1
|
Wang Y, Jiang H, Li M, Xu Z, Xu H, Chen Y, Chen K, Zheng W, Lin W, Liu Z, Lin Z, Zhang M. Delivery of CRISPR/Cas9 system by AAV as vectors for gene therapy. Gene 2024; 927:148733. [PMID: 38945310 DOI: 10.1016/j.gene.2024.148733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The adeno-associated virus (AAV) is a defective single-stranded DNA virus with the simplest structure reported to date. It constitutes a capsid protein and single-stranded DNA. With its high transduction efficiency, low immunogenicity, and tissue specificity, it is the most widely used and promising gene therapy vector. The clustered regularly interspaced short palindromic sequence (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is an emerging technology that utilizes cas9 nuclease to specifically recognize and cleave target genes under the guidance of small guide RNA and realizes gene editing through homologous directional repair and non-homologous recombination repair. In recent years, an increasing number of animal experiments and clinical studies have revealed the great potential of AAV as a vector to deliver the CRISPR/cas9 system for treating genetic diseases and viral infections. However, the immunogenicity, toxicity, low transmission efficiency in brain and ear tissues, packaging size limitations of AAV, and immunogenicity and off-target effects of Cas9 protein pose several clinical challenges. This research reviews the role, challenges, and countermeasures of the AAV-CRISPR/cas9 system in gene therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kepei Chen
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weihong Zheng
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiming Liu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Min Zhang
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Porter JM, Oswald MS, Busuttil K, Emmanuel SN, Bennett A, McKenna R, Smith JG. Mechanisms of AAV2 neutralization by human alpha-defensins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614754. [PMID: 39386661 PMCID: PMC11463608 DOI: 10.1101/2024.09.25.614754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Antiviral immunity compromises the efficacy of adeno-associated virus (AAV) vectors used for gene therapy. This is well understood for the adaptive immune response. However, innate immune effectors like alpha-defensin antimicrobial peptides also block AAV infection, although their mechanisms of action are unknown. To address this gap in knowledge, we investigated AAV2 neutralization by human neutrophil peptide 1 (HNP1), a myeloid alpha-defensin, and human defensin 5 (HD5), an enteric alpha-defensin. We found that both defensins bind to AAV2 and inhibit infection at low micromolar concentrations. While HD5 prevents AAV2 from binding to cells, HNP1 does not. However, AAV2 exposed to HD5 after binding to cells is still neutralized, indicating an additional block to infection. Accordingly, both HD5 and HNP1 inhibit externalization of the VP1 unique domain, which contains a phospholipase A 2 enzyme required for endosome escape and nuclear localization signals required for nuclear entry. Consequently, both defensins prevent AAV2 from reaching the nucleus. Disruption of intracellular trafficking of the viral genome to the nucleus is reminiscent of how alpha-defensins neutralize other non-enveloped viruses, suggesting a common mechanism of inhibition. These results will inform the development of vectors capable of overcoming these hurdles to improve the efficiency of gene therapy. Author Summary AAVs are commonly used as gene therapy vectors due to their broad tropism and lack of disease association; however, host innate immune factors, such as human alpha-defensin antimicrobial peptides, can hinder gene delivery. Although it is becoming increasingly evident that human alpha-defensins can block infection by a wide range of nonenveloped viruses, including AAVs, their mechanism of action remains poorly understood. In this study, we describe for the first time how two types of abundant human alpha-defensins neutralize a specific AAV serotype, AAV2. We found that one defensin prevents AAV2 from binding to cells, the first step in infection, while both defensins block a critical later step in AAV2 entry. Our findings support the emerging idea that defensins use a common strategy to block infection by DNA viruses that replicate in the nucleus. Through understanding how innate immune effectors interact with and impede AAV infection, vectors can be developed to bypass these interventions and allow more efficient gene delivery.
Collapse
|
3
|
Matsuzaka Y, Yashiro R. Therapeutic Application and Structural Features of Adeno-Associated Virus Vector. Curr Issues Mol Biol 2024; 46:8464-8498. [PMID: 39194716 DOI: 10.3390/cimb46080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Adeno-associated virus (AAV) is characterized by non-pathogenicity, long-term infection, and broad tropism and is actively developed as a vector virus for gene therapy products. AAV is classified into more than 100 serotypes based on differences in the amino acid sequence of the capsid protein. Endocytosis involves the uptake of viral particles by AAV and accessory receptors during AAV infection. After entry into the cell, they are transported to the nucleus through the nuclear pore complex. AAVs mainly use proteoglycans as receptors to enter cells, but the types of sugar chains in proteoglycans that have binding ability are different. Therefore, it is necessary to properly evaluate the primary structure of receptor proteins, such as amino acid sequences and post-translational modifications, including glycosylation, and the higher-order structure of proteins, such as the folding of the entire capsid structure and the three-dimensional (3D) structure of functional domains, to ensure the efficacy and safety of biopharmaceuticals. To further enhance safety, it is necessary to further improve the efficiency of gene transfer into target cells, reduce the amount of vector administered, and prevent infection of non-target cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
4
|
Kou F, Wang W, Zhu X, Han TY, Shi Y, Zhang BL. Construction of GSH-responsive polyethyleneimine-based delivery vector for effective gene transfection. NANOTECHNOLOGY 2024; 35:415102. [PMID: 39008958 DOI: 10.1088/1361-6528/ad6326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The rise of gene therapy has solved many diseases that cannot be effectively treated by conventional methods. Gene vectors is very important to protect and deliver the therapeutic genes to the target site. Polyethyleneimine (PEI) modified with mannitol could enhance the gene transfection efficiency reported by our group previously. In order to further control and improve the effective gene release to action site, disulfide bonds were introduced into mannitol-modified PEI to construct new non-viral gene vectors PeiSM. The degrees of mannitol linking with disulfide bonds were screened. Among them, moderate mannitol-modified PEI with disulfide bonds showed the best transfection efficiency, and significantly enhanced long-term systemic transgene expression for 72 hin vivoeven at a single dose administration, and could promote caveolae-mediated uptake through up-regulating the phosphorylation of caveolin-1 and increase the loaded gene release from the nanocomplexes in high glutathione intracellular environment. This functionalized gene delivery system can be used as an potential and safe non-viral nanovector for further gene therapy.
