1
|
Coggins SJ, Kimble B, Malik R, Thompson MF, Norris JM, Govendir M. Assessing in vitro stability of remdesivir (GS-5734) and conversion to GS-441524 in feline plasma and whole blood. Vet Q 2024; 44:1-9. [PMID: 38288972 PMCID: PMC10829815 DOI: 10.1080/01652176.2024.2305731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a potentially fatal coronavirus-driven disease of cats. Treatment with nucleoside analogue GS-441524 and or prodrug remdesivir (RDV) have produced remission in both experimentally induced and naturally occurring FIP, yet information regarding metabolism of RDV into GS-441524 in cats is scarce. This study assessed possible phase I metabolism of RDV in cats, utilising an in vitro feline microsome model with in vitro t1/2 and in vitro Clint calculated using the substrate depletion method. A previously validated high-performance liquid chromatography (HPLC) fluorescence method was utilised for detection and analysis of RDV and GS-441524. Qualitative yield of RDV and intermediate metabolite GS-441524 were determined following microsome incubation, then compared to whole blood and plasma incubations. In vitro microsome incubation resulted in rapid depletion of RDV, though it did not appear to resemble a conventional phase I-dependent reaction in cats, as it is in humans and dogs. Depletion of RDV into GS-441524 was demonstrated in whole blood in vitro, suggesting cats convert RDV to GS-441524, likely via blood esterases, as observed in mice and rats. RDV metabolism is unlikely to be impacted by impaired liver function in cats. Furthermore, as RDV depletes within minutes, whereas GS-441524 is very stable, whole blood or plasma GS-441524 concentrations, rather than plasma RDV concentrations, are more appropriate for therapeutic drug monitoring (TDM) in cats receiving RDV.
Collapse
Affiliation(s)
- Sally J. Coggins
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, Australia
- Centre for Veterinary Education, The University of Sydney, Camperdown, Australia
| | - Benjamin Kimble
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Camperdown, Australia
- Animal and Veterinary Science, Charles Sturt University, Wagga Wagga, Australia
| | - Mary F. Thompson
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, Australia
| | - Jacqueline M. Norris
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, Australia
| |
Collapse
|
2
|
Reagan KL, Brostoff T, Pires J, Rose A, Castillo D, Murphy BG. Open label clinical trial of orally administered molnupiravir as a first-line treatment for naturally occurring effusive feline infectious peritonitis. J Vet Intern Med 2024. [PMID: 39327677 DOI: 10.1111/jvim.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Before the discovery of effective antiviral drugs, feline infectious peritonitis (FIP) was a uniformly fatal disease of cats. Multiple antiviral treatments have been recognized, but optimization of treatment protocols is needed. OBJECTIVE To evaluate the efficacy of PO molnupiravir (MPV; EIDD-2801) to treat effusive FIP. ANIMALS Ten cats with naturally occurring effusive FIP and 10 historical control cats with effusive FIP treated with PO GS-441524. METHODS A single-center, prospective, open-label longitudinal, non-inferiority trial with historical controls. Ten cats with FIP were enrolled and treated with PO MPV (10-15 mg/kg PO q12h) for 84 days. Cats were evaluated at 0, 6, and 16 weeks, and the proportion of cats in clinical remission at 16 weeks was determined. Survival and clinicopathologic features were compared with historical control cats with effusive FIP treated with PO GS-441524. RESULTS Eight of the 10 cats treated with MPV survived and were in remission at 16 weeks. The 2 non-survivors died in the first 24 hours of treatment. No adverse events that necessitated discontinuation of treatment were observed. Survival of cats treated with PO MPV was non-inferior to historic control cats treated with PO GS-441524 (5/9 [55%] survived), with a difference in survival of 25% (90% confidence interval, -9.3% to 59.3%). Clinicopathologic features associated with FIP normalized during the study period, and no differences in clinicopathologic data at each study time point were observed when comparing cats treated with MPV and GS-441524. CONCLUSIONS AND CLINICAL IMPORTANCE Molnupiravir is an effective antiviral treatment for effusive FIP.
Collapse
Affiliation(s)
- Krystle L Reagan
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, School of Veterinary Medicine, Davis, California, USA
| | - Terza Brostoff
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, School of Veterinary Medicine, Davis, California, USA
| | - Jully Pires
- Veterinary Center for Clinical Trials, University of California, Davis, School of Veterinary Medicine, Davis, California, USA
| | - Amy Rose
- Veterinary Center for Clinical Trials, University of California, Davis, School of Veterinary Medicine, Davis, California, USA
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, School of Veterinary Medicine, Davis, California, USA
| | - Brian G Murphy
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
3
|
Furbish A, Allinder M, Austin G, Tynan B, Byrd E, Gomez IP, Peterson Y. First analytical confirmation of drug-induced crystal nephropathy in felines caused by GS-441524, the active metabolite of Remdesivir. J Pharm Biomed Anal 2024; 247:116248. [PMID: 38823223 PMCID: PMC11229044 DOI: 10.1016/j.jpba.2024.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
GS-441524 is an adenosine nucleoside antiviral demonstrating significant efficacy in the treatment of feline infectious peritonitis (FIP), an otherwise fatal illness, resulting from infection with feline coronavirus. However, following the emergence of COVID-19, veterinary development was halted, and Gilead pursued clinical development of a GS-441524 pro-drug, resulting in the approval of Remdesivir under an FDA emergency use authorization. Despite lack of regulatory approval, GS-441524 is available without a prescription through various unlicensed online distributors and is commonly purchased by pet owners for the treatment of FIP. Herein, we report data obtained from the analytical characterization of two feline renal calculi, demonstrating the propensity for GS-441524 to cause renal toxicity through drug-induced crystal nephropathy in vivo. As definitive diagnosis of drug-induced crystal nephropathy requires confirmation of the lithogenic material to accurately attribute a mechanism of toxicity, renal stone composition and crystalline matrix were characterized using ultra-performance liquid chromatography photodiode array detection (UPLC-PDA), ultra-performance liquid chromatography mass spectrometry (LCMS), nuclear magnetic resonance (NMR) spectroscopy, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). This work serves to provide the first analytical confirmation of GS-441524-induced crystal nephropathy in an effort to support toxicologic identification of adverse renal effects caused by administration of GS-441524 or any pro-drug thereof.
