1
|
Bae SS, Faure-Kumar E, Ferbas K, Wang J, Shahbazian A, Truong L, Yang H, McMahon M, FitzGerald JD, Charles-Schoeman C. Assessment of antibody levels to SARS-CoV-2 in patients with idiopathic inflammatory myopathies receiving treatment with intravenous immunoglobulin. Rheumatol Int 2023; 43:1629-1636. [PMID: 37368037 PMCID: PMC10348966 DOI: 10.1007/s00296-023-05350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Antibodies to Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) have been reported in pooled healthy donor plasma and intravenous immunoglobulin products (IVIG). It is not known whether administration of IVIG increases circulating anti-SARS-CoV-2 antibodies (COVID ab) in IVIG recipients. COVID ab against the receptor binding domain of the spike protein were analyzed using a chemiluminescent microparticle immunoassay in patients with idiopathic inflammatory myopathies (IIM) both receiving and not receiving IVIG (IVIG and non-IVIG group, respectively). No significant differences in COVID ab levels were noted between IVIG and non-IVIG groups (417 [67-1342] AU/mL in IVIG vs 5086 [43-40,442] AU/mL in non-IVIG, p = 0.11). In linear regression models including all post-vaccination patient samples, higher number of vaccine doses was strongly associated with higher COVID ab levels (2.85 [1.21, 4.48] log AU/mL, regression coefficient [Formula: see text] [95% CI], p = 0.001), while use of RTX was associated with lower ab levels (2.73 [- 4.53, - 0.93] log AU/mL, [Formula: see text][95%CI], p = 0.004). In the IVIG group, higher total monthly doses of IVIG were associated with slightly higher COVID ab levels (0.02 [0.002-0.05] log AU/mL, p = 0.04). While patients on IVIG did not have higher COVID ab levels compared to the non-IVIG group, higher monthly doses of IVIG were associated with higher circulating levels of COVID ab in patients receiving IVIG, particularly in patients concomitantly receiving RTX. Our findings suggest that IIM patients, especially those at increased risk of COVID infection and worse COVID outcomes due to RTX therapy may have protective benefits when on concurrent IVIG treatment.
Collapse
Affiliation(s)
- Sangmee Sharon Bae
- David Geffen School of Medicine, Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Emmanuelle Faure-Kumar
- David Geffen School of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Kathie Ferbas
- David Geffen School of Medicine, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer Wang
- David Geffen School of Medicine, Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ani Shahbazian
- David Geffen School of Medicine, Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| | - Linh Truong
- David Geffen School of Medicine, Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| | - Howard Yang
- David Geffen School of Medicine, Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| | - Maureen McMahon
- David Geffen School of Medicine, Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| | - John D FitzGerald
- David Geffen School of Medicine, Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| | - Christina Charles-Schoeman
- David Geffen School of Medicine, Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Hopkins FR, Govender M, Svanberg C, Nordgren J, Waller H, Nilsdotter-Augustinsson Å, Henningsson AJ, Hagbom M, Sjöwall J, Nyström S, Larsson M. Major alterations to monocyte and dendritic cell subsets lasting more than 6 months after hospitalization for COVID-19. Front Immunol 2023; 13:1082912. [PMID: 36685582 PMCID: PMC9846644 DOI: 10.3389/fimmu.2022.1082912] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction After more than two years the Coronavirus disease-19 (COVID-19) pandemic continues to burden healthcare systems and economies worldwide, and it is evident that the effects on the immune system can persist for months post-infection. The activity of myeloid cells such as monocytes and dendritic cells (DC) is essential for correct mobilization of the innate and adaptive responses to a pathogen. Impaired levels and responses of monocytes and DC to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is likely to be a driving force behind the immune dysregulation that characterizes severe COVID-19. Methods Here, we followed a cohort of COVID-19 patients hospitalized during the early waves of the pandemic for 6-7 months. The levels and phenotypes of circulating monocyte and DC subsets were assessed to determine both the early and long-term effects of the SARS-CoV-2 infection. Results We found increased monocyte levels that persisted for 6-7 months, mostly attributed to elevated levels of classical monocytes. Myeloid derived suppressor cells were also elevated over this period. While most DC subsets recovered from an initial decrease, we found elevated levels of cDC2/cDC3 at the 6-7 month timepoint. Analysis of functional markers on monocytes and DC revealed sustained reduction in program death ligand 1 (PD-L1) expression but increased CD86 expression across almost all cell types examined. Finally, C-reactive protein (CRP) correlated positively to the levels of intermediate monocytes and negatively to the recovery of DC subsets. Conclusion By exploring the myeloid compartments, we show here that alterations in the immune landscape remain more than 6 months after severe COVID-19, which could be indicative of ongoing healing and/or persistence of viral antigens.