Collapse
Affiliation(s)
- Fang Kou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, People's Republic of China
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, and Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, People's Republic of China
| | - Wei Wang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, and Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, People's Republic of China
| | - Xiaohong Zhu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, and Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, People's Republic of China
- Shannxi Institute for Food and Drug Control, Xi'an 710065, People's Republic of China
| | - Tian-Yan Han
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, and Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, People's Republic of China
| | - Yajun Shi
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Bang-Le Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, People's Republic of China
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, and Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, People's Republic of China
| |
Collapse
|
5
|
Ye X, Hu Y, Qiu H, Li N. Probe capsid structure stability and dynamics of adeno-associated virus as an important viral vector for gene therapy by hydrogen-deuterium exchange-mass spectrometry. Protein Sci 2024; 33:e5074. [PMID: 38888268 PMCID: PMC11184576 DOI: 10.1002/pro.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/14/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Adeno-associated virus (AAV), a widely used gene therapy vector, is a small, nonenveloped virus that contains a single-stranded DNA genome with a maximum length of 4.7 kb. Despite extensive biophysical and structural characterization, many aspects of AAV functions remain elusive. This knowledge gap is primarily due to a lack of structurally resolved dynamic information and the absence of structural coverage of functionally critical segments on the AAV capsid. Here, we developed a protocol to study AAV structural dynamics by hydrogen-deuterium exchange mass spectrometry (HDX-MS), a powerful method for monitoring protein structure stability and dynamics in solution. We performed HDX-MS measurements on AAVs without or with different DNA payloads of different sizes, and obtained detailed dynamic information on the entire AAV sequence including the two functionally important segments not previously structurally characterized. The unique N terminus of the capsid protein VP1 (VP1u) was found to adopt a highly dynamic and unstable conformation with low HDX protection across the entire region, whereas the presence of a DNA payload increased its protection. The VP1 and VP2 shared region (VP1/2) showed no measurable protection, with or without DNA. Differential HDX between empty and full capsid samples allowed us to identify potential new DNA-capsid interaction sites located primarily around the five-fold channel, which differ from the three-fold pocket binding site previously identified. Our HDX-MS method for characterizing AAV structural dynamics opens a new way for future efforts to understand AAV structure-function relationships and engineer next-generation AAV vectors with improved gene delivery properties.
Collapse
Affiliation(s)
- Xiang Ye
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Yunli Hu
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Haibo Qiu
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Ning Li
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| |
Collapse
|
6
|
Yuan Y, Higashiyama K, Hashiba N, Masumi-Koizumi K, Yusa K, Uchida K. Concise Analysis of Single-Stranded DNA of Recombinant Adeno-Associated Virus By Automated Electrophoresis System. Hum Gene Ther 2024; 35:104-113. [PMID: 38062752 PMCID: PMC10890949 DOI: 10.1089/hum.2023.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2024] Open
Abstract
Recombinant adeno-associated virus (rAAV) is a prominent viral vector currently available for human gene therapy. The diameter of the rAAV capsid is ∼25 nm, and a positive or negative single-stranded DNA is packaged within the vector capsid. In this report, we describe a concise method to examine the extracted rAAV genome using an automated electrophoresis system. The rAAV genome, prepared from vector particles through either heat treatment at 95°C for 10 min or the phenol-chloroform extraction method, was analyzed using an automated electrophoresis system under denaturation conditions. The heat treatment protocol demonstrated a comparable yield with the phenol-chloroform extraction protocol, and the quantified amounts of the rAAV genome obtained using the automated electrophoresis system were consistent with those quantitated by quantitative PCR. Additionally, crude rAAV extractions could also be analyzed by the automated electrophoresis system after DNase I treatment. These results indicated that this simple and quick analysis using automated electrophoresis is highly useful for confirming the purity and integrity of the rAAV genome.
Collapse
Affiliation(s)
- Yuzhe Yuan
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Kiyoko Higashiyama
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Noriko Hashiba
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Kyoko Masumi-Koizumi
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Keisuke Yusa
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Kazuhisa Uchida
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| |
Collapse
|
7
|
Hadi M, Qutaiba B Allela O, Jabari M, Jasoor AM, Naderloo O, Yasamineh S, Gholizadeh O, Kalantari L. Recent advances in various adeno-associated viruses (AAVs) as gene therapy agents in hepatocellular carcinoma. Virol J 2024; 21:17. [PMID: 38216938 PMCID: PMC10785434 DOI: 10.1186/s12985-024-02286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeutic approaches are thus urgently required. Identifying single or multiple mutations in genes associated with invasion, metastasis, apoptosis, and growth regulation has resulted in a more comprehensive comprehension of the molecular genetic underpinnings of malignant transformation, tumor advancement, and host interaction. This enhanced comprehension has notably propelled the development of novel therapeutic agents. Therefore, gene therapy (GT) holds great promise for addressing the urgent need for innovative treatments in HCC. However, the complexity of HCC demands precise and effective therapeutic approaches. The adeno-associated virus (AAV) distinctive life cycle and ability to persistently infect dividing and nondividing cells have rendered it an alluring vector. Another appealing characteristic of the wild-type virus is its evident absence of pathogenicity. As a result, AAV, a vector that lacks an envelope and can be modified to transport DNA to specific cells, has garnered considerable interest in the scientific community, particularly in experimental therapeutic strategies that are still in the clinical stage. AAV vectors emerge as promising tools for HCC therapy due to their non-immunogenic nature, efficient cell entry, and prolonged gene expression. While AAV-mediated GT demonstrates promise across diverse diseases, the current absence of ongoing clinical trials targeting HCC underscores untapped potential in this context. Furthermore, gene transfer through hepatic AAV vectors is frequently facilitated by GT research, which has been propelled by several congenital anomalies affecting the liver. Notwithstanding the enthusiasm associated with this notion, recent discoveries that expose the integration of the AAV vector genome at double-strand breaks give rise to apprehensions regarding their enduring safety and effectiveness. This review explores the potential of AAV vectors as versatile tools for targeted GT in HCC. In summation, we encapsulate the multifaceted exploration of AAV vectors in HCC GT, underlining their transformative potential within the landscape of oncology and human health.
