP fusion tag decreased its catalytic efficiency but showed an unusually low Ki for the IB-268 protease inhibitor. Our results show that the HTLV and BLV deltaretrovirus PRs exhibit lower mutation tolerance as compared to HIV-1 PR, and are less likely to retain their activity upon point mutations at various positions, indicating a higher flexibility of HIV-1 PR in tolerating mutations under selective pressure.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| | - Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| |
Collapse
|
40
|
Hicks EG, Kandel SE, Lampe JN. Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (M pro) inhibitors. Bioorg Med Chem Lett 2022; 66:128732. [PMID: 35427739 PMCID: PMC9004148 DOI: 10.1016/j.bmcl.2022.128732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
In the past two years, the COVID-19 pandemic has caused over 5 million deaths and 250 million infections worldwide. Despite successful vaccination efforts and emergency approval of small molecule therapies, a diverse range of antivirals is still needed to combat the inevitable resistance that will arise from new SARS-CoV-2 variants. The main protease of SARS-CoV-2 (Mpro) is an attractive drug target due to the clinical success of protease inhibitors against other viruses, such as HIV and HCV. However, in order to combat resistance, various chemical scaffolds need to be identified that have the potential to be developed into potent inhibitors. To this end, we screened a high-content protease inhibitor library against Mproin vitro, in order to identify structurally diverse compounds that could be further developed into antiviral leads. Our high-content screening efforts retrieved 27 hits each with > 50% inhibition in our Mpro FRET assay. Of these, four of the top inhibitor compounds were chosen for follow-up due to their potency and drugability (Lipinski's rules of five criteria): anacardic acid, aloesin, aloeresin D, and TCID. Further analysis via dose response curves revealed IC50 values of 6.8 μM, 38.9 μM, 125.3 μM, and 138.0 μM for each compound, respectively. Molecular docking studies demonstrated that the four inhibitors bound at the catalytic active site of Mpro with varying binding energies (-7.5 to -5.6 kcal/mol). Furthermore, Mpro FRET assay kinetic studies demonstrated that Mpro catalysis is better represented by a sigmoidal Hill model than the standard Michaelis-Menten hyperbola, indicating substantial cooperativity of the active enzyme dimer. This result suggests that the dimerization interface could be an attractive target for allosteric inhibitors. In conclusion, we identified two closely-related natural product compounds from the Aloe plant (aloesin and aloeresin D) that may serve as novel scaffolds for Mpro inhibitor design and additionally confirmed the strongly cooperative kinetics of Mpro proteolysis. These results further advance our knowledge of structure-function relationships in Mpro and offer new molecular scaffolds for inhibitor design.
Collapse
Affiliation(s)
- Emily G Hicks
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO 80045, United States
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO 80045, United States
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO 80045, United States.
| |
Collapse
|
41
|
Kim JG, Shan L. Beyond Inhibition: A Novel Strategy of Targeting HIV-1 Protease to Eliminate Viral Reservoirs. Viruses 2022; 14:1179. [PMID: 35746649 PMCID: PMC9231271 DOI: 10.3390/v14061179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
HIV-1 protease (PR) is a viral enzyme that cleaves the Gag and Gag-Pol polyprotein precursors to convert them into their functional forms, a process which is essential to generate infectious viral particles. Due to its broad substrate specificity, HIV-1 PR can also cleave certain host cell proteins. Several studies have identified host cell substrates of HIV-1 PR and described the potential impact of their cleavage on HIV-1-infected cells. Of particular interest is the interaction between PR and the caspase recruitment domain-containing protein 8 (CARD8) inflammasome. A recent study demonstrated that CARD8 can sense HIV-1 PR activity and induce cell death. While PR typically has low levels of intracellular activity prior to viral budding, premature PR activation can be achieved using certain non-nucleoside reverse transcriptase inhibitors (NNRTIs), resulting in CARD8 cleavage and downstream pyroptosis. Used together with latency reversal agents, the induction of premature PR activation to trigger CARD8-mediated cell killing may help eliminate latent reservoirs in people living with HIV. This represents a novel strategy of utilizing PR as an antiviral target through premature activation rather than inhibition. In this review, we discuss the viral and host substrates of HIV-1 protease and highlight potential applications and advantages of targeting CARD8 sensing of HIV-1 PR.
