1
|
Huynh LT, Otsuka M, Kobayashi M, Ngo HD, Hew LY, Hiono T, Isoda N, Sakoda Y. Assessment of the Safety Profile of Chimeric Marker Vaccine against Classical Swine Fever: Reversion to Virulence Study. Viruses 2024; 16:1120. [PMID: 39066282 PMCID: PMC11281528 DOI: 10.3390/v16071120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric marker vaccine candidates, vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns, have been generated and their efficacy and capability to differentiate infected from vaccinated animals were confirmed in previous studies. The safety profile of the two chimeric marker vaccine candidates, particularly in the potential reversion to virulence, was evaluated. Each virus was administered to pigs with a dose equivalent to the vaccination dose, and pooled tonsil homogenates were subsequently inoculated into further pigs. Chimeric virus vGPE-/PAPeV Erns displayed the most substantial attenuation, achieving this within only two passages, whereas vGPE-/PhoPeV Erns was detectable until the third passage and disappeared entirely by the fourth passage. The vGPE- strain, assessed alongside, consistently exhibited stable virus recovery across each passage without any signs of increased virulence in pigs. In vitro assays revealed that the type I interferon-inducing capacity of vGPE-/PAPeV Erns was significantly higher than that of vGPE-/PhoPeV Erns and vGPE-. In conclusion, the safety profile of the two chimeric marker vaccine candidates was affirmed. Further research is essential to ensure the stability of their attenuation and safety in diverse pig populations.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho 900000, Vietnam
| | - Mikihiro Otsuka
- The Gifu Hida Livestock Hygiene Service Center, Gifu 506-8688, Japan;
| | - Maya Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
| | - Hung Dinh Ngo
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
| | - Lim Yik Hew
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Choe S, Park GN, Kim KS, Shin J, Lim SI, An BH, Hyun BH, An DJ. Efficacy of an orally administered classical swine fever live marker vaccine (Flc-LOM-BE rns strain) in pigs. Vaccine 2023; 41:7377-7386. [PMID: 37973511 DOI: 10.1016/j.vaccine.2023.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
In several countries, classical swine fever (CSF) has not been detected in domestic pigs, but has been detected in wild boars, making the disease difficult to control. To overcome this problem, we inoculated pigs with a CSF live marker vaccine (Flc-LOM-BErns strain), which has "distinguish infection from vaccinated animals (DIVA)" function, to determine whether it is suitable as an oral vaccine specifically for wild boars. Pigs inoculated intramuscularly or orally with the Flc-LOM-BErns vaccine were challenged 2 or 4 weeks later, respectively, with virulent CSFV. Pigs administered the oral Flc-LOM-BErns strain (105.0 and 6.0 TCID50/dose), and those vaccinated intramuscularly (103.0 TCID50/dose), had normal numbers of leukocytes and normal body temperature. Also, they generated protective neutralizing antibodies and anti-BVDV Erns antibodies. In addition, all pigs in these groups survived, with no CSFV RNA detected in feces, spleen, or other organs. Thus, the Flc-LOM-BErns vaccine shows excellent safety and efficacy, while having DIVA function and suitability for oral inoculation.
Collapse
Affiliation(s)
- SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Seong-In Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Byung-Hyun An
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| |
Collapse
|
3
|
Huynh LT, Isoda N, Hew LY, Ogino S, Mimura Y, Kobayashi M, Kim T, Nishi T, Fukai K, Hiono T, Sakoda Y. Generation and Efficacy of Two Chimeric Viruses Derived from GPE - Vaccine Strain as Classical Swine Fever Vaccine Candidates. Viruses 2023; 15:1587. [PMID: 37515273 PMCID: PMC10384557 DOI: 10.3390/v15071587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
A previous study proved that vGPE- mainly maintains the properties of classical swine fever (CSF) virus, which is comparable to the GPE- vaccine seed and is a potentially valuable backbone for developing a CSF marker vaccine. Chimeric viruses were constructed based on an infectious cDNA clone derived from the live attenuated GPE- vaccine strain as novel CSF vaccine candidates that potentially meet the concept of differentiating infected from vaccinated animals (DIVA) by substituting the glycoprotein Erns of the GPE- vaccine strain with the corresponding region of non-CSF pestiviruses, either pronghorn antelope pestivirus (PAPeV) or Phocoena pestivirus (PhoPeV). High viral growth and genetic stability after serial passages of the chimeric viruses, namely vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns, were confirmed in vitro. In vivo investigation revealed that two chimeric viruses had comparable immunogenicity and safety profiles to the vGPE- vaccine strain. Vaccination at a dose of 104.0 TCID50 with either vGPE-/PAPeV Erns or vGPE-/PhoPeV Erns conferred complete protection for pigs against the CSF virus challenge in the early stage of immunization. In conclusion, the characteristics of vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns affirmed their properties, as the vGPE- vaccine strain, positioning them as ideal candidates for future development of a CSF marker vaccine.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho 900000, Vietnam
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Lim Yik Hew