Collapse
Affiliation(s)
- Meead Hadi
- Department of Microbiology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mansoureh Jabari
- Medical Campus, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Asna Mahyazadeh Jasoor
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Omid Naderloo
- Department of Laboratory Sciences, Faculty of Medicine, Islamic Azad University of Gorgan Breanch, Gorgan, Iran
| | | | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Handyside B, Zhang L, Yates B, Xie L, Ismail AM, Murphy R, Baridon B, Su C, Bouwman T, Mangini L, Tahquechi J, Salcido S, Minto WC, Keenan WT, Ntai I, Sihn CR, Bullens S, Bunting S, Fong S. Prophylactic Prednisolone Promotes AAV5 Hepatocyte Transduction Through the Novel Mechanism of AAV5 Coreceptor Platelet-Derived Growth Factor Receptor Alpha Upregulation and Innate Immune Suppression. Hum Gene Ther 2024; 35:36-47. [PMID: 38126359 PMCID: PMC10818045 DOI: 10.1089/hum.2023.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Adeno-associated virus (AAV) vectors are used to deliver therapeutic transgenes, but host immune responses may interfere with transduction and transgene expression. We evaluated prophylactic corticosteroid treatment on AAV5-mediated expression in liver tissue. Wild-type C57BL/6 mice received 6 × 1013 vg/kg AAV5-HLP-hA1AT, an AAV5 vector carrying a human α1-antitrypsin (hA1AT) gene with a hepatocyte-specific promoter. Mice received 4 weeks of daily 2 mg/kg prednisolone or water starting day -1 or 0 before vector dosing. Mice that received prophylactic corticosteroids had significantly higher serum hA1AT protein than mice that did not, starting at 6 weeks and persisting to the study end at 12 weeks, potentially through a decrease in the number of low responders. RNAseq and proteomic analyses investigating mechanisms mediating the improvement of transgene expression found that prophylactic corticosteroid treatment upregulated the AAV5 coreceptor platelet-derived growth factor receptor alpha (PDGFRα) on hepatocytes and downregulated its competitive ligand PDGFα, thus increasing the uptake of AAV5 vectors. Evidently, prophylactic corticosteroid treatment also suppressed acute immune responses to AAV. Together, these mechanisms resulted in increased uptake and preservation of the transgene, allowing more vector genomes to be available to assemble into stable, full-length structures mediating long-term transgene expression. Prophylactic corticosteroids represent a potential actionable strategy to improve AAV5-mediated transgene expression and decrease intersubject variability.
Collapse
Affiliation(s)
- Britta Handyside
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Lening Zhang
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Bridget Yates
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Lin Xie
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | | | - Ryan Murphy
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Brian Baridon
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Cheng Su
- Global Clinical Sciences; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Taren Bouwman
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Linley Mangini
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Jorden Tahquechi
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Sandra Salcido
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Wesley C. Minto
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - William T. Keenan
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Ioanna Ntai
- Translational Sciences; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Choong-Ryoul Sihn
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Sherry Bullens
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Stuart Bunting
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| | - Sylvia Fong
- Biology Research; BioMarin Pharmaceutical, Inc.; Novato, California, USA
| |
Collapse
|
9
|
Klinkovskij A, Shepelev M, Isaakyan Y, Aniskin D, Ulasov I. Advances of Genome Editing with CRISPR/Cas9 in Neurodegeneration: The Right Path towards Therapy. Biomedicines 2023; 11:3333. [PMID: 38137554 PMCID: PMC10741756 DOI: 10.3390/biomedicines11123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The rate of neurodegenerative disorders (NDDs) is rising rapidly as the world's population ages. Conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), and dementia are becoming more prevalent and are now the fourth leading cause of death, following heart disease, cancer, and stroke. Although modern diagnostic techniques for detecting NDDs are varied, scientists are continuously seeking new and improved methods to enable early and precise detection. In addition to that, the present treatment options are limited to symptomatic therapy, which is effective in reducing the progression of neurodegeneration but lacks the ability to target the root cause-progressive loss of neuronal functioning. As a result, medical researchers continue to explore new treatments for these conditions. Here, we present a comprehensive summary of the key features of NDDs and an overview of the underlying mechanisms of neuroimmune dysfunction. Additionally, we dive into the cutting-edge treatment options that gene therapy provides in the quest to treat these disorders.
Collapse
Affiliation(s)
- Aleksandr Klinkovskij
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| | - Mikhail Shepelev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Str., Moscow 119334, Russia
| | - Yuri Isaakyan
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Str., Moscow 119991, Russia;
| | - Denis Aniskin
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| |
Collapse
|
10
|
Noda M, Koshu R, Shimada Dias M, Saito C, Takino N, Ito M, Yoshimura H, Ito M, Muramatsu SI. Enhanced Cochlear Transduction by AAV9 with High-Concentration Sucrose. Hum Gene Ther 2023; 34:1064-1071. [PMID: 37642269 DOI: 10.1089/hum.2023.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
The inner ear is a primary lesion in sensorineural hearing loss and has been a target in gene therapy. The efficacy of gene therapy depends on achieving sufficient levels of transduction at a safe vector dose. Vectors derived from various adeno-associated viruses (AAVs) are predominantly used to deliver therapeutic genes to inner ear cells. AAV9 and its variants vector are attractive candidates for clinical applications since they can cross the mesothelial cell layer and transduce inner hair cells (IHCs), although this requires relatively high doses. In this study, we investigated the effects of sucrose on the transduction of a variant of the AAV9 vector for gene transfer in the inner ear. We found that high concentrations of sucrose increased gene transduction in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in vitro. In addition, we demonstrated that simultaneous administration of sucrose enhanced the transduction of mouse IHCs and spiral ligament cells using an AAV9 variant vector. The procedure did not increase the thresholds in the auditory brainstem response, suggesting that sucrose had no adverse effect on auditory function. This versatile method may be valuable in the development of novel gene therapies for adult-onset sensorineural hearing loss.