Collapse
Affiliation(s)
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
42
|
Rana N, Singh AK, Shuaib M, Gupta S, Habiballah MM, Alkhanani MF, Haque S, Reshi MS, Kumar S. Drug Resistance Mechanism of M46I-Mutation-Induced Saquinavir Resistance in HIV-1 Protease Using Molecular Dynamics Simulation and Binding Energy Calculation. Viruses 2022; 14:v14040697. [PMID: 35458427 PMCID: PMC9031992 DOI: 10.3390/v14040697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-resistance-associated mutation in essential proteins of the viral life cycle is a major concern in anti-retroviral therapy. M46I, a non-active site mutation in HIV-1 protease has been clinically associated with saquinavir resistance in HIV patients. A 100 ns molecular dynamics (MD) simulation and MM-PBSA calculations were performed to study the molecular mechanism of M46I-mutation-based saquinavir resistance. In order to acquire deeper insight into the drug-resistance mechanism, the flap curling, closed/semi-open/open conformations, and active site compactness were studied. The M46I mutation significantly affects the energetics and conformational stability of HIV-1 protease in terms of RMSD, RMSF, Rg, SASA, and hydrogen formation potential. This mutation significantly decreased van der Waals interaction and binding free energy (∆G) in the M46I–saquinavir complex and induced inward flap curling and a wider opening of the flaps for most of the MD simulation period. The predominant open conformation was reduced, but inward flap curling/active site compactness was increased in the presence of saquinavir in M46I HIV-1 protease. In conclusion, the M46I mutation induced structural dynamics changes that weaken the protease grip on saquinavir without distorting the active site of the protein. The produced information may be utilized for the discovery of inhibitor(s) against drug-resistant HIV-1 protease.
Collapse
Affiliation(s)
- Nilottam Rana
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India; (N.R.); (A.K.S.); (M.S.)
| | - Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India; (N.R.); (A.K.S.); (M.S.)
| | - Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India; (N.R.); (A.K.S.); (M.S.)
| | - Sanjay Gupta
- Department of Urology, Pharmacology and Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Mahmoud M. Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan 45142, Saudi Arabia;
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan 45142, Saudi Arabia
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Lab., Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu & Kashmir, India;
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India; (N.R.); (A.K.S.); (M.S.)
- Correspondence:
| |
Collapse
|
43
|
Rein A. Stephen Oroszlan and Retroviral Proteins. Viruses 2022; 14:v14020290. [PMID: 35215882 PMCID: PMC8878580 DOI: 10.3390/v14020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
44
|
Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010116. [PMID: 35054509 PMCID: PMC8779838 DOI: 10.3390/life12010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/22/2023]
Abstract
Understanding non-covalent biomolecular recognition, which includes drug-protein bound states and their binding/unbinding processes, is of fundamental importance in chemistry, biology, and medicine. Fully revealing the factors that govern the binding/unbinding processes can further assist in designing drugs with desired binding kinetics. HIV protease (HIVp) plays an integral role in the HIV life cycle, so it is a prime target for drug therapy. HIVp has flexible flaps, and the binding pocket can be accessible by a ligand via various pathways. Comparing ligand association and dissociation pathways can help elucidate the ligand-protein interactions such as key residues directly involved in the interaction or specific protein conformations that determine the binding of a ligand under certain pathway(s). Here, we investigated the ligand unbinding process for a slow binder, ritonavir, and a fast binder, xk263, by using unbiased all-atom accelerated molecular dynamics (aMD) simulation with a re-seeding approach and an explicit solvent model. Using ritonavir-HIVp and xk263-HIVp ligand-protein systems as cases, we sampled multiple unbinding pathways for each ligand and observed that the two ligands preferred the same unbinding route. However, ritonavir required a greater HIVp motion to dissociate as compared with xk263, which can leave the binding pocket with little conformational change of HIVp. We also observed that ritonavir unbinding pathways involved residues which are associated with drug resistance and are distal from catalytic site. Analyzing HIVp conformations sampled during both ligand-protein binding and unbinding processes revealed significantly more overlapping HIVp conformations for ritonavir-HIVp rather than xk263-HIVp. However, many HIVp conformations are unique in xk263-HIVp unbinding processes. The findings are consistent with previous findings that xk263 prefers an induced-fit model for binding and unbinding, whereas ritonavir favors a conformation selection model. This study deepens our understanding of the dynamic process of ligand unbinding and provides insights into ligand-protein recognition mechanisms and drug discovery.
