1
|
He Z, Li F, Yan J, Liu M, Chen Y, Guo C. The dual role of autophagy during porcine reproductive and respiratory syndrome virus infection: A review. Int J Biol Macromol 2024; 282:136978. [PMID: 39471930 DOI: 10.1016/j.ijbiomac.2024.136978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Autophagy is a highly conserved catabolic process that transports cellular components to lysosomes for degradation and reuse. It impacts various cellular functions, including innate and adaptive immunity. It can exhibit a dual role in viral infections, either promoting or inhibiting viral replication depending on the virus and the stage of the infection cycle. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen impacting the sustainable development of the global pork industry. Recent research has shown that PRRSV has evolved specific mechanisms to facilitate or impede autophagosome maturation, thereby evading innate and adaptive immune responses. These primary mechanisms involve viral proteins that target multiple regulators of autophagosome formation, including autophagy receptors, tethering proteins, autophagy-related (ATG) genes, as well as the functional proteins of autophagosomes and late endosomes/lysosomes. Additionally, these mechanisms are related to the post-translational modification of key components, viral antigens for presentation to T lymphocytes, interferon production, and the biogenesis and function of lysosomes. This review discusses the specific mechanisms by which PRRSV targets autophagy in host defence and virus survival, summarizes the role of viral proteins in subverting the autophagic process, and examines how the host utilizes the antiviral functions of autophagy to prevent PRRSV infection.
Collapse
Affiliation(s)
- Zhan He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Fangfang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Jiecong Yan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Domingo-Carreño I, Serena MS, Martín-Valls GE, Clilverd H, Aguirre L, Cortey M, Mateu E. The introduction of a highly virulent PRRSV strain in pig farms is associated with a change in the pattern of influenza A virus infection in nurseries. Vet Res 2024; 55:147. [PMID: 39522027 PMCID: PMC11549838 DOI: 10.1186/s13567-024-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
The present study aimed to determine the dynamics of influenza A virus (IAV) infection in two endemically infected farms (F1 and F2), where a longitudinal follow-up of piglets was performed from birth to 8-12 weeks of age. During the study, a highly virulent isolate of porcine reproductive and respiratory syndrome virus (PRRSV) was introduced on both farms. This allowed us to examine the impact of such introduction on the patterns of infection, disease, and the antibody response of pigs to IAV infection. The introduction of the new PRRSV strain coincided with a change in the dynamics of IAV infection on both farms. In F1, the cumulative incidence of IAV increased from 20% before the outbreak to 67.5%, together with the existence of animals that tested positive for IAV (RT‒qPCR) in nasal swabs for two or more consecutive samples. In F2, the cumulative incidence of IAV increased from 50% before the PRRSV outbreak to 70%, and the proportion of prolonged IAV shedders increased sharply. Additionally, some animals were infected with the same IAV twice during the observation period. In contrast to previous reports, our study revealed that prolonged shedding was not related to the titres of maternally derived antibodies at the time of infection but was significantly (p < 0.05) related to PRRSV infection status. Notably, both before and after the PRRSV outbreak, a high proportion of IAV-infected piglets did not seroconvert, which was significantly (p < 0.05) related to the hemagglutination inhibition titres against IAV when infected.
Collapse
Affiliation(s)
- Ivan Domingo-Carreño
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Maria Soledad Serena
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Gerard Eduard Martín-Valls
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Hepzibar Clilverd
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Laia Aguirre
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Martí Cortey
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
3
|
Rimayanti R, Khairullah AR, Lestari TD, Hernawati T, Mulyati S, Utama S, Damayanti R, Moses IB, Yanestria SM, Kusala MKJ, Raissa R, Fauziah I, Wibowo S, Prasetyo A, Awwanah M, Fauzia KA. Porcine reproductive and respiratory syndrome developments: An in-depth review of recent findings. Open Vet J 2024; 14:2138-2152. [PMID: 39553781 PMCID: PMC11563630 DOI: 10.5455/ovj.2024.v14.i9.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 11/19/2024] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) belonging to the Arteriviridae family is the cause of PRRS disease. After being discovered for the first time in the United States in 1987, this illness quickly expanded to Canada. The disease was initially discovered in late 1990 in Germany, from where it quickly spread throughout Europe. The consequences of PRRSV lead to a number of epidemiological issues, including a sickness with a delayed immune response that permits extended viremia, which facilitates viral transmission. The virus penetrates the nasal epithelium, tonsils, lung macrophages, and uterine endometrium through the oronasal and genital pathways. Abortions performed late in pregnancy and premature or delayed deliveries resulting in dead and mummified fetuses, stillborn pigs, and weakly born piglets are indicative of reproductive syndrome. In the meanwhile, dyspnea, fever, anorexia, and lethargic behavior are signs of respiratory syndrome. The virus can be isolated from the tissue or serum of animals that have been infected to confirm the diagnosis. Pig movements and potential airborne dissemination are two ways that the virus can enter new herds and propagate through nose-to-nose contact or aerosols. Various supportive therapies may enhance infant survival, and antibiotics may or may not lessen the impact of secondary bacterial infections. The absence of simple diagnostic tests, the virus's airborne transmission, the occurrence of subclinical infections, and the virus's persistence in infected populations have all contributed to the failure of control efforts for PRRS.