Collapse
Affiliation(s)
- Masao Noda
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University, Tochigi, Japan
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| | - Ryota Koshu
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University, Tochigi, Japan
| | - Mari Shimada Dias
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University, Tochigi, Japan
| | - Chizu Saito
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University, Tochigi, Japan
| | - Naomi Takino
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| | - Mika Ito
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| | - Hidekane Yoshimura
- Department of Otolaryngology-Head and Neck Surgery, Shinshu University, Japan
| | - Makoto Ito
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
11
|
Liu Q, Li D, Pan X, Liang Y. Targeted therapy using engineered extracellular vesicles: principles and strategies for membrane modification. J Nanobiotechnology 2023; 21:334. [PMID: 37717008 PMCID: PMC10505332 DOI: 10.1186/s12951-023-02081-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 09/18/2023] Open
Abstract
Extracellular vesicles (EVs) are 30-150 nm membrane-bound vesicles naturally secreted by cells and play important roles in intercellular communication by delivering regulatory molecules such as proteins, lipids, nucleic acids and metabolites to recipient cells. As natural nano-carriers, EVs possess desirable properties such as high biocompatibility, biological barrier permeability, low toxicity, and low immunogenicity, making them potential therapeutic delivery vehicles. EVs derived from specific cells have inherent targeting capacity towards specific cell types, which is yet not satisfactory enough for targeted therapy development and needs to be improved. Surface modifications endow EVs with targeting abilities, significantly improving their therapeutic efficiency. Herein, we first briefly introduce the biogenesis, composition, uptake and function of EVs, and review the cargo loading approaches for EVs. Then, we summarize the recent advances in surface engineering strategies of EVs, focusing on the applications of engineered EVs for targeted therapy. Altogether, EVs hold great promise for targeted delivery of various cargos, and targeted modifications show promising effects on multiple diseases.
Collapse
Affiliation(s)
- Qisong Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Xiaohua Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China.
| | - Yujie Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China.
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Institute of Mental Health, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
12
|
Li X, La Salvia S, Liang Y, Adamiak M, Kohlbrenner E, Jeong D, Chepurko E, Ceholski D, Lopez-Gordo E, Yoon S, Mathiyalagan P, Agarwal N, Jha D, Lodha S, Daaboul G, Phan A, Raisinghani N, Zhang S, Zangi L, Gonzalez-Kozlova E, Dubois N, Dogra N, Hajjar RJ, Sahoo S. Extracellular Vesicle-Encapsulated Adeno-Associated Viruses for Therapeutic Gene Delivery to the Heart. Circulation 2023; 148:405-425. [PMID: 37409482 DOI: 10.1161/circulationaha.122.063759] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/16/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Adeno-associated virus (AAV) has emerged as one of the best tools for cardiac gene delivery due to its cardiotropism, long-term expression, and safety. However, a significant challenge to its successful clinical use is preexisting neutralizing antibodies (NAbs), which bind to free AAVs, prevent efficient gene transduction, and reduce or negate therapeutic effects. Here we describe extracellular vesicle-encapsulated AAVs (EV-AAVs), secreted naturally by AAV-producing cells, as a superior cardiac gene delivery vector that delivers more genes and offers higher NAb resistance. METHODS We developed a 2-step density-gradient ultracentrifugation method to isolate highly purified EV-AAVs. We compared the gene delivery and therapeutic efficacy of EV-AAVs with an equal titer of free AAVs in the presence of NAbs, both in vitro and in vivo. In addition, we investigated the mechanism of EV-AAV uptake in human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and mouse models in vivo using a combination of biochemical techniques, flow cytometry, and immunofluorescence imaging. RESULTS Using cardiotropic AAV serotypes 6 and 9 and several reporter constructs, we demonstrated that EV-AAVs deliver significantly higher quantities of genes than AAVs in the presence of NAbs, both to human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and to mouse hearts in vivo. Intramyocardial delivery of EV-AAV9-sarcoplasmic reticulum calcium ATPase 2a to infarcted hearts in preimmunized mice significantly improved ejection fraction and fractional shortening compared with AAV9-sarcoplasmic reticulum calcium ATPase 2a delivery. These data validated NAb evasion by and therapeutic efficacy of EV-AAV9 vectors. Trafficking studies using human induced pluripotent stem cell-derived cells in vitro and mouse hearts in vivo showed significantly higher expression of EV-AAV6/9-delivered genes in cardiomyocytes compared with noncardiomyocytes, even with comparable cellular uptake. Using cellular subfraction analyses and pH-sensitive dyes, we discovered that EV-AAVs were internalized into acidic endosomal compartments of cardiomyocytes for releasing and acidifying AAVs for their nuclear uptake. CONCLUSIONS Together, using 5 different in vitro and in vivo model systems, we demonstrate significantly higher potency and therapeutic efficacy of EV-AAV vectors compared with free AAVs in the presence of NAbs. These results establish the potential of EV-AAV vectors as a gene delivery tool to treat heart failure.
Collapse
Affiliation(s)
- Xisheng Li
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sabrina La Salvia
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yaxuan Liang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China (Y.L.)
| | - Marta Adamiak
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Erik Kohlbrenner
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
- Spark Therapeutics, Philadelphia, PA (E.K.)
| | - Dongtak Jeong
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea (D.J.)
| | - Elena Chepurko
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Delaine Ceholski
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Estrella Lopez-Gordo
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Seonghun Yoon
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Neha Agarwal
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Divya Jha
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shweta Lodha
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Anh Phan
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nikhil Raisinghani
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shihong Zhang
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lior Zangi
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences (E.G.-K.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology (N. Dubois), Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute (N. Dubois), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Navneet Dogra
- Department of Pathology and Laboratory Medicine (N. Dogra), Icahn School of Medicine at Mount Sinai, New York, NY
- Icahn Genomics Institute (N.Dogra), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Roger J Hajjar
- Gene and Cell Therapy Institute, Massachusetts General Brigham, Boston (R.J.H.)