Collapse
|
45
|
Del Amparo R, Arenas M. HIV Protease and Integrase Empirical Substitution Models of Evolution: Protein-Specific Models Outperform Generalist Models. Genes (Basel) 2021; 13:61. [PMID: 35052404 PMCID: PMC8774313 DOI: 10.3390/genes13010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Diverse phylogenetic methods require a substitution model of evolution that should mimic, as accurately as possible, the real substitution process. At the protein level, empirical substitution models have traditionally been based on a large number of different proteins from particular taxonomic levels. However, these models assume that all of the proteins of a taxonomic level evolve under the same substitution patterns. We believe that this assumption is highly unrealistic and should be relaxed by considering protein-specific substitution models that account for protein-specific selection processes. In order to test this hypothesis, we inferred and evaluated four new empirical substitution models for the protease and integrase of HIV and other viruses. We found that these models more accurately fit, compared with any of the currently available empirical substitution models, the evolutionary process of these proteins. We conclude that evolutionary inferences from protein sequences are more accurate if they are based on protein-specific substitution models rather than taxonomic-specific (generalist) substitution models. We also present four new empirical substitution models of protein evolution that could be useful for phylogenetic inferences of viral protease and integrase.
Collapse
Affiliation(s)
- Roberto Del Amparo
- Centro de Investigacións Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Miguel Arenas
- Centro de Investigacións Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| |
Collapse
|
46
|
Menéndez-Arias L, Delgado R. Update and latest advances in antiretroviral therapy. Trends Pharmacol Sci 2021; 43:16-29. [PMID: 34742581 DOI: 10.1016/j.tips.2021.10.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/27/2022]
Abstract
Since the first cases of AIDS appeared in 1981, human immunodeficiency virus type 1 (HIV-1) infection has reached pandemic proportions. Forty years later, research has led to the approval of more than 30 antiretroviral drugs, while combination therapies have turned HIV-1 infection into a chronic, but manageable disease. Still, drug toxicity and acquired and transmitted drug resistance remain as major threats to therapy success. In this review, we provide an overview on currently available anti-HIV drugs and the latest developments in antiretroviral therapy, focused on new antiretroviral agents acting on known and unexploited antiviral targets, prevention therapies aimed to improve available drug combinations, and research on new long-acting therapies, particularly those involving novel drug candidates such as lenacapavir or islatravir.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Rafael Delgado
- Laboratory of Molecular Microbiology. Instituto de Investigación Hospital 12 de Octubre (Imas12) and The University Complutense School of Medicine, Madrid, Spain.
