1
|
Simon AY, Badmalia MD, Paquette SJ, Manalaysay J, Czekay D, Kandel BS, Sultana A, Lung O, Babuadze GG, Shahhosseini N. Evolutionary Relationships of Unclassified Coronaviruses in Canadian Bat Species. Viruses 2024; 16:1878. [PMID: 39772188 PMCID: PMC11680298 DOI: 10.3390/v16121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 01/11/2025] Open
Abstract
Bats are recognized as natural reservoirs for an array of diverse viruses, particularly coronaviruses, which have been linked to major human diseases like SARS-CoV and MERS-CoV. These viruses are believed to have originated in bats, highlighting their role in virus ecology and evolution. Our study focuses on the molecular characterization of bat-derived coronaviruses (CoVs) in Canada. Tissue samples from 500 bat specimens collected in Canada were analyzed using pan-coronavirus RT-PCR assays to detect the presence of CoVs from four genera: Alpha-CoVs, Beta-CoV, Gamma-CoV, and Delta-CoV. Phylogenetic analysis was performed targeting the RNA-dependent RNA polymerase (RdRP) gene. Our results showed an overall 1.4% CoV positivity rate in our bat sample size. Phylogenetic analysis based on the ~600 bp sequences led to the identification of an unclassified subgenus of Alpha-CoV, provisionally named Eptacovirus. The findings contribute to a better understanding of the diversity and evolution of CoVs found in the bat species of Canada. The current study underscores the significance of bats in the epidemiology of CoVs and enhances the knowledge of their genetic diversity and potential impact on global public health.
Collapse
Affiliation(s)
- Ayo Yila Simon
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Maulik D. Badmalia
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Sarah-Jo Paquette
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Jessica Manalaysay
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
- Departments of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Dominic Czekay
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Bishnu Sharma Kandel
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Asma Sultana
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (A.S.); (O.L.)
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (A.S.); (O.L.)
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - George Giorgi Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Nariman Shahhosseini
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
2
|
Do HQ, Yeom M, Moon S, Lee H, Chung CU, Chung HC, Park JW, Na W, Song D. Genetic characterization and pathogenicity in a mouse model of newly isolated bat-originated mammalian orthoreovirus in South Korea. Microbiol Spectr 2024; 12:e0176223. [PMID: 38289932 PMCID: PMC10913406 DOI: 10.1128/spectrum.01762-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Mammalian orthoreoviruses (MRVs) infect a wide range of hosts, including humans, livestock, and wildlife. In the present study, we isolated a novel Mammalian orthoreovirus from the intestine of a microbat (Myotis aurascens) and investigated its biological and pathological characteristics. Phylogenetic analysis indicated that the new isolate was serotype 2, sharing the segments with those from different hosts. Our results showed that it can infect a wide range of cell lines from different mammalian species, including human, swine, and non-human primate cell lines. Additionally, media containing trypsin, yeast extract, and tryptose phosphate broth promoted virus propagation in primate cell lines and most human cell lines, but not in A549 and porcine cell lines. Mice infected with this strain via the intranasal route, but not via the oral route, exhibited weight loss and respiratory distress. The virus is distributed in a broad range of organs and causes lung damage. In vitro and in vivo experiments also suggested that the new virus could be a neurotropic infectious strain that can infect a neuroblastoma cell line and replicate in the brains of infected mice. Additionally, it caused a delayed immune response, as indicated by the high expression levels of cytokines and chemokines only at 14 days post-infection (dpi). These data provide an important understanding of the genetics and pathogenicity of mammalian orthoreoviruses in bats at risk of spillover infections.IMPORTANCEMammalian orthoreoviruses (MRVs) have a broad range of hosts and can cause serious respiratory and gastroenteritis diseases in humans and livestock. Some strains infect the central nervous system, causing severe encephalitis. In this study, we identified BatMRV2/SNU1/Korea/2021, a reassortment of MRV serotype 2, isolated from bats with broad tissue tropism, including the neurological system. In addition, it has been shown to cause respiratory syndrome in mouse models. The given data will provide more evidence of the risk of mammalian orthoreovirus transmission from wildlife to various animal species and the sources of spillover infections.