Collapse
Affiliation(s)
- Amelia Furbish
- Dept. of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St, Charleston, SC 29425, USA
| | - Marissa Allinder
- Charleston Veterinary Referral Center, 3484 Shelby Ray Court, Charleston, SC, USA
| | - Glenn Austin
- Louis C. Herring and Company, 1111 S. Orange Ave., Orlando, FL, USA
| | - Beth Tynan
- Charleston Veterinary Referral Center, 3484 Shelby Ray Court, Charleston, SC, USA
| | - Emilee Byrd
- Dept. of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St, Charleston, SC 29425, USA
| | - Ivette Pina Gomez
- Dept. of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St, Charleston, SC 29425, USA
| | - Yuri Peterson
- Dept. of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St, Charleston, SC 29425, USA.
| |
Collapse
|
4
|
Sase O, Iwami T, Sasaki T, Sano T. GS-441524 and molnupiravir are similarly effective for the treatment of cats with feline infectious peritonitis. Front Vet Sci 2024; 11:1422408. [PMID: 39091389 PMCID: PMC11291256 DOI: 10.3389/fvets.2024.1422408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Although not registered for feline infectious peritonitis (FIP) in Japan, nucleoside analogs have shown efficacy and we have been offering them to owners of cats with FIP at our clinic since January 2020. The aim of this study was to investigate outcomes in cats with FIP who received GS-441524 or molnupiravir. Diagnosis of FIP was based on clinical signs, laboratory test results, and the presence of feline coronavirus RNA in blood or effusion aspirate. After providing verbal and written information, owners of cats with a presumptive diagnosis of FIP with a were offered antiviral treatment with commercially sourced GS-441524 from June 2020, and either GS-441524 or compounded molnupiravir from January 2022. Dosing was 12.5-25 mg/kg/day for GS-441524 and 20-40 mg/kg/day for molnupiravir, depending on the presence of effusion and neurological and/or ocular signs, and continued for 84 days. Overall, 118 cats with FIP (effusive in 76) received treatment, 59 with GS-4421524 and 59 with molnupiravir. Twenty cats died, 12/59 (20.3%) in the GS-441524 group and 8/59 (13.6%) in the molnupiravir group (p = 0.326), with most deaths within the first 10 days of starting treatment. Among survivors, neurological and ocular signs resolved in all but one cat, who had persistent seizures. Of the cats completing treatment, 48/48 in the GS-441524 group and 51/52 in the molnupiravir group achieved remission. Laboratory parameters normalized within 6 to 7 weeks of starting drug administration. Adverse events, such as primarily hepatic function abnormalities, were transient and resolved without specific intervention. Our data indicate that GS-441524 and molnupiravir show similar effects and safety in cats with FIP.
Collapse
Affiliation(s)
| | | | | | - Tadashi Sano
- Obihiro University of Agriculture and Veterinary Medicine, Department of Clinical Veterinary Science, Hokkaido, Japan
| |
Collapse
|
5
|
Wijerathne SVT, Pandit R, Ipinmoroti AO, Crenshaw BJ, Matthews QL. Feline coronavirus influences the biogenesis and composition of extracellular vesicles derived from CRFK cells. Front Vet Sci 2024; 11:1388438. [PMID: 39091390 PMCID: PMC11292801 DOI: 10.3389/fvets.2024.1388438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Coronavirus (CoV) has become a public health crisis that causes numerous illnesses in humans and certain animals. Studies have identified the small, lipid-bound structures called extracellular vesicles (EVs) as the mechanism through which viruses can enter host cells, spread, and evade the host's immune defenses. EVs are able to package and carry numerous viral compounds, including proteins, genetic substances, lipids, and receptor proteins. We proposed that the coronavirus could alter EV production and content, as well as influence EV biogenesis and composition in host cells. Methods In the current research, Crandell-Rees feline kidney (CRFK) cells were infected with feline coronavirus (FCoV) in an exosome-free media at a multiplicity of infection (MOI) of 2,500 infectious units (IFU) at 48 h and 72 h time points. Cell viability was analyzed and found to be significantly decreased by 9% (48 h) and 15% (72 h) due to FCoV infection. EVs were isolated by ultracentrifugation, and the surface morphology of isolated EVs was analyzed via Scanning Electron Microscope (SEM). Results NanoSight particle tracking analysis (NTA) confirmed that the mean particle sizes of control EVs were 131.9 nm and 126.6 nm, while FCoV infected-derived EVs were 143.4 nm and 120.9 nm at 48 and 72 h, respectively. Total DNA, RNA, and protein levels were determined in isolated EVs at both incubation time points; however, total protein was significantly increased at 48 h. Expression of specific protein markers such as TMPRSS2, ACE2, Alix, TSG101, CDs (29, 47, 63), TLRs (3, 6, 7), TNF-α, and others were altered in infection-derived EVs when compared to control-derived EVs after FCoV infection. Discussion Our findings suggested that FCoV infection could alter the EV production and composition in host cells, which affects the infection progression and disease evolution. One purpose of studying EVs in various animal coronaviruses that are in close contact with humans is to provide significant information about disease development, transmission, and adaptation. Hence, this study suggests that EVs could provide diagnostic and therapeutic applications in animal CoVs, and such understanding could provide information to prevent future coronavirus outbreaks.
Collapse
Affiliation(s)
| | - Rachana Pandit
- Microbiology Program, Alabama State University, Montgomery, AL, United States
| | | | | | - Qiana L. Matthews
- Microbiology Program, Alabama State University, Montgomery, AL, United States
- Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
6
|
Zuzzi-Krebitz AM, Buchta K, Bergmann M, Krentz D, Zwicklbauer K, Dorsch R, Wess G, Fischer A, Matiasek K, Hönl A, Fiedler S, Kolberg L, Hofmann-Lehmann R, Meli ML, Spiri AM, Helfer-Hungerbuehler AK, Felten S, Zablotski Y, Alberer M, von Both U, Hartmann K. Short Treatment of 42 Days with Oral GS-441524 Results in Equal Efficacy as the Recommended 84-Day Treatment in Cats Suffering from Feline Infectious Peritonitis with Effusion-A Prospective Randomized Controlled Study. Viruses 2024; 16:1144. [PMID: 39066306 PMCID: PMC11281457 DOI: 10.3390/v16071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
In the past, feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) was considered fatal. Today, highly efficient drugs, such as GS-441524, can lead to complete remission. The currently recommended treatment duration in the veterinary literature is 84 days. This prospective randomized controlled treatment study aimed to evaluate whether a shorter treatment duration of 42 days with oral GS-441524 obtained from a licensed pharmacy is equally effective compared to the 84-day regimen. Forty cats with FIP with effusion were prospectively included and randomized to receive 15 mg/kg of GS-441524 orally every 24h (q24h), for either 42 or 84 days. Cats were followed for 168 days after treatment initiation. With the exception of two cats that died during the treatment, 38 cats (19 in short, 19 in long treatment group) recovered with rapid improvement of clinical and laboratory parameters as well as a remarkable reduction in viral loads in blood and effusion. Orally administered GS-441524 given as a short treatment was highly effective in curing FIP without causing serious adverse effects. All cats that completed the short treatment course successfully were still in complete remission on day 168. Therefore, a shorter treatment duration of 42 days GS-441524 15 mg/kg can be considered equally effective.
Collapse
Affiliation(s)
- Anna-M. Zuzzi-Krebitz
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
| | - Katharina Buchta
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
| | - Michèle Bergmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
| | - Daniela Krentz
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
| | - Katharina Zwicklbauer
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
| | - Roswitha Dorsch
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
| | - Gerhard Wess
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
| | - Andrea Fischer
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
| | - Kaspar Matiasek
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.M.); (S.F.)
| | - Anne Hönl
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.M.); (S.F.)
| | - Sonja Fiedler
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.M.); (S.F.)