Collapse
Affiliation(s)
- Francis R. Hopkins
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hjalmar Waller
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University, Linköping, Sweden
| | - Anna J. Henningsson
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine in Jönköping, Ryhov County Hospital, Jönköping, Sweden
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sjöwall
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Liang D, Zhang G, Huang M, Wang L, Hong W, Li A, Liang Y, Wang T, Lu J, Ou M, Ren Z, Lu H, Zheng R, Cai X, Pan X, Xia J, Ke C. Progress of the COVID-19: Persistence, Effectiveness, and Immune Escape of the Neutralizing Antibody in Convalescent Serum. Pathogens 2022; 11:pathogens11121531. [PMID: 36558864 PMCID: PMC9782332 DOI: 10.3390/pathogens11121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a new coronavirus causing Coronavirus Disease 2019 (COVID-19), is a major topic of global human health concern. The Delta and Omicron variants have caused alarming responses worldwide due to their high transmission rates and a number of mutations. During a one-year follow-up (from June 2020 to June 2021), we included 114 patients with SARS-CoV-2 infection to study the long-term dynamics and the correlative factors of neutralizing antibodies (NAbs) in convalescent patients. The blood samples were collected at two detection time points (at 6 and 12 months after discharge). We evaluated the NAbs response of discharged patients by performing a micro-neutralization assay using a SARS-CoV-2 wild type. In addition, a total of 62 serum samples from discharged COVID-19 patients with Alpha, Beta, Delta, and Omicron variants of infection were enrolled to perform cross-neutralization tests using the original SARS-CoV-2 strain and VOCs variants (including Alpha, Beta, Gamma, Delta, and Omicron variants) and to assess the ability of NAbs against the SARS-CoV-2 variants. NAbs seroconversion occurred in 91.46% of patients (n = 82) in the first timepoint and in 89.29% of patients (n = 84) in the second detection point, and three kinds of NAbs kinetics curves were perceived. The NAbs levels in young patients had higher values than those in elder patients. The kinetics of disease duration was accompanied by an opposite trend in NAbs levels. Despite a declining NAbs response, NAbs activity was still detectable in a substantial proportion of recovered patients one year after discharge. Compared to the wild strain, the Omicron strain could lead to a 23.44-, 3.42-, 8.03-, and 2.57-fold reduction in neutralization capacity in "SAlpha", "SBeta", "SDelta", and "SOmicron", respectively, and the NAbs levels against the Omicron strain were significantly lower than those of the Beta and Delta variants. Remarkably, the NAbs activity of convalescent serum with Omicron strain infection was most obviously detectable against six SARS-CoV-2 strains in our study. The role of the vaccination history in NAbs levels further confirmed the previous study that reported vaccine-induced NAbs as the convincing protection mechanism against SARS-CoV-2. In conclusion, our findings highlighted the dynamics of the long-term immune responses after the disappearance of symptoms and revealed that NAbs levels varied among all types of convalescent patients with COVID-19 and that NAbs remained detectable for one year, which is reassuring in terms of protection against reinfection. Moreover, a moderate correlation between the duration of disease and Nabs titers was observed, whereas age was negatively correlated with Nabs titers. On the other hand, compared with other VOCs, the Omicron variant was able to escape the defenses of the immune system more significantly, and the convalescent serum infected with the Omicron variant played a critical part in protection against different SARS-CoV-2 variants. Recovery serum from individuals vaccinated with inactivated vaccine preceding infection with the Omicron strain had a high efficacy against the original strain and the VOCs variants, whereas the convalescent serum of persons vaccinated by inactivated vaccine prior to infection with the Delta variant was only potent against the wild-type strain.