| | - Susmita Sahoo
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
13
|
Zhu H, Liu D, Sui M, Zhou M, Wang B, Qi Q, Wang T, Zhang G, Wan F, Zhang B. CRISPRa-based activation of Fgf21 and Fndc5 ameliorates obesity by promoting adipocytes browning. Clin Transl Med 2023; 13:e1326. [PMID: 37462619 PMCID: PMC10353577 DOI: 10.1002/ctm2.1326] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Skeletal muscle-secreted myokines widely participate in lipids metabolism through autocrine, paracrine and endocrine actions. The myokines represented by FGF21 and Irisin can promote the browning of adipocytes and serve as promising targets for treating obesity. Although recombinant myokines replacement therapy and AAV (adeno-associated virus)-based myokines overexpression have shown a definite effect in ameliorating obesity, novel myokine activation strategies with higher efficacy and safety are still in pressing need. This study aimed to evaluate the therapeutic potential of a novel CRISPR-based myokines activation strategy in obesity treatments. METHODS In this study, we used lentivirus and a single AAV vector containing dCas9-VP64 with a single-guide RNA to selectively activate Fgf21 and Fndc5 expression in skeletal muscles both in vitro and in vivo. The activation efficacy of the CRISPRa system was determined by qRT-PCR, Western blotting and ELISA. The treatment effect of CRISPR-based myokines activation was tested in 3T3-L1-derived adipocytes and diet-induced obese (DIO) mice (male C57BL/6 mice, induced at 6-week-old for 10 weeks). RESULTS The virus upregulates myokines expression in both mRNA and protein levels of muscle cells in vitro and in vivo. Myokines secreted by muscle cells promoted browning of 3T3-L1-derived adipocytes. In vivo activation of myokines by AAVs can reduce body weight and fat mass, increase the adipocytes browning and improve glucose tolerance and insulin sensitivity in DIO mice. CONCLUSIONS Our study provides a novel CRISPR-based myokines activation strategy that can ameliorate obesity by promoting adipocytes browning.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Sui
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Meiling Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Qi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Zhang
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Golm SK, Hübner W, Müller KM. Fluorescence Microscopy in Adeno-Associated Virus Research. Viruses 2023; 15:v15051174. [PMID: 37243260 DOI: 10.3390/v15051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Research on adeno-associated virus (AAV) and its recombinant vectors as well as on fluorescence microscopy imaging is rapidly progressing driven by clinical applications and new technologies, respectively. The topics converge, since high and super-resolution microscopes facilitate the study of spatial and temporal aspects of cellular virus biology. Labeling methods also evolve and diversify. We review these interdisciplinary developments and provide information on the technologies used and the biological knowledge gained. The emphasis lies on the visualization of AAV proteins by chemical fluorophores, protein fusions and antibodies as well as on methods for the detection of adeno-associated viral DNA. We add a short overview of fluorescent microscope techniques and their advantages and challenges in detecting AAV.
Collapse
Affiliation(s)
- Susanne K Golm
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
15
|
Wang C, Wang P, Li F, Li Y, Zhao M, Feng H, Meng H, Li J, Shi P, Peng J, Tian H. Adenovirus-associated anti-miRNA-214 regulates bone metabolism and prevents local osteoporosis in rats. Front Bioeng Biotechnol 2023; 11:1164252. [PMID: 37251576 PMCID: PMC10214158 DOI: 10.3389/fbioe.2023.1164252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Objective: We investigated the expression of miRNA-214 in human osteoporotic bone tissue and tested the utility of adeno-associated virus (AAV) expressing a miRNA-214 inhibitor in terms of preventing local osteoporosis of the femoral condyle in a rat model of osteoporosis. Methods: (1) Femoral heads of patients who underwent hip replacements at our hospital because of femoral neck fractures were collected and divided into osteoporosis and non-osteoporosis groups based on preoperative bone mineral density data. MiRNA-214 expression was detected in bone tissues exhibiting obvious bone microstructural changes in the two groups. (2) A total of 144 SD female rats were divided into four groups: the Control, Model, Negative control (Model + AAV), and Experimental (Model + anti-miRNA-214) groups. AAV-anti-miRNA-214 was injected locally into the rat femoral condyles; we explored whether this prevented or treated local osteoporosis. Results: (1) MiRNA-214 expression in the human femoral head was significantly increased in the osteoporosis group. (2) Compared to the Model and Model + AAV groups, the bone mineral density (BMD) and femoral condyle bone volume/tissue volume (BV/TV) ratio in the Model + anti-miRNA-214 group were significantly higher; in addition, the number (TB.N) and thickness (TB.Th) of the trabecular bones were increased (all p < 0.05). MiRNA-214 expression in the femoral condyles of the Model + anti-miRNA-214 group was significantly higher than that in the other groups. The expression levels of the osteogenesis-related genes Alp, Bglap, and Col1α1 increased, while those of the osteoclast-related genes NFATc1, Acp5, Ctsk, Mmp9, and Clcn7 decreased. Conclusion: AAV-anti-miRNA-214 promoted osteoblast activity and inhibited osteoclast activity in the femoral condyles of osteoporotic rats, improving bone metabolism and slowing osteoporosis progression.
Collapse
Affiliation(s)
- Cheng Wang
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Peng Wang
- Institute of Orthopaedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Feng Li
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yang Li
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Minwei Zhao
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Hui Feng
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Haoye Meng
- Institute of Orthopaedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China, Qingdao, China
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Peng Shi
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Jiang Peng
- Institute of Orthopaedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Hua Tian
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| |
Collapse
|
16
|
Porter JM, Oswald MS, Sharma A, Emmanuel S, Kansol A, Bennett A, McKenna R, Smith JG. A Single Surface-Exposed Amino Acid Determines Differential Neutralization of AAV1 and AAV6 by Human Alpha-Defensins. J Virol 2023; 97:e0006023. [PMID: 36916912 PMCID: PMC10062168 DOI: 10.1128/jvi.00060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors due to their low pathogenicity and tissue tropism properties. However, the efficacy of these vectors is impeded by interactions with the host immune system. One potential immune barrier to vector transduction is innate immune host defense peptides, such as alpha-defensins, which are potent antiviral agents against other nonenveloped viruses. To investigate the interaction between AAVs and alpha-defensins, we utilized two closely related AAV serotypes, AAV1 and AAV6. Although their capsids differ by only six residues, these two serotypes exhibit markedly different tissue tropisms and transduction efficiencies. Using two abundant human alpha-defensins, enteric human defensin 5 (HD5) and myeloid human neutrophil peptide 1 (HNP1), we found both serotype-specific and defensin-specific effects on AAV infection. AAV6 infection was uniformly neutralized by both defensins at low micromolar concentrations; however, inhibition of AAV1 infection was profoundly influenced by the timing of defensin exposure to the virus relative to viral attachment to the cell. Remarkably, these differences in the defensin-dependent infection phenotype between the viruses are completely dictated by the identity of a single, surface-exposed amino acid (position 531) that varies between the two serotypes. These findings reveal a determinant for defensin activity against a virus with unprecedented precision. Furthermore, they provide a rationale for the investigation of other AAV serotypes not only to understand the mechanism of neutralization of defensins against AAVs but also to design more efficient vectors. IMPORTANCE The ability of adeno-associated viruses (AAVs) to infect and deliver genetic material to a range of cell types makes them favorable gene therapy vectors. However, AAV vectors encounter a wide variety of host immune factors throughout the body, which can impede efficient gene delivery. One such group of factors is the alpha-defensins, which are a key component of the innate immune system that can directly block viral infection. By studying the impact that alpha-defensins have on AAV infection, we found that two similar AAV serotypes (AAV1 and AAV6) have different sensitivities to inhibition. We also identified a single amino acid (position 531) that differs between the two AAV serotypes and is responsible for mediating their defensin sensitivity. By investigating the effects that host immune factors have on AAV infection, more efficient vectors may be developed to evade intervention by the immune system prior to gene delivery.