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (L.K.); (M.A.); (U.v.B.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.); (A.K.H.-H.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.); (A.K.H.-H.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.); (A.K.H.-H.)
| | - A. Katrin Helfer-Hungerbuehler
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.); (A.K.H.-H.)
| | - Sandra Felten
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Yury Zablotski
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (L.K.); (M.A.); (U.v.B.)
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (L.K.); (M.A.); (U.v.B.)
- German Center for Infection Research (DZIF), Partner Site Munich, 80337 Munich, Germany
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.B.); (M.B.); (D.K.); (K.Z.); (R.D.); (G.W.); (A.F.); (A.H.); (Y.Z.); (K.H.)
| |
Collapse
|
7
|
Zwicklbauer K, von la Roche D, Krentz D, Kolberg L, Alberer M, Zablotski Y, Hartmann K, von Both U, Härtle S. Adapting the SMART tube technology for flow cytometry in feline full blood samples. Front Vet Sci 2024; 11:1377414. [PMID: 38988976 PMCID: PMC11234156 DOI: 10.3389/fvets.2024.1377414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Flow cytometry of blood samples is a very valuable clinical and research tool to monitor the immune response in human patients. Furthermore, it has been successfully applied in cats, such as for infections with feline immune deficiency virus (FIV). However, if cells are not isolated and frozen, analysis of anticoagulated blood samples requires mostly prompt processing following blood collection, making later analysis of stored full blood samples obtained in clinical studies often impossible. The SMART Tube system (SMART TUBE Inc., California, United States; SMT) allows fixation and long-term preservation of whole blood samples at -80°C. However, this system has so far only been applied to human biological samples. In the present study, a new flow cytometry SMART Tube protocol adapted for feline whole blood samples was successfully established allowing quantification of T-helper cells, cytotoxic T-cells, B-cells, monocytes, and neutrophils up to 2 years post sampling. Results obtained from frozen stabilized and fresh blood samples were compared for validation purposes and correlated to differential blood counts from a conventional hematology analyzer. Clinical applicability of the new technique was verified by using samples from a treatment study for feline infectious peritonitis (FIP). Using the new SMT protocol on retained samples, it could be demonstrated that long-term storage of these SMT tubes is also possible. In summary, the newly adapted SMT protocol proved suitable for performing flow cytometry analysis on stored feline whole blood samples, thus opening up new avenues for veterinary research on a variety of aspects of clinical interest.
Collapse
Affiliation(s)
- Katharina Zwicklbauer
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | | | - Daniela Krentz
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Yury Zablotski
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, AG Immunology, LMU Munich, Planegg, Germany
| |
Collapse
|
8
|
Anderson TK, Hoferle PJ, Chojnacki KJ, Lee K, Coon J, Kirchdoerfer R. An alphacoronavirus polymerase structure reveals conserved replication factor functions. Nucleic Acids Res 2024; 52:5975-5986. [PMID: 38442273 PMCID: PMC11162792 DOI: 10.1093/nar/gkae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Coronaviruses are a diverse subfamily of viruses containing pathogens of humans and animals. This subfamily of viruses replicates their RNA genomes using a core polymerase complex composed of viral non-structural proteins: nsp7, nsp8 and nsp12. Most of our understanding of coronavirus molecular biology comes from betacoronaviruses like SARS-CoV and SARS-CoV-2, the latter of which is the causative agent of COVID-19. In contrast, members of the alphacoronavirus genus are relatively understudied despite their importance in human and animal health. Here we have used cryo-electron microscopy to determine structures of the alphacoronavirus porcine epidemic diarrhea virus (PEDV) core polymerase complex bound to RNA. One structure shows an unexpected nsp8 stoichiometry despite remaining bound to RNA. Biochemical analysis shows that the N-terminal extension of one nsp8 is not required for in vitro RNA synthesis for alpha- and betacoronaviruses. Our work demonstrates the importance of studying diverse coronaviruses in revealing aspects of coronavirus replication and identifying areas of conservation to be targeted by antiviral drugs.
Collapse
Affiliation(s)
- Thomas K Anderson
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter J Hoferle
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kennan J Chojnacki
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kenneth W Lee
- Biomolecular Chemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Biomolecular Chemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Robert N Kirchdoerfer
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Helfer-Hungerbuehler AK, Spiri AM, Meili T, Riond B, Krentz D, Zwicklbauer K, Buchta K, Zuzzi-Krebitz AM, Hartmann K, Hofmann-Lehmann R, Meli ML. Alpha-1-Acid Glycoprotein Quantification via Spatial Proximity Analyte Reagent Capture Luminescence Assay: Application as Diagnostic and Prognostic Marker in Serum and Effusions of Cats with Feline Infectious Peritonitis Undergoing GS-441524 Therapy. Viruses 2024; 16:791. [PMID: 38793672 PMCID: PMC11125897 DOI: 10.3390/v16050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Until recently, the diagnosis of feline infectious peritonitis (FIP) in cats usually led to euthanasia, but recent research has revealed that antiviral drugs, including the nucleoside analog GS-441524, have the potential to effectively cure FIP. Alpha-1-acid glycoprotein (AGP) has been suggested as a diagnostic marker for FIP. However, AGP quantification methods are not easily accessible. This study aimed to establish a Spatial Proximity Analyte Reagent Capture Luminescence (SPARCLTM) assay on the VetBio-1 analyzer to determine the AGP concentrations in feline serum and effusion samples. Linearity was found in serial dilutions between 1:2000 and 1:32,000; the intra-run and inter-run precision was <5% and <15%, respectively; and AGP was stable in serum stored for at least 8 days at room temperature, at 4 °C and at -20 °C. Cats with confirmed FIP had significantly higher serum AGP concentrations (median: 2954 µg/mL (range: 200-5861 µg/mL)) than those with other inflammatory diseases (median: 1734 µg/mL (305-3449 µg/mL)) and clinically healthy cats (median 235 µg/mL (range: 78-616 µg/mL); pKW < 0.0001). The AGP concentrations were significantly higher in the effusions from cats with FIP than in those from diseased cats without FIP (pMWU < 0.0001). The AGP concentrations in the serum of cats with FIP undergoing GS-441524 treatment showed a significant drop within the first seven days of treatment and reached normal levels after ~14 days. In conclusion, the VetBio-1 SPARCLTM assay offers a precise, fast and cost-effective method to measure the AGP concentrations in serum and effusion samples of feline patients. The monitoring of the AGP concentration throughout FIP treatment provides a valuable marker to evaluate the treatment's effectiveness and identify potential relapses at an early stage.