Collapse
Affiliation(s)
- Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Agung Prasetyo
- Research Center for Estate Crops, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mo Awwanah
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
4
|
Grevelinger J, Bourry O, Meurens F, Perrin A, Hervet C, Dubreil L, Simon G, Bertho N. Impact of swine influenza A virus on porcine reproductive and respiratory syndrome virus infection in alveolar macrophages. Front Vet Sci 2024; 11:1454762. [PMID: 39253525 PMCID: PMC11381391 DOI: 10.3389/fvets.2024.1454762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Porcine respiratory disease complex represents a major challenge for the swine industry, with swine influenza A virus (swIAV) and porcine reproductive and respiratory syndrome virus (PRRSV) being major contributors. Epidemiological studies have confirmed the co-circulation of these viruses in pig herds, making swIAV-PRRSV co-infections expected. A couple of in vivo co-infection studies have reported replication interferences between these two viruses. Herein, using a reductionist in vitro model, we investigated the potential mechanisms of these in vivo interferences. We first examined the impact of swIAV on porcine alveolar macrophages (AMs) and its effects on AMs co-infection by PRRSV. This was done either in monoculture or in co-culture with respiratory tracheal epithelial cells to represent the complexity of the interactions between the viruses and their respective target cells (epithelial cells for swIAV and AMs for PRRSV). AMs were obtained either from conventional or specific pathogen-free (SPF) pigs. SwIAV replication was abortive in AMs, inducing cell death at high multiplicity of infections. In AMs from three out of four conventional animals, swIAV showed no impact on PRRSV replication. However, inhibition of PRRSV multiplication was observed in AMs from one animal, accompanied by an early increase in the expression of interferon (IFN)-I and IFN-stimulated genes. In AMs from six SPF pigs, swIAV inhibited PRRSV replication in all animals, with an early induction of antiviral genes. Co-culture experiments involving tracheal epithelial cells and AMs from either SPF or conventional pigs all showed swIAV-induced inhibition of PRRSV replication, together with early induction of antiviral genes. These findings highlight the complex interactions between swIAV and PRRSV in porcine AMs, and would suggest a role of host factors, such as sanitary status, in modulating viral propagation. Our co-culture experiments demonstrated that swIAV inhibits PRRSV replication more effectively in the presence of respiratory tracheal epithelial cells, suggesting a synergistic antiviral response between AMs and epithelial cells, consistent with in vivo experiments.
Collapse
Affiliation(s)
- Janaïna Grevelinger
- Oniris, INRAE, BIOEPAR, Nantes, France
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | - Olivier Bourry
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | - François Meurens
- Oniris, INRAE, BIOEPAR, Nantes, France
- CRIPA, Fonds de Recherche du Québec, Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | | | | | | | - Gaëlle Simon
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | | |
Collapse
|
5
|
Ma Y, Shi K, Chen Z, Shi Y, Zhou Q, Mo S, Wei H, Hu L, Mo M. Simultaneous Detection of Porcine Respiratory Coronavirus, Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Pseudorabies Virus via Quadruplex One-Step RT-qPCR. Pathogens 2024; 13:341. [PMID: 38668296 PMCID: PMC11054806 DOI: 10.3390/pathogens13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it very difficult to accurately differentially diagnose these diseases on site. In this study, a quadruplex one-step reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PRCoV, PRRSV, SIV, and PRV was established. The assay showed strong specificity, high sensitivity, and good repeatability. It could detect only PRCoV, PRRSV, SIV, and PRV, without cross-reactions with TGEV, PEDV, PRoV, ASFV, FMDV, PCV2, PDCoV, and CSFV. The limits of detection (LODs) for PRCoV, PRRSV, SIV, and PRV were 