Collapse
Affiliation(s)
- Jessica M. Porter
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mackenzi S. Oswald
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anjali Sharma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shanan Emmanuel
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Austin Kansol
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
17
|
Leal AF, Fnu N, Benincore-Flórez E, Herreño-Pachón AM, Echeverri-Peña OY, Alméciga-Díaz CJ, Tomatsu S. The landscape of CRISPR/Cas9 for inborn errors of metabolism. Mol Genet Metab 2023; 138:106968. [PMID: 36525790 DOI: 10.1016/j.ymgme.2022.106968] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Since its discovery as a genome editing tool, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system has opened new horizons in the diagnosis, research, and treatment of genetic diseases. CRISPR/Cas9 can rewrite the genome at any region with outstanding precision to modify it and further instructions for gene expression. Inborn Errors of Metabolism (IEM) are a group of more than 1500 diseases produced by mutations in genes encoding for proteins that participate in metabolic pathways. IEM involves small molecules, energetic deficits, or complex molecules diseases, which may be susceptible to be treated with this novel tool. In recent years, potential therapeutic approaches have been attempted, and new models have been developed using CRISPR/Cas9. In this review, we summarize the most relevant findings in the scientific literature about the implementation of CRISPR/Cas9 in IEM and discuss the future use of CRISPR/Cas9 to modify epigenetic markers, which seem to play a critical role in the context of IEM. The current delivery strategies of CRISPR/Cas9 are also discussed.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Nidhi Fnu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; University of Delaware, Newark, DE, USA
| | | | | | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Large EE, Silveria MA, Weerakoon O, White TA, Chapman MS. Cross-Species Permissivity: Structure of a Goat Adeno-Associated Virus and Its Complex with the Human Receptor AAVR. J Virol 2022; 96:e0148422. [PMID: 36453885 PMCID: PMC9769368 DOI: 10.1128/jvi.01484-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 12/05/2022] Open
Abstract
Adeno-associated virus (AAV) is a small ssDNA satellite virus of high interest (in recombinant form) as a safe and effective gene therapy vector. AAV's human cell entry receptor (AAVR) contains polycystic kidney disease (PKD) domains bound by AAV. Seeking understanding of the spectrum of interactions, goat AAVGo.1 is investigated, because its host is the species most distant from human with reciprocal cross-species cell susceptibility. The structure of AAVGo.1, solved by cryo-EM to 2.9 Å resolution, is most similar to AAV5. Through ELISA (enzyme-linked immunosorbent assay) studies, it is shown that AAVGo.1 binds to human AAVR more strongly than do AAV2 or AAV5, and that it joins AAV5 in a class that binds exclusively to PKD domain 1 (PKD1), in contrast to other AAVs that interact primarily with PKD2. The AAVGo.1 cryo-EM structure of a complex with a PKD12 fragment of AAVR at 2.4 Å resolution shows PKD1 bound with minimal change in virus structure. There are only minor conformational adaptations in AAVR, but there is a near-rigid rotation of PKD1 with maximal displacement of the receptor domain by ~1 Å compared to PKD1 bound to AAV5. AAVGo.1 joins AAV5 as the second member of an emerging class of AAVs whose mode of receptor-binding is completely different from other AAVs, typified by AAV2. IMPORTANCE Adeno-associated virus (AAV) is a small ssDNA satellite parvovirus. As a recombinant vector with a protein shell encapsidating a transgene, recombinant AAV (rAAV) is a leading delivery vehicle for gene therapy, with two FDA-approved treatments and 150 clinical trials for 30 diseases. The human entry receptor AAVR has five PKD domains. To date, all serotypes, except AAV5, have interacted primarily with the second PKD domain, PKD2. Goat is the AAV host most distant from human with cross-species cell infectivity. AAVGo.1 is similar in structure to AAV5, the two forming a class with a distinct mode of receptor-binding. Within the two classes, binding interactions are mostly conserved, giving an indication of the latitude available in modulating delivery vectors.