Collapse
Affiliation(s)
- A. Katrin Helfer-Hungerbuehler
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Theres Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Barbara Riond
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Daniela Krentz
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Katharina Zwicklbauer
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Katharina Buchta
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Anna-Maria Zuzzi-Krebitz
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| |
Collapse
|
10
|
Katayama M, Uemura Y, Katori D. Effect of Nucleic Acid Analog Administration on Fluctuations in the Albumin-to-Globulin Ratio in Cats with Feline Infectious Peritonitis. Animals (Basel) 2024; 14:1322. [PMID: 38731326 PMCID: PMC11083710 DOI: 10.3390/ani14091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND feline infectious peritonitis (FIP) is a fatal disease in cats classified as either effusive ('wet'), non-effusive ('dry'), or a mixture of both forms ('mixed'). The anti-FIP therapeutic effects of Mutian and molnupiravir, two drugs with a nucleic acid analog as an active ingredient, have been confirmed recently. METHODS Of the cats with FIP, we observed a total of 122 and 56 cases that achieved remission after the administration of Mutian and molnupiravir as routine treatments, respectively. Changes in clinical indicators suggested to be correlated with FIP remission (weight, hematocrit, and albumin-to-globulin ratio) before and after the administration of each drug and during follow-up observation were statistically compared for each FIP type. RESULTS In all three FIP types, the administration of either Mutian or molnupiravir resulted in statistically significant increases in these indicators. Furthermore, the effect of Mutian on improving the albumin-to-globulin ratio was not observed at all in wet FIP, as compared with that of molnupiravir, but statistically significant in mixed and dry (p < 0.02 and p < 0.003, respectively). The differences in albumin-to-globulin ratio were all due to those of circulating globulin levels. CONCLUSIONS These results indicate that slight inflammatory responses might be elicited continuously by a residual virus that persisted through molnupiravir treatments.
Collapse
Affiliation(s)
- Masato Katayama
- Bloom Animal Hospital, Kajiyama 1-10-32, Tsurumi, Yokohama City 230-0072, Japan;
| | - Yukina Uemura
- Bloom Animal Hospital, Kajiyama 1-10-32, Tsurumi, Yokohama City 230-0072, Japan;
| | - Daichi Katori
- Katori Animal Hospital, Migawa-cho 2563-16, Mito City 310-0913, Japan;
| |
Collapse
|
11
|
Hu T, Zhang H, Zhang X, Hong X, Zhang T. Prevalence and Risk Factors Associated with Feline Infectious Peritonitis (FIP) in Mainland China between 2008 and 2023: A Systematic Review and Meta-Analysis. Animals (Basel) 2024; 14:1220. [PMID: 38672367 PMCID: PMC11047601 DOI: 10.3390/ani14081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
To evaluate the overall prevalence of FIP infection in cats in mainland China and associated risk factors, studies on the prevalence of FIP conducted from 1 January 2008 to 20 December 2023 were retrieved from five databases-CNKI, Wanfang, PubMed, Web of Science, and ScienceDirect-and comprehensively reviewed. The 21 studies selected, with a total of 181,014 samples, underwent a rigorous meta-analysis after quality assessment. The results revealed a 2% prevalence of FIP (95% CI: 1-2%) through the random-effects model, showing considerable heterogeneity (I2 = 95.2%). The subsequent subgroup analysis revealed that the age and gender of cats are significant risk factors for FIP infection in mainland China. In order to effectively reduce and control the prevalence of FIP on the Chinese mainland, we suggest improving the immunity of cats, with special attention given to health management in kittens and intact cats, and continuously monitoring FIPV.
Collapse
Affiliation(s)
- Tingyu Hu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (T.H.); (X.Z.); (X.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | | | - Xueping Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (T.H.); (X.Z.); (X.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xingping Hong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (T.H.); (X.Z.); (X.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tangjie Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (T.H.); (X.Z.); (X.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
12
|
Murphy BG, Castillo D, Neely NE, Kol A, Brostoff T, Grant CK, Reagan KL. Serologic, Virologic and Pathologic Features of Cats with Naturally Occurring Feline Infectious Peritonitis Enrolled in Antiviral Clinical Trials. Viruses 2024; 16:462. [PMID: 38543827 PMCID: PMC10975727 DOI: 10.3390/v16030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a multisystemic, generally lethal immuno-inflammatory disease of domestic cats caused by an infection with a genetic variant of feline coronavirus, referred to as the FIP virus (FIPV). We leveraged data from four different antiviral clinical trials performed at the University of California, Davis. Collectively, a total of 60 client-owned domestic cats, each with a confirmed diagnosis of naturally occurring FIP, were treated with a variety of antiviral compounds. The tested therapies included the antiviral compounds GS-441524, remdesivir, molnupiravir and allogeneic feline mesenchymal stem/stroma cell transfusions. Four client-owned cats with FIP did not meet the inclusion criteria for the trials and were not treated with antiviral therapies; these cats were included in the data set as untreated FIP control cats. ELISA and Western blot assays were performed using feline serum/plasma or ascites effusions obtained from a subset of the FIP cats. Normalized tissue/effusion viral loads were determined in 34 cats by a quantitative RT-PCR of nucleic acids isolated from either effusions or abdominal lymph node tissue. Twenty-one cats were PCR "serotyped" (genotyped) and had the S1/S2 region of the coronaviral spike gene amplified, cloned and sequenced from effusions or abdominal lymph node tissue. In total, 3 untreated control cats and 14 (23.3%) of the 60 antiviral-treated cats died or were euthanized during (13) or after the completion of (1) antiviral treatment. Of these 17 cats, 13 had complete necropsies performed (10 cats treated with antivirals and 3 untreated control cats). We found that anticoronaviral serologic responses were persistent and robust throughout the treatment period, primarily the IgG isotype, and focused on the viral structural Nucleocapsid and Membrane proteins. Coronavirus serologic patterns were similar for the effusions and serum/plasma of cats with FIP and in cats entering remission or that died. Viral RNA was readily detectable in the majority of the cats in either abdominal lymph node tissue or ascites effusions, and all of the viral isolates were determined to be serotype I FIPV. Viral nucleic acids in cats treated with antiviral compounds became undetectable in ascites or abdominal lymph node tissue by 11 days post-treatment using a sensitive quantitative RT-PCR assay. The most common pathologic lesions identified in the necropsied cats were hepatitis, abdominal effusion (ascites), serositis, pancreatitis, lymphadenitis, icterus and perivasculitis. In cats treated with antiviral compounds, gross and histological lesions characteristic of FIP persisted for several weeks, while the viral antigen became progressively less detectable.
Collapse
Affiliation(s)
- Brian G. Murphy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Diego Castillo
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - N E Neely
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Terza Brostoff
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Chris K. Grant
- Custom Monoclonals International, 813 Harbor Boulevard, West Sacramento, CA 95691, USA
| | - Krystle L. Reagan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Allinder M, Tynan B, Martin C, Furbish A, Austin G, Bartges J, Lourenço BN. Uroliths composed of antiviral compound GS-441524 in 2 cats undergoing treatment for feline infectious peritonitis. J Vet Intern Med 2024; 38:370-374. [PMID: 38032049 PMCID: PMC10800210 DOI: 10.1111/jvim.16954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Feline infectious peritonitis (FIP) historically has been a fatal disease in cats. Recent unlicensed use of antiviral medication has been shown to markedly improve survival of this infection. An 8-month-old female spayed domestic short-haired cat undergoing treatment for presumptive FIP with the antiviral nucleoside analog GS-441524 developed acute progressive azotemia. Abdominal ultrasound examination identified multifocal urolithiasis including renal, ureteral, and cystic calculi. Unilateral ureteral obstruction progressed to suspected bilateral ureteral obstruction and subcutaneous ureteral bypass (SUB) was performed along with urolith removal and submission for analysis. A 2-year-old male neutered domestic medium-haired cat undergoing treatment for confirmed FIP with GS-441524 developed dysuria (weak urine stream, urinary incontinence, and difficulty expressing the urinary bladder). This cat also was diagnosed sonographically with multifocal urolithiasis requiring temporary tube cystostomy after cystotomy and urolith removal. In both cases, initial urolith analysis showed unidentified material. Additional testing confirmed the calculi in both cats to be 98% consistent with GS-441524. Additional clinical studies are required to determine best screening practices for cats presented for urolithiasis during treatment with GS-441524.