Collapse
Affiliation(s)
- Hai Quynh Do
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Minjoo Yeom
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Suyun Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Hanbyeul Lee
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Chul-un Chung
- Department of Life Science, Dongguk University, Gyeongju, South Korea
| | - Hee-chun Chung
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Daesub Song
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Cerri A, Bolatti EM, Zorec TM, Montani ME, Rimondi A, Hosnjak L, Casal PE, Di Domenica V, Barquez RM, Poljak M, Giri AA. Identification and characterization of novel alphacoronaviruses in Tadarida brasiliensis (Chiroptera, Molossidae) from Argentina: insights into recombination as a mechanism favoring bat coronavirus cross-species transmission. Microbiol Spectr 2023; 11:e0204723. [PMID: 37695063 PMCID: PMC10581097 DOI: 10.1128/spectrum.02047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/14/2023] [Indexed: 09/12/2023] Open
Abstract
Bats are reservoirs of various coronaviruses that can jump between bat species or other mammalian hosts, including humans. This article explores coronavirus infection in three bat species (Tadarida brasiliensis, Eumops bonariensis, and Molossus molossus) of the family Molossidae from Argentina using whole viral metagenome analysis. Fecal samples of 47 bats from three semiurban or highly urbanized areas of the province of Santa Fe were investigated. After viral particle enrichment, total RNA was sequenced using the Illumina NextSeq 550 instrument; the reads were assembled into contigs and taxonomically and phylogenetically analyzed. Three novel complete Alphacoronavirus (AlphaCoV) genomes (Tb1-3) and two partial sequences were identified in T. brasiliensis (Tb4-5), and an additional four partial sequences were identified in M. molossus (Mm1-4). Phylogenomic analysis showed that the novel AlphaCoV clustered in two different lineages distinct from the 15 officially recognized AlphaCoV subgenera. Tb2 and Tb3 isolates appeared to be variants of the same virus, probably involved in a persistent infectious cycle within the T. brasiliensis colony. Using recombination analysis, we detected a statistically significant event in Spike gene, which was reinforced by phylogenetic tree incongruence analysis, involving novel Tb1 and AlphaCoVs identified in Eptesicus fuscus (family Vespertilionidae) from the U.S. The putative recombinant region is in the S1 subdomain of the Spike gene, encompassing the potential receptor-binding domain of AlphaCoVs. This study reports the first AlphaCoV genomes in molossids from the Americas and provides new insights into recombination as an important mode of evolution of coronaviruses involved in cross-species transmission. IMPORTANCE This study generated three novel complete AlphaCoV genomes (Tb1, Tb2, and Tb3 isolates) identified in individuals of Tadarida brasiliensis from Argentina, which showed two different evolutionary patterns and are the first to be reported in the family Molossidae in the Americas. The novel Tb1 isolate was found to be involved in a putative recombination event with alphacoronaviruses identified in bats of the genus Eptesicus from the U.S., whereas isolates Tb2 and Tb3 were found in different collection seasons and might be involved in persistent viral infections in the bat colony. These findings contribute to our knowledge of the global diversity of bat coronaviruses in poorly studied species and highlight the different evolutionary aspects of AlphaCoVs circulating in bat populations in Argentina.
Collapse
Affiliation(s)
- Agustina Cerri
- Human Virology Group, Rosario Institute of Molecular and Cellular Biology (IBR-CONICET), Rosario, Argentina
| | - Elisa M. Bolatti
- Human Virology Group, Rosario Institute of Molecular and Cellular Biology (IBR-CONICET), Rosario, Argentina
- Virology Area, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Argentina
- Bat Conservation Program of Argentina, San Miguel de Tucumán, Argentina
| | - Tomaz M. Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maria E. Montani
- Bat Conservation Program of Argentina, San Miguel de Tucumán, Argentina
- Dr. Ángel Gallardo Provincial Museum of Natural Sciences, Rosario, Argentina
- Argentine Biodiversity Research Institute (PIDBA), Faculty of Natural Sciences, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Agustina Rimondi
- Institute of Virology and Technological Innovations (INTA/CONICET), Castelar, Argentina
- Robert Koch Institute, Berlin, Germany
| | - Lea Hosnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Pablo E. Casal
- DETx MOL S.A. La Segunda Núcleo Corporate Building, Alvear, Argentina
| | - Violeta Di Domenica
- Human Virology Group, Rosario Institute of Molecular and Cellular Biology (IBR-CONICET), Rosario, Argentina
- Bat Conservation Program of Argentina, San Miguel de Tucumán, Argentina
| | - Ruben M. Barquez
- Bat Conservation Program of Argentina, San Miguel de Tucumán, Argentina
- Argentine Biodiversity Research Institute (PIDBA), Faculty of Natural Sciences, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Adriana A. Giri
- Human Virology Group, Rosario Institute of Molecular and Cellular Biology (IBR-CONICET), Rosario, Argentina
- Virology Area, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Argentina
| |
Collapse
|
4
|
Popov IV, Ohlopkova OV, Donnik IM, Zolotukhin PV, Umanets A, Golovin SN, Malinovkin AV, Belanova AA, Lipilkin PV, Lipilkina TA, Popov IV, Logvinov AK, Dubovitsky NA, Stolbunova KA, Sobolev IA, Alekseev AY, Shestopalov AM, Burkova VN, Chikindas ML, Venema K, Ermakov AM. Detection of coronaviruses in insectivorous bats of Fore-Caucasus, 2021. Sci Rep 2023; 13:2306. [PMID: 36759670 PMCID: PMC9909659 DOI: 10.1038/s41598-023-29099-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Coronaviruses (CoVs) pose a huge threat to public health as emerging viruses. Bat-borne CoVs are especially unpredictable in their evolution due to some unique features of bat physiology boosting the rate of mutations in CoVs, which is already high by itself compared to other viruses. Among bats, a meta-analysis of overall CoVs epizootiology identified a nucleic acid observed prevalence of 9.8% (95% CI 8.7-10.9%). The main objectives of our study were to conduct a qPCR screening of CoVs' prevalence in the insectivorous bat population of Fore-Caucasus and perform their characterization based on the metagenomic NGS of samples with detected CoV RNA. According to the qPCR screening, CoV RNA was detected in 5 samples, resulting in a 3.33% (95% CI 1.1-7.6%) prevalence of CoVs in bats from these studied locations. BetaCoVs reads were identified in raw metagenomic NGS data, however, detailed characterization was not possible due to relatively low RNA concentration in samples. Our results correspond to other studies, although a lower prevalence in qPCR studies was observed compared to other regions and countries. Further studies should require deeper metagenomic NGS investigation, as a supplementary method, which will allow detailed CoV characterization.