Collapse
Affiliation(s)
- Edward E. Large
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Mark A. Silveria
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Onellah Weerakoon
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Tommi A. White
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
19
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
20
|
Mattola S, Aho V, Bustamante‐Jaramillo LF, Pizzioli E, Kann M, Vihinen‐Ranta M. Nuclear entry and egress of parvoviruses. Mol Microbiol 2022; 118:295-308. [PMID: 35974704 PMCID: PMC9805091 DOI: 10.1111/mmi.14974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 01/09/2023]
Abstract
Parvoviruses are small non-enveloped single-stranded DNA viruses, which depend on host cell nuclear transcriptional and replication machinery. After endosomal exposure of nuclear localization sequence and a phospholipase A2 domain on the capsid surface, and escape into the cytosol, parvovirus capsids enter the nucleus. Due to the small capsid diameter of 18-26 nm, intact capsids can potentially pass into the nucleus through nuclear pore complexes (NPCs). This might be facilitated by active nuclear import, but capsids may also follow an alternative entry pathway that includes activation of mitotic factors and local transient disruption of the nuclear envelope. The nuclear entry is followed by currently undefined events of viral genome uncoating. After genome release, viral replication compartments are initiated and infection proceeds. Parvoviral genomes replicate during cellular S phase followed by nuclear capsid assembly during virus-induced S/G2 cell cycle arrest. Nuclear egress of capsids occurs upon nuclear envelope degradation during apoptosis and cell lysis. An alternative pathway for nuclear export has been described using active transport through the NPC mediated by the chromosome region maintenance 1 protein, CRM1, which is enhanced by phosphorylation of the N-terminal domain of VP2. However, other alternative but not yet uncharacterized nuclear export pathways cannot be excluded.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | - Vesa Aho
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | | | - Edoardo Pizzioli
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Michael Kann
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden,Sahlgrenska AcademyGothenburgSweden,Department of Clinical MicrobiologyRegion Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Maija Vihinen‐Ranta
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| |
Collapse
|
21
|
Seo JW, Ajenjo J, Wu B, Robinson E, Raie MN, Wang J, Tumbale SK, Buccino P, Anders DA, Shen B, Habte FG, Beinat C, James ML, Reyes ST, Ravindra Kumar S, Miles TF, Lee JT, Gradinaru V, Ferrara KW. Multimodal imaging of capsid and cargo reveals differential brain targeting and liver detargeting of systemically-administered AAVs. Biomaterials 2022; 288:121701. [PMID: 35985893 PMCID: PMC9621732 DOI: 10.1016/j.biomaterials.2022.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022]
Abstract
The development of gene delivery vehicles with high organ specificity when administered systemically is a critical goal for gene therapy. We combine optical and positron emission tomography (PET) imaging of 1) reporter genes and 2) capsid tags to assess the temporal and spatial distribution and transduction of adeno-associated viruses (AAVs). AAV9 and two engineered AAV vectors (PHP.eB and CAP-B10) that are noteworthy for maximizing blood-brain barrier transport were compared. CAP-B10 shares a modification in the 588 loop with PHP.eB, but also has a modification in the 455 loop, added with the goal of reducing off-target transduction. PET and optical imaging revealed that the additional modifications retained brain receptor affinity. In the liver, the accumulation of AAV9 and the engineered AAV capsids was similar (∼15% of the injected dose per cc and not significantly different between capsids at 21 h). However, the engineered capsids were primarily internalized by Kupffer cells rather than hepatocytes, and liver transduction was greatly reduced. PET reporter gene imaging after engineered AAV systemic injection provided a non-invasive method to monitor AAV-mediated protein expression over time. Through comparison with capsid tagging, differences between brain localization and transduction were revealed. In summary, AAV capsids bearing imaging tags and reporter gene payloads create a unique and powerful platform to assay the pharmacokinetics, cellular specificity and protein expression kinetics of AAV vectors in vivo, a key enabler for the field of gene therapy.
Collapse
Affiliation(s)
- Jai Woong Seo
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Javier Ajenjo
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bo Wu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Elise Robinson
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marina Nura Raie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - James Wang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Spencer K Tumbale
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Pablo Buccino
- Stanford Cyclotron & Radiochemistry Facility (CRF), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - David Alexander Anders
- Stanford Cyclotron & Radiochemistry Facility (CRF), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bin Shen
- Stanford Cyclotron & Radiochemistry Facility (CRF), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Frezghi G Habte
- Stanford Center for Innovation in In vivo Imaging (SCi3), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Corinne Beinat
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Michelle L James
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Samantha Taylor Reyes
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Timothy F Miles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jason T Lee
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Katherine W Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Becklin KL, Draper GM, Madden RA, Kluesner MG, Koga T, Huang M, Weiss WA, Spector LG, Largaespada DA, Moriarity BS, Webber BR. Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR J 2022; 5:517-535. [PMID: 35972367 PMCID: PMC9529369 DOI: 10.1089/crispr.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.
Collapse
Affiliation(s)
- Kelsie L. Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Garrett M. Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Rebecca A. Madden
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tomoyuki Koga
- Ludwig Cancer Research San Diego Branch, La Jolla, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Miller Huang
- Department of Pediatrics, University of Southern California, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - William A. Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; and Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Logan G. Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
23
|
Maturana CJ, Verpeut JL, Engel EA. Single-Cell Quantification of Triple-AAV Vector Genomes Coexpressed in Neurons. Curr Protoc 2022; 2:e430. [PMID: 35616444 DOI: 10.1002/cpz1.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adeno-associated viruses (AAVs) are one of the most widely used types of viral vectors for research and gene therapy. AAV vectors are safe, have a low immunogenic profile, and provide efficient and long-term transgene expression in a variety of tissues and organs targeted by a specific serotype. Despite these unique features, therapeutic applications, as well as basic research studies, of AAVs have been limited by their packaging capacity of less than 5 kb. Multiple strategies have been explored to deliver large genes. One strategy is to split large transgenes into two or three fragments and package them into separate AAV capsids, generating dual or triple AAV vectors. Combining the fragments potentially allows reconstitution of an mRNA transcript containing the complete sequence of transgene in the same cell. The success of AAVs as vectors for the delivery of large or multiple genes depends directly on the efficiency of co-transduction. Here, we describe a method to measure the efficacy of codelivery, quantifying the number of AAV vectors per cell. We detail how to calculate the average number of incoming AAV genomes in neurons, given the distribution of cell fluorescence across in vitro and in vivo experimental models. To validate the method, we simulated a triple AAV strategy using three fluorescent-protein-encoding genes. We provide a general protocol for constructing plasmids and producing and purifying AAV vectors. We also include a protocol for triple AAV vector co-transduction in primary neuronal cultures and mouse brain. The method can be applied to multiple organs and tissues for the treatment of disorders caused by mutations in multiple or large genes. These protocols will be useful for researchers working to develop and improve new gene delivery technologies. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Construction of AAV plasmids and production of AAVs Basic Protocol 2: AAV transduction of primary superior cervical ganglia (SCG) neuronal cultures Basic Protocol 3: Mouse surgery, AAV injection, and tissue collection and processing Basic Protocol 4: Image analysis and AAV genome quantification.
Collapse
Affiliation(s)
- Carola J Maturana
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Jessica L Verpeut
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| |
Collapse
|
24
|
Characterization of the Serpentine Adeno-Associated Virus (SAAV) Capsid Structure: Receptor Interactions and Antigenicity. J Virol 2022; 96:e0033522. [DOI: 10.1128/jvi.00335-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AAVs are widely studied therapeutic gene delivery vectors. However, preexisting antibodies and their detrimental effect on therapeutic efficacy are a primary challenge encountered during clinical trials.