Collapse
Affiliation(s)
- Marissa Allinder
- Clinical Veterinary PharmacyCharleston Veterinary Referral CenterCharlestonSouth CarolinaUSA
| | - Beth Tynan
- Critical CareCharleston Veterinary Referral CenterCharlestonSouth CarolinaUSA
| | - Cara Martin
- Small Animal Medicine and Surgery, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Amelia Furbish
- Dept. of Drug Discovery and Biomedical Sciences, College of PharmacyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | | | - Joe Bartges
- Small Animal Medicine and Surgery, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Bianca N. Lourenço
- Small Animal Medicine and Surgery, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
14
|
Müller TR, Penninck DG, Webster CRL, Conrado FO. Abdominal ultrasonographic findings of cats with feline infectious peritonitis: an update. J Feline Med Surg 2023; 25:1098612X231216000. [PMID: 38095890 PMCID: PMC10811767 DOI: 10.1177/1098612x231216000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVES The aim of this study was to describe the abdominal ultrasonographic findings in cats with confirmed or presumed feline infectious peritonitis (FIP). METHODS This was a retrospective study performed in an academic veterinary hospital. The diagnosis of FIP was reached on review of history, signalment, clinical presentation, complete blood count, biochemistry panel, peritoneal fluid analysis, cytology and/or histopathology results from abnormal organs, and/or molecular testing (immunohistochemical or FIP coronavirus [FCoV] RT-PCR). Cats with confirmed FIP by molecular testing or with a highly suspicious diagnosis of FIP were included. Abdominal ultrasound examination findings were reviewed. RESULTS In total, 25 cats were included. Common clinical signs/pathology findings included hyperglobulinemia (96%), anorexia/hyporexia (80%) and lethargy (56%). Abdominal ultrasound findings included effusion in 88% and lymphadenopathy in 80%. Hepatic changes were noted in 80%, the most common being hepatomegaly (58%) and a hypoechoic liver (48%). Intestinal changes were noted in 68% of cats, characterized by asymmetric wall thickening and/or loss of wall layering, with 52% being ileocecocolic junction and/or colonic in location. Splenic changes were present in 36% of cats, including splenomegaly, mottled parenchyma and hypoechoic nodules. Renal changes were present in 32%, encompassing a hypoechoic subcapsular rim and/or cortical nodules. Mesenteric and peritoneal abnormalities were seen in 28% and 16% of cats, respectively. Most cats (92%) had two or more locations of abdominal abnormalities on ultrasound. CONCLUSIONS AND RELEVANCE The present study documents a wider range and distribution of ultrasonographic lesions in cats with FIP than previously reported. The presence of effusion and lymph node, hepatic and/or gastrointestinal tract changes were the most common findings, and most of the cats had a combination of two or more abdominal abnormalities.
Collapse
Affiliation(s)
- Thiago R Müller
- Department of Clinical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Dominique G Penninck
- Department of Clinical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Cynthia RL Webster
- Department of Clinical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Francisco O Conrado
- Department of Comparative Pathobiology, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| |
Collapse
|
15
|
Chen D, López‐Pérez AM, Vernau KM, Maggs DJ, Kim S, Foley J. Prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and feline enteric coronavirus (FECV) in shelter-housed cats in the Central Valley of California, USA. Vet Rec Open 2023; 10:e73. [PMID: 37868705 PMCID: PMC10589393 DOI: 10.1002/vro2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background Non-human animals are natural hosts for the virus causing COVID-19 (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) and a diversity of species appear susceptible to infection. Cats are of particular concern because of their close affiliation with humans and susceptibility to infection. Cats also harbour feline enteric coronavirus (FECV). Our objectives were to document the prevalence of SARS-CoV-2 and FECV in feline populations with high turnover and movement among households in the Central Valley of California, USA. Methods A cross-sectional study of 128 shelter and foster cats and kittens in the Central Valley of California was performed from July to December 2020. PCR was performed on rectal and oropharyngeal samples to detect SARS-CoV-2 RNA and on rectal samples to detect FECV RNA. Results Among 163 rectal and oropharyngeal fluid samples gathered from sheltered and fostered cats and kittens in central California, SARS-CoV-2 nucleic acids were not detected from any cat or kitten. In contrast, FECV nucleic acids were detected in 18% of shelter-housed cats; 83% of these positive samples were collected from cats housed in adjacent cages. Conclusions These data may be helpful when considering the allocation of resources to minimise the harm of FECV and SARS-CoV-2 in household pets and shelter environments.
Collapse
Affiliation(s)
- Daniel Chen
- Department of Medicine and EpidemiologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Andrés M. López‐Pérez
- Department of Medicine and EpidemiologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
- Red de Biología y Conservación de VertebradosInstituto de EcologíaXalapaMéxico
| | - Karen M. Vernau
- Department of Surgical and Radiological SciencesSchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - David J. Maggs
- Department of Surgical and Radiological SciencesSchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Soohyun Kim
- William R. Pritchard Veterinary Medical Teaching HospitalSchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Janet Foley
- Department of Medicine and EpidemiologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
16
|
Krentz D, Bergmann M, Felten S, Hartmann K. [Options for treatment of feline infectious peritonitis - previously and today]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2023; 51:351-360.. [PMID: 37956666 DOI: 10.1055/a-2147-3999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Feline infectious peritonitis (FIP) is one of the most common infectious diseases in cats that is fatal when untreated. So far, there is no legally available effective treatment in Germany. Treatment options include only symptomatic treatment (e. g. glucocorticoids, propentofylline), immunomodulatory approaches (e. g. interferons, polyprenyl immunostimulant), and antiviral chemotherapy with protease inhibitors (e. g. GC376) or nucleoside analogues (e. g. GS-441524, remdesivir). Symptomatic treatment does not cure FIP but may lead to a short-term improvement of clinical signs in a subset of cats. Immunomodulatory treatment has also not shown to be very promising. In contrary, the antiviral compounds GS-441524 and GC376 exhibited significant efficacy in several studies and their use saved the lives of many cats suffering from FIP. However, both agents are currently not licensed and thus cannot be legally administered by veterinarians in Germany. Legally, cats may only be legally treated with GS-441524 in a few countries (e.g. Great Britain and Australia). In other countries, GS-441524 is imported by cat owners via the black market and administered on their own. This article provides an overview of the available treatment options and an outlook on the legal use of effective antiviral drugs.