129.594, 133.205, 139.791, and 136.600 copies/reaction, respectively. The intra-assay and inter-assay coefficients of variation (CVs) ranged from 0.29% to 1.89%. The established quadruplex RT-qPCR was used to test 4909 clinical specimens, which were collected in Guangxi Province, China, from July 2022 to September 2023. PRCoV, PRRSV, SIV, and PRV showed positivity rates of 1.36%, 10.17%, 4.87%, and 0.84%, respectively. In addition, the previously reported RT-qPCR was also used to test these specimens, and the agreement between these methods was higher than 99.43%. The established quadruplex RT-qPCR can accurately detect these four porcine respiratory viruses simultaneously, providing an accurate and reliable detection technique for clinical diagnosis.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Qingan Zhou
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Shenglan Mo
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Haina Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Liping Hu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Meilan Mo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| |
Collapse
|
6
|
Renson P, Mahé S, Andraud M, Le Dimna M, Paboeuf F, Rose N, Bourry O. Effect of vaccination route (intradermal vs. intramuscular) against porcine reproductive and respiratory syndrome using a modified live vaccine on systemic and mucosal immune response and virus transmission in pigs. BMC Vet Res 2024; 20:5. [PMID: 38172908 PMCID: PMC10763156 DOI: 10.1186/s12917-023-03853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is a viral disease with worldwide distribution and an enormous economic impact. To control PRRS virus (PRRSV) infection, modified live vaccines (MLVs) are widely used in the field, mainly administered via an intramuscular (IM) route. Currently, some MLVs are authorized for intradermal (ID) administration, which has many practical and welfare advantages. The objectives of the study were to compare the immune responses (systemic in blood and mucosal in lungs) and vaccine efficacy in preventing challenge strain transmission after IM or needle-free ID immunization of piglets with an MLV against PRRSV-1 (MLV1). METHODS Groups of sixteen 5-week-old specific pathogen-free piglets were vaccinated with Porcilis PRRS® (MSD) either by an IM (V+ IM) or ID route (V+ ID) using an IDAL®3G device or kept unvaccinated (V-). Four weeks after vaccination, in each group, 8 out of the 16 piglets were challenged intranasally with a PRRSV-1 field strain, and one day later, the inoculated pigs were mingled by direct contact with the remaining 8 sentinel noninoculated pigs to evaluate PRRSV transmission. Thus, after the challenge, each group (V+ IM, V+ ID or V-) included 8 inoculated and 8 contact piglets. During the postvaccination and postchallenge phases, PRRSV replication (RT-PCR), PRRSV-specific antibodies (ELISA IgG and IgA, virus neutralization tests) and cell-mediated immunity (ELISPOT Interferon gamma) were monitored in blood and bronchoalveolar lavages (BALs). RESULTS Postvaccination, vaccine viremia was lower in V+ ID pigs than in V+ IM pigs, whereas the cell-mediated immune response was detected earlier in the V+ ID group at 2 weeks postvaccination. In the BAL fluid, a very low mucosal immune response (humoral and cellular) was detected. Postchallenge, the vaccine efficacy was similar in inoculated animals with partial control of PRRSV viremia in V+ ID and V+ IM animals. In vaccinated sentinel pigs, vaccination drastically reduced PRRSV transmission with similar estimated transmission rates and latency durations for the V+ IM and V+ ID groups. CONCLUSIONS Our results show that the tested MLV1 induced a faster cell-mediated immune response after ID immunization two weeks after vaccination but was equally efficacious after IM or ID immunization towards a challenge four weeks later. Considering the practical and welfare benefits of ID vaccination, these data further support the use of this route for PRRS MLVs.
Collapse
Affiliation(s)
- Patricia Renson
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, 22440, France.