Collapse
|
25
|
Meumann N, Schmithals C, Elenschneider L, Hansen T, Balakrishnan A, Hu Q, Hook S, Schmitz J, Bräsen JH, Franke AC, Olarewaju O, Brandenberger C, Talbot SR, Fangmann J, Hacker UT, Odenthal M, Ott M, Piiper A, Büning H. Hepatocellular Carcinoma Is a Natural Target for Adeno-Associated Virus (AAV) 2 Vectors. Cancers (Basel) 2022; 14:cancers14020427. [PMID: 35053588 PMCID: PMC8774135 DOI: 10.3390/cancers14020427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Gene therapy is a novel approach to treat diseases by introducing corrective genetic information into target cells. Adeno-associated virus vectors are the most frequently applied gene delivery tools for in vivo gene therapy and are also studied as part of innovative anticancer strategies. Here, we report on the natural preference of AAV2 vectors for hepatocellular carcinoma (HCC) compared to nonmalignant liver cells in mice and human tissue. This preference in transduction is due to the improved intracellular processing of AAV2 vectors in HCC, resulting in significantly more vector genomes serving as templates for transcription in the cell nucleus. Based on this natural tropism for HCC, novel therapeutic strategies can be designed or existing therapeutic approaches can be strengthened as they currently result in only a minor improvement of the poor prognosis for most liver cancer patients. Abstract Although therapeutic options are gradually improving, the overall prognosis for patients with hepatocellular carcinoma (HCC) is still poor. Gene therapy-based strategies are developed to complement the therapeutic armamentarium, both in early and late-stage disease. For efficient delivery of transgenes with antitumor activity, vectors demonstrating preferred tumor tropism are required. Here, we report on the natural tropism of adeno-associated virus (AAV) serotype 2 vectors for HCC. When applied intravenously in transgenic HCC mouse models, similar amounts of vectors were detected in the liver and liver tumor tissue. In contrast, transduction efficiency, as indicated by the level of transgene product, was moderate in the liver but was elevated up to 19-fold in mouse tumor tissue. Preferred transduction of HCC compared to hepatocytes was confirmed in precision-cut liver slices from human patient samples. Our mechanistic studies revealed that this preference is due to the improved intracellular processing of AAV2 vectors in HCC, resulting, for example, in nearly 4-fold more AAV vector episomes that serve as templates for gene transcription. Given this background, AAV2 vectors ought to be considered to strengthen current—or develop novel—strategies for treating HCC.
Collapse
Affiliation(s)
- Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Christian Schmithals
- Department of Medicine 1, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (C.S.); (A.P.)
| | - Leroy Elenschneider
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, 30625 Hannover, Germany; (L.E.); (T.H.)
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, 30625 Hannover, Germany; (L.E.); (T.H.)
| | - Asha Balakrishnan
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Qingluan Hu
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Sebastian Hook
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (J.S.); (J.H.B.)
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (J.S.); (J.H.B.)
| | - Ann-Christin Franke
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
| | - Olaniyi Olarewaju
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany;
| | - Josef Fangmann
- KRH Klinikum Siloah, Liver Center Hannover (LCH), 30459 Hannover, Germany;
| | - Ulrich T. Hacker
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
- Institute of Pathology, University Hospital Cologne, 50931 Cologne, Germany
| | - Michael Ott
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (C.S.); (A.P.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Correspondence: ; Tel.: +49-511-532-5106
| |
Collapse
|
26
|
Hull JA, Mietzsch M, Chipman P, Strugatsky D, McKenna R. Structural characterization of an envelope-associated adeno-associated virus type 2 capsid. Virology 2022; 565:22-28. [PMID: 34638006 PMCID: PMC9911311 DOI: 10.1016/j.virol.2021.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/28/2023]
Abstract
Adeno-associated virus (AAV) are classified as non-enveloped ssDNA viruses. However, AAV capsids embedded within exosomes have been observed, and it has been suggested that the AAV membrane associated accessory protein (MAAP) may play a role in envelope-associated AAV (EA-AAV) capsid formation. Here, we observed and selected sufficient homogeneous EA-AAV capsids of AAV2, produced using the Sf9 baculoviral expression system, to determine the cryo-electron microscopy (cryo-EM) structure at 3.14 Å resolution. The reconstructed map confirmed that the EA-AAV capsid, showed no significant structural variation compared to the non-envelope capsid. In addition, the Sf9 expression system used implies the notion that MAAP may enhance exosome AAV encapsulation. Furthermore, we speculate that these EA-AAV capsids may have therapeutic benefits over the currently used non-envelope AAV capsids, with advantages in immune evasion and/or improved infectivity.
Collapse
Affiliation(s)
- Joshua A Hull
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0245, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0245, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0245, USA
| | - David Strugatsky
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0245, USA.
| |
Collapse
|
27
|
PCR-Based Analytical Methods for Quantification and Quality Control of Recombinant Adeno-Associated Viral Vector Preparations. Pharmaceuticals (Basel) 2021; 15:ph15010023. [PMID: 35056080 PMCID: PMC8779925 DOI: 10.3390/ph15010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV) represent a gene therapy tool of ever-increasing importance. Their utilization as a delivery vehicle for gene replacement, silencing and editing, among other purposes, demonstrate considerable versatility. Emerging vector utilization in various experimental, preclinical and clinical applications establishes the necessity of producing and characterizing a wide variety of rAAV preparations. Critically important characteristics concerning quality control are rAAV titer quantification and the detection of impurities. Differences in rAAV constructs necessitate the development of highly standardized quantification assays to make direct comparisons of different preparations in terms of assembly or purification efficiency, as well as experimental or therapeutic dosages. The development of universal methods for impurities quantification is rather complicated, since variable production platforms are utilized for rAAV assembly. However, general agreements also should be achieved to address this issue. The majority of methods for rAAV quantification and quality control are based on PCR techniques. Despite the progress made, increasing evidence concerning high variability in titration assays indicates poor standardization of the methods undertaken to date. This review summarizes successes in the field of rAAV quality control and emphasizes ongoing challenges in PCR applications for rAAV characterization. General considerations regarding possible solutions are also provided.
Collapse
|