Collapse
Affiliation(s)
- Daniela Krentz
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Michèle Bergmann
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Sandra Felten
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Katrin Hartmann
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| |
Collapse
|
17
|
Sase O. Molnupiravir treatment of 18 cats with feline infectious peritonitis: A case series. J Vet Intern Med 2023; 37:1876-1880. [PMID: 37551843 PMCID: PMC10472991 DOI: 10.1111/jvim.16832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Feline infectious peritonitis (FIP) is a viral disease in cats, caused by certain strains of coronavirus and has a high case fatality rate. OBJECTIVE This case series reports the outcomes of treatment of cats with FIP using molnupiravir. ANIMALS Eighteen cats diagnosed with FIP at the You-Me Animal Clinic, Sakura-shi, Japan between January and August 2022, and whose owners gave informed consent to this experimental treatment. METHODS For this prospective observational study, molnupiravir tablets were compounded in-house at the You-Me Animal Clinic. Owners administered 10-20 mg/kg PO twice daily. Standard treatment duration was 84 days. RESULTS Among 18 cats, 13 cats had effusive FIP and 5 had noneffusive FIP. Three cats had neurological or ocular signs of FIP before treatment. Four cats, all with effusive FIP, died or were euthanized within 7 days of starting treatment. The remaining 14 cats completed treatment and remained in remission at the time of writing (139-206 days after starting treatment). Elevated serum alanine transaminase (ALT) activity was found in 3 cats, all at Days 7-9, and all recovered without management. Two cats with jaundice were hospitalized, 1 during treatment (Day 37) and 1 with severe anemia at the start of treatment. CONCLUSIONS AND CLINICAL IMPORTANCE This case series suggests that molnupiravir might be an effective and safe treatment for domestic cats with FIP at a dose of 10-20 mg/kg twice daily.
Collapse
|
18
|
Taylor SS, Coggins S, Barker EN, Gunn-Moore D, Jeevaratnam K, Norris JM, Hughes D, Stacey E, MacFarlane L, O'Brien C, Korman R, McLauchlan G, Salord Torres X, Taylor A, Bongers J, Espada Castro L, Foreman M, McMurrough J, Thomas B, Royaux E, Calvo Saiz I, Bertoldi G, Harlos C, Work M, Prior C, Sorrell S, Malik R, Tasker S. Retrospective study and outcome of 307 cats with feline infectious peritonitis treated with legally sourced veterinary compounded preparations of remdesivir and GS-441524 (2020-2022). J Feline Med Surg 2023; 25:1098612X231194460. [PMID: 37732386 PMCID: PMC10812036 DOI: 10.1177/1098612x231194460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Feline infectious peritonitis (FIP) is a serious disease that arises due to feline coronavirus infection. The nucleoside analogues remdesivir and GS-441524 can be effective in its treatment, but most studies have used unregulated products of unknown composition. The aim of the present study was to describe the treatment of FIP using legally sourced veterinary-prescribed regulated veterinary compounded products containing known amounts of remdesivir (injectable) or GS-441524 (oral tablets). METHODS Cats were recruited via email advice services, product sales contacts and study publicity. Cats were excluded if they were deemed unlikely to have FIP, were not treated exclusively with the veterinary compounded products, or if there was a lack of cat and/or treatment (including response) data. Extensive cat and treatment data were collected. RESULTS Among the 307 cats recruited, the predominant type of FIP was most commonly abdominal effusive (49.5%) and then neurological (14.3%). Three treatment protocols were used; remdesivir alone (33.9%), remdesivir followed by GS-441524 (55.7%) and GS-441524 alone (10.4%). The median (range) initial treatment period duration and longest follow-up time point after starting treatment were 84 (1-330) days and 248 (1-814) days, respectively. The most common side effect was injection pain (in 47.8% of those given subcutaneous remdesivir). Of the 307 cats, 33 (10.8%) relapsed, 15 (45.5%) during and 18 (54.5%) after the initial treatment period. At the longest follow-up time point after completion of the initial treatment period, 84.4% of cats were alive. The cats achieving a complete response within 30 days of starting treatment were significantly more likely to be alive at the end of the initial treatment period than those cats that did not. CONCLUSIONS AND RELEVANCE Legally sourced remdesivir and GS-441524 products, either alone or used sequentially, were very effective in the treatment of FIP in this group of cats. Variable protocols precluded statistical comparison of treatment regimens.
Collapse
Affiliation(s)
- Samantha S Taylor
- International Society of Feline Medicine, Tisbury, UK
- Linnaeus Veterinary Limited, Shirley, UK
- University of Surrey, Guildford, UK
| | | | - Emi N Barker
- Langford Vets, University of Bristol, Langford, UK
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | | | | | - David Hughes
- Concord Veterinary Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | | - Aimee Taylor
- Langford Vets, University of Bristol, Langford, UK
| | | | | | | | | | | | | | | | | | | | - Megan Work
- Willows Veterinary Centre and Referral Service, Shirley, UK
| | - Cameron Prior
- Willows Veterinary Centre and Referral Service, Shirley, UK
| | | | | | - Séverine Tasker
- Linnaeus Veterinary Limited, Shirley, UK
- Bristol Veterinary School, University of Bristol, Langford, UK
| |
Collapse
|
19
|
Green J, Syme H, Tayler S. Thirty-two cats with effusive or non-effusive feline infectious peritonitis treated with a combination of remdesivir and GS-441524. J Vet Intern Med 2023; 37:1784-1793. [PMID: 37403259 PMCID: PMC10472986 DOI: 10.1111/jvim.16804] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND GS-441524 has been successfully used to treat feline infectious peritonitis (FIP) in cats. However, the use of its prodrug, remdesivir, in combination with a PO GS-441524 containing product for the treatment of FIP has not yet been described. OBJECTIVES Describe treatment protocols, response to treatment and outcomes in cats with FIP treated with a combination of PO GS-441524 and injectable remdesivir. ANIMALS Thirty-two client-owned cats diagnosed with effusive or non-effusive FIP including those with ocular and neurological involvement. METHODS Cats diagnosed with FIP at a single university hospital between August 2021 and July 2022 were included. Variables were recorded from time of diagnosis, and subsequent follow-up information was obtained from the records of referring veterinarians. All surviving cats were observed for the entire 12-week treatment period. RESULTS Cats received treatment with different combinations of IV remdesivir, SC remdesivir, and PO GS-441524 at a median (range) dosage of 15 (10-20) mg/kg. Clinical response to treatment was observed in 28 of 32 cats (87.5%) in a median (range) of 2 (1-5) days. Twenty-six of 32 cats (81.3%) were alive and in clinical and biochemical remission at the end of the 12-week treatment period. Six of 32 cats (18.8%) died or were euthanized during treatment with 4 of the 6 cats (66%) dying within 3 days of starting treatment. CONCLUSIONS We describe the effective use of injectable remdesivir and PO GS-441524 for the treatment of FIP in cats. Success occurred using different treatment protocols and with different presentations of FIP including cats with ocular and neurological involvement.