Collapse
Affiliation(s)
- Dan Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Emergency Key Team, Guangzhou National Laboratory, Guangzhou 510700, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Guanting Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Mingxing Huang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Li Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenshan Hong
- MPH Education Center, Shantou University Medical College, Shantou 515041, China
| | - An’an Li
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yufeng Liang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Tao Wang
- MPH Education Center, Shantou University Medical College, Shantou 515041, China
| | - Jiahui Lu
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Mengdang Ou
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zhongqiang Ren
- Second People’s Hospital of Zhongshan, Zhongshan 528447, China
| | - Huiyi Lu
- Second People’s Hospital of Zhongshan, Zhongshan 528447, China
| | - Rutian Zheng
- Huizhou Central People’s Hospital, Huizhou 516001, China
| | - Xionghui Cai
- Huizhou Central People’s Hospital, Huizhou 516001, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jinyu Xia
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Changwen Ke
- Emergency Key Team, Guangzhou National Laboratory, Guangzhou 510700, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- MPH Education Center, Shantou University Medical College, Shantou 515041, China
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Rosati M, Terpos E, Ntanasis-Stathopoulos I, Agarwal M, Bear J, Burns R, Hu X, Korompoki E, Donohue D, Venzon DJ, Dimopoulos MA, Pavlakis GN, Felber BK. Sequential Analysis of Binding and Neutralizing Antibody in COVID-19 Convalescent Patients at 14 Months After SARS-CoV-2 Infection. Front Immunol 2021; 12:793953. [PMID: 34899762 PMCID: PMC8660679 DOI: 10.3389/fimmu.2021.793953] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023] Open
Abstract
Durability of SARS-CoV-2 Spike antibody responses after infection provides information relevant to understanding protection against COVID-19 in humans. We report the results of a sequential evaluation of anti-SARS-CoV-2 antibodies in convalescent patients with a median follow-up of 14 months (range 12.4-15.4) post first symptom onset. We report persistence of antibodies for all four specificities tested [Spike, Spike Receptor Binding Domain (Spike-RBD), Nucleocapsid, Nucleocapsid RNA Binding Domain (N-RBD)]. Anti-Spike antibodies persist better than anti-Nucleocapsid antibodies. The durability analysis supports a bi-phasic antibody decay with longer half-lives of antibodies after 6 months and antibody persistence for up to 14 months. Patients infected with the Wuhan (WA1) strain maintained strong cross-reactive recognition of Alpha and Delta Spike-RBD but significantly reduced binding to Beta and Mu Spike-RBD. Sixty percent of convalescent patients with detectable WA1-specific NAb also showed strong neutralization of the Delta variant, the prevalent strain of the present pandemic. These data show that convalescent patients maintain functional antibody responses for more than one year after infection, suggesting a strong long-lasting response after symptomatic disease that may offer a prolonged protection against re-infection. One patient from this cohort showed strong increase of both Spike and Nucleocapsid antibodies at 14 months post-infection indicating SARS-CoV-2 re-exposure. These antibodies showed stronger cross-reactivity to a panel of Spike-RBD including Beta, Delta and Mu and neutralization of a panel of Spike variants including Beta and Gamma. This patient provides an example of strong anti-Spike recall immunity able to control infection at an asymptomatic level. Together, the antibodies from SARS-CoV-2 convalescent patients persist over 14 months and continue to maintain cross-reactivity to the current variants of concern and show strong functional properties.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Mahesh Agarwal
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Eleni Korompoki
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Duncan Donohue
- MS Applied Information and Management Sciences, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|