| | - Sophie Mahé
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, 22440, France
| | - Mathieu Andraud
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, 22440, France
| | - Mireille Le Dimna
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, 22440, France
| | - Frédéric Paboeuf
- SPF Pig Production and Experimentation Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, 22440, France
| | - Nicolas Rose
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, 22440, France
| | - Olivier Bourry
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, 22440, France
| |
Collapse
|
7
|
Chrun T, Maze EA, Roper KJ, Vatzia E, Paudyal B, McNee A, Martini V, Manjegowda T, Freimanis G, Silesian A, Polo N, Clark B, Besell E, Booth G, Carr BV, Edmans M, Nunez A, Koonpaew S, Wanasen N, Graham SP, Tchilian E. Simultaneous co-infection with swine influenza A and porcine reproductive and respiratory syndrome viruses potentiates adaptive immune responses. Front Immunol 2023; 14:1192604. [PMID: 37287962 PMCID: PMC10242126 DOI: 10.3389/fimmu.2023.1192604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Porcine respiratory disease is multifactorial and most commonly involves pathogen co-infections. Major contributors include swine influenza A (swIAV) and porcine reproductive and respiratory syndrome (PRRSV) viruses. Experimental co-infection studies with these two viruses have shown that clinical outcomes can be exacerbated, but how innate and adaptive immune responses contribute to pathogenesis and pathogen control has not been thoroughly evaluated. We investigated immune responses following experimental simultaneous co-infection of pigs with swIAV H3N2 and PRRSV-2. Our results indicated that clinical disease was not significantly exacerbated, and swIAV H3N2 viral load was reduced in the lung of the co-infected animals. PRRSV-2/swIAV H3N2 co-infection did not impair the development of virus-specific adaptive immune responses. swIAV H3N2-specific IgG serum titers and PRRSV-2-specific CD8β+ T-cell responses in blood were enhanced. Higher proportions of polyfunctional CD8β+ T-cell subset in both blood and lung washes were found in PRRSV-2/swIAV H3N2 co-infected animals compared to the single-infected groups. Our findings provide evidence that systemic and local host immune responses are not negatively affected by simultaneous swIAV H3N2/PRRSV-2 co-infection, raising questions as to the mechanisms involved in disease modulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam McNee
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Noemi Polo
- The Pirbright Institute, Woking, United Kingdom
| | - Becky Clark
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Alejandro Nunez
- Pathology and Animal Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | |
Collapse
|
8
|
Lillie-Jaschniski K, Lisgara M, Pileri E, Jardin A, Velazquez E, Köchling M, Albin M, Casanovas C, Skampardonis V, Stadler J. A New Sampling Approach for the Detection of Swine Influenza a Virus on European Sow Farms. Vet Sci 2022; 9:vetsci9070338. [PMID: 35878355 PMCID: PMC9324471 DOI: 10.3390/vetsci9070338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Due to concerns in public health and its negative impact on the pig industry the need for Influenza A virus (IAV) surveillance is rising. The gold standard procedure for detecting IAV is to sample acutely diseased pigs. Endemic infections with unspecific clinical signs and low disease prevalence need new approaches. Our study aimed to evaluate a standardized sampling procedure for the detection of IAV in epidemically and endemically infected farms. We performed a cross-sectional study in 131 farms investigating three different age groups per farm in 12 European countries. The results of our investigation indicate that 10 nasal swabs each in suckling piglets, weaners and middle of nursery is a valuable tool for influenza detection and identification of subtypes. However, for farms with a lower prevalence than 15% it is advisable to either increase the number of nasal swabs in each age group or to use group sampling methods. Interestingly, different subtypes were found in different age groups. Thus, our study underlines that sampling of different age groups is mandatory to obtain a comprehensive overview on all circulating variants on farm. In addition, our results highlight that sampling strategies should also consider piglets without obvious clinical signs for IAV infection. Abstract Swine influenza A virus (swIAV), which plays a major role in the porcine respiratory disease complex (PRDC), is eliminated from the respiratory tract within 7–9 days after infection. Therefore, diagnosis is complicated in endemically infected swine herds presenting no obvious clinical signs. This study aimed to investigate the right time point for sampling to detect swIAV. A cross-sectional study was performed in 131 farms from 12 European countries. The sampling protocol included suckling piglets, weaners, and nursery pigs. In each age group, 10 nasal swabs were collected and further examined in pools of 5 for swIAV by Matrix rRT-PCR, followed by a multiplex RT-PCR to determine the influenza subtype. SwIAV was detected in 284 (37.9%) of the samples and on 103 (78.6%) farms. Despite the highest number of animals with clinical signs being found in the nursery, the weaners were significantly more often virus-positive compared to nursery pigs (p = 0.048). Overall, the swIAV detection rate did not significantly differ between diseased or non-diseased suckling and nursery piglets, respectively; however, diseased weaners had significantly more positive pools than the non-diseased animals. Interestingly, in 9 farms, different subtypes were detected in different age groups. Our findings indicate that to detect all circulating swIAV subtypes on a farm, different age groups should be sampled. Additionally, the sampling strategy should also aim to include non-diseased animals, especially in the suckling period.
Collapse
Affiliation(s)
- Kathrin Lillie-Jaschniski
- Ceva Tiergesundheit, Kanzlerstraße 4, 40472 Düsseldorf, Germany;
- Correspondence: ; Tel.: +49-1733680459
| | | | | | - Agnes Jardin
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33501 Libourne, France;
| | | | - Monika Köchling
- Ceva Tiergesundheit, Kanzlerstraße 4, 40472 Düsseldorf, Germany;
| | - Michael Albin
- Ceva Animal Health Ltd., Ladegaardsvej 2, 7100 Vejle, Denmark;
| | | | - Vassilis Skampardonis
- Department of Epidemiology, Biostatistics and Economics of Animal Production, School of Veterinary Medicine, University of Thessaly, 43132 Karditsa, Greece;
| | - Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig Maximilian University, 75000 Munich, Germany;
| |
Collapse
|