| |
Collapse
|
47
|
Precursors of Viral Proteases as Distinct Drug Targets. Viruses 2021; 13:v13101981. [PMID: 34696411 PMCID: PMC8537868 DOI: 10.3390/v13101981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Collapse
|
48
|
Burnaman SH, Kneller DW, Wang YF, Kovalevsky A, Weber IT. Revertant mutation V48G alters conformational dynamics of highly drug resistant HIV protease PRS17. J Mol Graph Model 2021; 108:108005. [PMID: 34419931 DOI: 10.1016/j.jmgm.2021.108005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/27/2022]
Abstract
Drug resistance is a serious problem for controlling the HIV/AIDS pandemic. Current antiviral drugs show several orders of magnitude worse inhibition of highly resistant clinical variant PRS17 of HIV-1 protease compared with wild-type protease. We have analyzed the effects of a common resistance mutation G48V in the flexible flaps of the protease by assessing the revertant PRS17V48G for changes in enzyme kinetics, inhibition, structure, and dynamics. Both PRS17 and the revertant showed about 10-fold poorer catalytic efficiency than wild-type enzyme (0.55 and 0.39 μM-1min-1 compared to 6.3 μM-1min-1). Clinical inhibitors, amprenavir and darunavir, showed 2-fold and 8-fold better inhibition, respectively, of the revertant than of PRS17, although the inhibition constants for PRS17V48G were still 25 to 1,200-fold worse than for wild-type protease. Crystal structures of inhibitor-free revertant and amprenavir complexes with revertant and PRS17 were solved at 1.3-1.5 Å resolution. The amprenavir complexes of PRS17V48G and PRS17 showed no significant differences in the interactions with inhibitor, although changes were observed in the conformation of Phe53 and the interactions of the flaps. The inhibitor-free structure of the revertant showed flaps in an open conformation, however, the flap tips do not have the unusual curled conformation seen in inhibitor-free PRS17. Molecular dynamics simulations were run for 1 μs on the two inhibitor-free mutants and wild-type protease. PRS17 exhibited higher conformational fluctuations than the revertant, while the wild-type protease adopted the closed conformation and showed the least variation. The second half of the simulations captured the transition of the flaps of PRS17 from a closed to a semi-open state, whereas the flaps of PRS17V48G tucked into the active site and the wild-type protease retained the closed conformation. These results suggest that mutation G48V contributes to drug resistance by altering the conformational dynamics of the flaps.
Collapse
Affiliation(s)
| | - Daniel W Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
49
|
Development of a Bio-Layer Interferometry-Based Protease Assay Using HIV-1 Protease as a Model. Viruses 2021; 13:v13061183. [PMID: 34205716 PMCID: PMC8235736 DOI: 10.3390/v13061183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022] Open
Abstract
Proteolytic enzymes have great significance in medicine and the pharmaceutical industry and are applied in multiple fields of life sciences. Therefore, cost-efficient, reliable and sensitive real-time monitoring methods are highly desirable to measure protease activity. In this paper, we describe the development of a new experimental approach for investigation of proteolytic enzymes. The method was designed by the combination of recombinant fusion protein substrates and bio-layer interferometry (BLI). The protease (PR) of human immunodeficiency virus type 1 (HIV-1) was applied as model enzyme to set up and test the method. The principle of the assay is that the recombinant protein substrates immobilized to the surface of biosensor are specifically cleaved by the PR, and the substrate processing can be followed by measuring change in the layer thickness by optical measurement. We successfully used this method to detect the HIV-1 PR activity in real time, and the initial rate of the signal decrease was found to be proportional to the enzyme activity. Substrates representing wild-type and modified cleavage sites were designed to study HIV-1 PR's specificity, and the BLI-based measurements showed differential cleavage efficiency of the substrates, which was proven by enzyme kinetic measurements. We applied this BLI-based assay to experimentally confirm the existence of extended binding sites at the surface of HIV-1 PR. We found the measurements may be performed using lysates of cells expressing the fusion protein, without primary purification of the substrate. The designed BLI-based protease assay is high-throughput-compatible and enables real-time and small-volume measurements, thus providing a new and versatile approach to study proteolytic enzymes.
Collapse
|