Collapse
|
20
|
Coggins SJ, Norris JM, Malik R, Govendir M, Hall EJ, Kimble B, Thompson MF. Outcomes of treatment of cats with feline infectious peritonitis using parenterally administered remdesivir, with or without transition to orally administered GS-441524. J Vet Intern Med 2023; 37:1772-1783. [PMID: 37439383 PMCID: PMC10473006 DOI: 10.1111/jvim.16803] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Nucleoside analog GS-441524 is effective in treating cats with feline infectious peritonitis (FIP). Investigation into the use of parent nucleotide analog remdesivir (GS-5734) is needed. OBJECTIVES To assess efficacy and tolerability of remdesivir with or without transition to GS-441524 in cats with FIP and document clinical and clinicopathologic progression over 6 months. ANIMALS Twenty-eight client-owned cats with FIP. METHODS Cats were prospectively recruited between May 2021 and May 2022. An induction dosage of remdesivir 10 to 15 mg/kg intravenously or subcutaneously q24h was utilized for 4 doses, with a maintenance dosage of remdesivir (6-15 mg/kg SC) or GS-441524 (10-15 mg/kg per os) every 24 hours continued for at least 84 days. Laboratory testing, veterinary, and owner assessments were recorded. RESULTS Twenty-four cats survived to 6 months (86%). Three cats died within 48 hours. Excluding these, survival from 48 hours to 6 months was 96% (24/25). Remission was achieved by day 84 in 56% (14/25). Three cats required secondary treatment for re-emergent FIP. Remission was achieved in all 3 after higher dosing (15-20 mg/kg). Adverse reactions were occasional site discomfort and skin irritation with remdesivir injection. Markers of treatment success included resolution of pyrexia, effusions, and presenting signs of FIP in the first half of treatment and normalization of globulin concentration, and continued body weight gains in the latter half of the treatment period. CONCLUSIONS AND CLINICAL IMPORTANCE Parenteral administration of remdesivir and oral administration of GS-441524 are effective and well-tolerated treatments for FIP. Early emphasis on clinical, and later emphasis on clinicopathologic response, appears prudent when monitoring treatment efficacy.
Collapse
Affiliation(s)
- Sally J. Coggins
- Sydney School of Veterinary Science, The University of SydneySydneyNew South WalesAustralia
| | - Jacqui M. Norris
- Sydney School of Veterinary Science, The University of SydneySydneyNew South WalesAustralia
| | - Richard Malik
- Centre for Veterinary Education, The University of SydneyNSWAustralia
- Animal and Veterinary Science, Charles Sturt UniversityNSWAustralia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of SydneySydneyNew South WalesAustralia
| | - Evelyn J. Hall
- Sydney School of Veterinary Science, The University of SydneySydneyNew South WalesAustralia
| | - Benjamin Kimble
- Sydney School of Veterinary Science, The University of SydneySydneyNew South WalesAustralia
| | - Mary F. Thompson
- Sydney School of Veterinary Science, The University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
21
|
Tasker S, Addie DD, Egberink H, Hofmann-Lehmann R, Hosie MJ, Truyen U, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Thiry E, Möstl K, Hartmann K. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses 2023; 15:1847. [PMID: 37766254 PMCID: PMC10535984 DOI: 10.3390/v15091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.
Collapse
Affiliation(s)
- Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
22
|
Zwicklbauer K, Krentz D, Bergmann M, Felten S, Dorsch R, Fischer A, Hofmann-Lehmann R, Meli ML, Spiri AM, Alberer M, Kolberg L, Matiasek K, Zablotski Y, von Both U, Hartmann K. Long-term follow-up of cats in complete remission after treatment of feline infectious peritonitis with oral GS-441524. J Feline Med Surg 2023; 25:1098612X231183250. [PMID: 37548535 PMCID: PMC10811998 DOI: 10.1177/1098612x231183250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
OBJECTIVES Feline infectious peritonitis (FIP), a common disease in cats caused by feline coronavirus (FCoV), is usually fatal once clinical signs appear. Successful treatment of FIP with oral GS-441524 for 84 days was demonstrated recently by this research group. The aim of this study was to evaluate the long-term outcome in these cats. METHODS A total of 18 successfully treated cats were followed for up to 1 year after treatment initiation (9 months after completion of the antiviral treatment). Follow-up examinations were performed at 12-week intervals, including physical examination, haematology, serum biochemistry, abdominal and thoracic ultrasound, FCoV ribonucleic acid (RNA) loads in blood and faeces by reverse transciptase-quantitative PCR and anti-FCoV antibody titres by indirect immunofluorescence assay. RESULTS Follow-up data were available from 18 cats in week 24, from 15 cats in week 36 and from 14 cats in week 48 (after the start of treatment), respectively. Laboratory parameters remained stable after the end of the treatment, with undetectable blood viral loads (in all but one cat on one occasion). Recurrence of faecal FCoV shedding was detected in five cats. In four cats, an intermediate short-term rise in anti-FCoV antibody titres was detected. In total, 12 cats showed abdominal lymphadenomegaly during the follow-up period; four of them continuously during the treatment and follow-up period. Two cats developed mild neurological signs, compatible with feline hyperaesthesia syndrome, in weeks 36 and 48, respectively; however, FCoV RNA remained undetectable in blood and faeces, and no increase in anti-FCoV antibody titres was observed in these two cats, and the signs resolved. CONCLUSIONS AND RELEVANCE Treatment with GS-441524 proved to be effective against FIP in both the short term as well as the long term, with no confirmed relapse during the 1-year follow-up period. Whether delayed neurological signs could be a long-term adverse effect of the treatment or associated with a 'long FIP syndrome' needs to be further evaluated.
Collapse
Affiliation(s)
- Katharina Zwicklbauer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Andrea M Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Yury Zablotski
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
23
|
Degenhardt L, Dorsch R, Hartmann K, Dörfelt R. Serum amyloid A in cats with renal azotemia. Vet World 2023; 16:1673-1681. [PMID: 37766698 PMCID: PMC10521177 DOI: 10.14202/vetworld.2023.1673-1681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim The concentration of the feline acute-phase protein serum amyloid A (SAA) increases in cats with acute inflammatory diseases. However, it is unclear whether SAA concentration increases in cats with azotemic kidney disease or whether it can aid in differentiating acute kidney injury (AKI) from chronic kidney disease (CKD). Similarly, whether SAA concentration can be used as a prognostic marker is also unclear. Therefore, this study aimed to evaluate the SAA concentrations in cats with azotemic kidney disease and determine whether SAA concentrations can be used to differentiate between AKI, CKD, and "acute on CKD" (AoC). In addition, we evaluated whether SAA concentration could serve as a prognostic parameter. Moreover, we determined the correlations between SAA concentration and temperature; creatinine, urea, and albumin concentrations; leukocyte count; and urine protein/creatinine (UP/C). Materials and Methods Forty-eight client-owned azotemic cats (creatinine >250 μmol/L) were included in this prospective study. Cats with pre- and post-renal azotemia were excluded from the study. The causes of azotemia were differentiated into AKI, CKD, and AoC. The SAA concentrations were analyzed through turbidimetric immunoassay at the time of admission. Data were analyzed using the Mann-Whitney U, Kruskal-Wallis, Chi-Square, Fisher's exact, and Spearman correlation tests. p ≤ 0.05 was considered statistically significant. Results Serum amyloid A concentration increased in 5/12 cats with AKI, 7/22 cats with CKD, and 9/14 cats with AoC (p = 0.234). The median SAA concentration in cats with AKI, CKD, and AoC whose SAA concentration was ≥5 mg/L was 174 mg/L (10-281 mg/L), 125 mg/L (6-269 mg/L), and 143 mg/L (7-316 mg/L), respectively (p = 0.697), with no significant differences observed between the groups. The median SAA concentration did not differ significantly between survivors (125 mg/L, 10-316 mg/L) and non-survivors (149 mg/L, 6-281 mg/L; p = 0.915) with SAA concentration ≥5 mg/L. Conclusion Serum amyloid A concentration increased in 44% of the cats with azotemia. However, it cannot be used to differentiate AKI from CKD or as a prognostic marker. Serum amyloid A concentration was correlated with neutrophil count, albumin concentration, and UP/C, and the presence of comorbidities may influence SAA concentration.