Collapse
Affiliation(s)
- Igor V Popov
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, 5900 AA, Venlo, The Netherlands.
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia.
| | - Olesia V Ohlopkova
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program On the Development of Genetic Technologies, Koltsovo, 630559, Russia
| | - Irina M Donnik
- Ural State Agrarian University, Ekaterinburg, 620075, Russia
| | | | - Alexander Umanets
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, 5900 AA, Venlo, The Netherlands
- Maastricht University, Youth, Food and Health, 5900 AA, Venlo, The Netherlands
| | - Sergey N Golovin
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | - Aleksey V Malinovkin
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | | | - Pavel V Lipilkin
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | - Tatyana A Lipilkina
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | - Ilya V Popov
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | - Alexandr K Logvinov
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | - Nikita A Dubovitsky
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Kristina A Stolbunova
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, 630559, Koltsovo, Russia
| | - Ivan A Sobolev
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Alexander Yu Alekseev
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Alexander M Shestopalov
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Valentina N Burkova
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, 119991, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Michael L Chikindas
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, 5900 AA, Venlo, The Netherlands
| | - Alexey M Ermakov
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| |
Collapse
|
5
|
Genomic Comparisons of Alphacoronaviruses and Betacoronaviruses from Korean Bats. Viruses 2022; 14:v14071389. [PMID: 35891370 PMCID: PMC9320528 DOI: 10.3390/v14071389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses are well known as a diverse family of viruses that affect a wide range of hosts. Since the outbreak of severe acute respiratory syndrome, a variety of bat-associated coronaviruses have been identified in many countries. However, they do not represent all the specific geographic locations of their hosts. In this study, full-length genomes representing newly identified bat coronaviruses in South Korea were obtained using an RNA sequencing approach. The analysis, based on genome structure, conserved replicase domains, spike gene, and nucleocapsid genes revealed that bat Alphacoronaviruses are from three different viral species. Among them, the newly identified B20-97 strain may represent a new putative species, closely related to PEDV. In addition, the newly-identified MERS-related coronavirus exhibited shared genomic nucleotide identities of less than 76.4% with other Merbecoviruses. Recombination analysis and multiple alignments of spike and RBD amino acid sequences suggested that this strain underwent recombination events and could possibly use hDPP4 molecules as its receptor. The bat SARS-related CoV B20-50 is unlikely to be able to use hACE2 as its receptor and lack of an open reading frame in ORF8 gene region. Our results illustrate the diversity of coronaviruses in Korean bats and their evolutionary relationships. The evolution of the bat coronaviruses related ORF8 accessory gene is also discussed.
Collapse
|
6
|
Schaeffer R, Temeeyasen G, Hause BM. Alphacoronaviruses Are Common in Bats in the Upper Midwestern United States. Viruses 2022; 14:v14020184. [PMID: 35215778 PMCID: PMC8877427 DOI: 10.3390/v14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Bats are a reservoir for coronaviruses (CoVs) that periodically spill over to humans, as evidenced by severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. A collection of 174 bat samples originating from South Dakota, Minnesota, Iowa, and Nebraska submitted for rabies virus testing due to human exposure were analyzed using a pan-coronavirus PCR. A previously partially characterized CoV, Eptesicus bat CoV, was identified in 12 (6.9%) samples by nested RT-PCR. Six near-complete genomes were determined. Genetic analysis found a high similarity between all CoV-positive samples, Rocky Mountain bat CoV 65 and alphacoronavirus HCQD-2020 recently identified in South Korea. Phylogenetic analysis of genome sequences showed EbCoV is closely related to bat CoV HKU2 and swine acute diarrhea syndrome CoV; however, topological incongruences were noted for the spike gene that was more closely related to porcine epidemic diarrhea virus. Similar to some alphaCoVs, a novel gene, ORF7, was discovered downstream of the nucleocapsid, whose protein lacked similarity to known proteins. The widespread circulation of EbCoV with similarities to bat viruses that have spilled over to swine warrants further surveillance.
Collapse
|