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Saho Ogino
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Yume Mimura
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Maya Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Taksoo Kim
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Tatsuya Nishi
- Kodaira Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira 187-0022, Tokyo, Japan
| | - Katsuhiko Fukai
- Kodaira Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira 187-0022, Tokyo, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| |
Collapse
|
4
|
Yuan M, Yang X, Zhang X, Zhao X, Abid M, Qiu HJ, Li Y. Different Types of Vaccines against Pestiviral Infections: "Barriers" for " Pestis". Viruses 2022; 15:2. [PMID: 36680043 PMCID: PMC9860862 DOI: 10.3390/v15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The genus Pestivirus of the family Flaviviridae mainly comprises classical swine fever virus (CSFV), bovine viral diarrhea virus 1 (BVDV-1), BVDV-2, border disease virus (BDV), and multiple new pestivirus species such as atypical porcine pestivirus (APPV), giraffe pestivirus, and antelope pestivirus. Pestiviruses cause infectious diseases, resulting in tremendous economic losses to animal husbandry. Different types of pestivirus vaccines have been developed to control and prevent these important animal diseases. In recent years, pestiviruses have shown great potential as viral vectors for developing multivalent vaccines. This review analyzes the advantages and disadvantages of various pestivirus vaccines, including live attenuated pestivirus strains, genetically engineered marker pestiviruses, and pestivirus-based multivalent vaccines. This review provides new insights into the development of novel vaccines against emerging pestiviruses, such as APPV and ovine pestivirus.
Collapse
Affiliation(s)
- Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
5
|
Soleimani S. A Review of the Establishment of the Seed Lot System in the Production of Biological Products and Its Importance. ARCHIVES OF RAZI INSTITUTE 2022; 77:2023-2035. [PMID: 37274891 PMCID: PMC10237537 DOI: 10.22092/ari.2022.358890.2327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 06/07/2023]
Abstract
Today, due to the importance of diseases controlled by vaccination, the production of biological products is of great importance in ensuring public health, so producing high-quality biological products plays an important role in maintaining public health. One of the most important principles of manufacturing high-quality and efficient biological products is using suitable seeds based on standard principles. To produce a suitable seed for continuous use for mass production of biological products, the seed must be defined according to certain principles and foundations. These principles are formed in the form of a seed lot system. In this review article, all the requirements for the establishment of a seed to produce a biological product include general seed information, including basic and seed information and microorganisms, seed-specific information including seed passage levels, propagation method, seed storage conditions, coding and labeling, identification information and design of suitable laboratories for passage, seed propagation, and storage, determination of seed characteristics including all necessary tests to determine seed identity, purity, potency, efficacy, stability, safety and also all the necessary information for documenting and storing seeds has been studied. Also, this study discusses the method of preparing all the necessary information for establishing a seed lot system, especially determining the characteristics of seeds. Based on the study's results, a complete and comprehensive seed lot system has been formed that can be used to prepare, propagate, passage, and store seeds used in the production of biological products.
Collapse
Affiliation(s)
- S Soleimani
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975-148, Karaj, Iran
| |
Collapse
|
6
|
Li F, Li B, Niu X, Chen W, Li Y, Wu K, Li X, Ding H, Zhao M, Chen J, Yi L. The Development of Classical Swine Fever Marker Vaccines in Recent Years. Vaccines (Basel) 2022; 10:vaccines10040603. [PMID: 35455351 PMCID: PMC9026404 DOI: 10.3390/vaccines10040603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023] Open
Abstract
Classical swine fever (CSF) is a severe disease that has caused serious economic losses for the global pig industry and is widely prevalent worldwide. In recent decades, CSF has been effectively controlled through compulsory vaccination with a live CSF vaccine (C strain). It has been successfully eradicated in some countries or regions. However, the re-emergence of CSF in Japan and Romania, where it had been eradicated, has brought increased attention to the disease. Because the traditional C-strain vaccine cannot distinguish between vaccinated and infected animals (DIVA), this makes it difficult to fight CSF. The emergence of marker vaccines is considered to be an effective strategy for the decontamination of CSF. This paper summarizes the progress of the new CSF marker vaccine and provides a detailed overview of the vaccine design ideas and immunization effects. It also provides a methodology for the development of a new generation of vaccines for CSF and vaccine development for other significant epidemics.
Collapse
Affiliation(s)
- Fangfang Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xinni Niu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (L.Y.)
| |
Collapse
|