Collapse
Affiliation(s)
- Laura Degenhardt
- LMU Small Animal Clinic, Center for Clinical Veterinary Medicine, LMU München, Veterinärstraße 13, 80539, Munich, Germany
| | - Roswitha Dorsch
- LMU Small Animal Clinic, Center for Clinical Veterinary Medicine, LMU München, Veterinärstraße 13, 80539, Munich, Germany
| | - Katrin Hartmann
- LMU Small Animal Clinic, Center for Clinical Veterinary Medicine, LMU München, Veterinärstraße 13, 80539, Munich, Germany
| | - René Dörfelt
- LMU Small Animal Clinic, Center for Clinical Veterinary Medicine, LMU München, Veterinärstraße 13, 80539, Munich, Germany
| |
Collapse
|
24
|
Cosaro E, Pires J, Castillo D, Murphy BG, Reagan KL. Efficacy of Oral Remdesivir Compared to GS-441524 for Treatment of Cats with Naturally Occurring Effusive Feline Infectious Peritonitis: A Blinded, Non-Inferiority Study. Viruses 2023; 15:1680. [PMID: 37632022 PMCID: PMC10458979 DOI: 10.3390/v15081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Nucleoside analogs GS-441524 and remdesivir (GS-5734) are effective in treating cats with feline infectious peritonitis (FIP). However, no studies have compared the efficacy between antiviral medications. The objective of this study was to evaluate the efficacy of orally administered GS-442514 (12.5-15 mg/kg) compared to orally administered remdesivir (25-30 mg/kg) in a double-blinded non-inferiority trial. Eighteen cats with effusive FIP were prospectively enrolled and randomly assigned to receive either GS-442514 or remdesivir. Cats were treated daily for 12 weeks and evaluated at week 0, 12, and 16. Survival and disease remission at week 16 were compared between groups. Five of 9 (55%) cats treated GS-441524 and 7/9 (77%) cats treated with remdesivir survived, with no difference in survival rate (p = 0.2). Remdesivir fulfilled the criteria for non-inferiority with a difference in survival of 22% (90% CI; -13.5-57.5%). Three of the 18 cats died within 48 h of enrollment. Excluding these cats, 5/6 (83%) of the cats treated with GS-441524 and 7/9 (77%) of the cats treated with remdesivir survived. These findings suggest that both orally administered GS-441524 and remdesivir are safe and effective anti-viral medications for the treatment of effusive FIP. Further optimization of the first 48 h of treatment is needed.
Collapse
Affiliation(s)
- Emma Cosaro
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jully Pires
- Veterinary Center for Clinical Trials, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (B.G.M.)
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (B.G.M.)
| | - Krystle L. Reagan
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| |
Collapse
|
25
|
Addie DD, Bellini F, Covell-Ritchie J, Crowe B, Curran S, Fosbery M, Hills S, Johnson E, Johnson C, Lloyd S, Jarrett O. Stopping Feline Coronavirus Shedding Prevented Feline Infectious Peritonitis. Viruses 2023; 15:v15040818. [PMID: 37112799 PMCID: PMC10146023 DOI: 10.3390/v15040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
After an incubation period of weeks to months, up to 14% of cats infected with feline coronavirus (FCoV) develop feline infectious peritonitis (FIP): a potentially lethal pyogranulomatous perivasculitis. The aim of this study was to find out if stopping FCoV faecal shedding with antivirals prevents FIP. Guardians of cats from which FCoV had been eliminated at least 6 months earlier were contacted to find out the outcome of their cats; 27 households were identified containing 147 cats. Thirteen cats were treated for FIP, 109 cats shed FCoV and 25 did not; a 4-7-day course of oral GS-441524 antiviral stopped faecal FCoV shedding. Follow-up was from 6 months to 3.5 years; 11 of 147 cats died, but none developed FIP. A previous field study of 820 FCoV-exposed cats was used as a retrospective control group; 37 of 820 cats developed FIP. The difference was statistically highly significant (p = 0.0062). Cats from eight households recovered from chronic FCoV enteropathy. Conclusions: the early treatment of FCoV-infected cats with oral antivirals prevented FIP. Nevertheless, should FCoV be re-introduced into a household, then FIP can result. Further work is required to establish the role of FCoV in the aetiology of feline inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | | | - Ben Crowe
- Independent Researcher, Ben Crowe, Uxbridge, UK
| | - Sheryl Curran
- Independent Researcher, Sheryl Curran, Baker Street Ragdolls, Liverpool, UK
| | | | - Stuart Hills
- Stuart Hills, Ark Veterinary Centre, Lockerbie, UK
| | - Eric Johnson
- Independent Researcher, Eric Johnson, Firestone, CO, USA
| | - Carrie Johnson
- Independent Researcher, Carrie Johnson, Firestone, CO, USA
| | | | | |
Collapse
|
26
|
Anderson TK, Hoferle PJ, Lee KW, Coon JJ, Kirchdoerfer RN. An alphacoronavirus polymerase structure reveals conserved co-factor functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532841. [PMID: 36993498 PMCID: PMC10055115 DOI: 10.1101/2023.03.15.532841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Coronaviruses are a diverse subfamily of viruses containing pathogens of humans and animals. This subfamily of viruses replicates their RNA genomes using a core polymerase complex composed of viral non-structural proteins: nsp7, nsp8 and nsp12. Most of our understanding of coronavirus molecular biology comes from the betacoronaviruses like SARS-CoV and SARS-CoV-2, the latter of which is the causative agent of COVID-19. In contrast, members of the alphacoronavirus genus are relatively understudied despite their importance in human and animal health. Here we have used cryo-electron microscopy to determine the structure of the alphacoronavirus porcine epidemic diarrhea virus (PEDV) core polymerase complex bound to RNA. Our structure shows an unexpected nsp8 stoichiometry in comparison to other published coronavirus polymerase structures. Biochemical analysis shows that the N-terminal extension of one nsp8 is not required for in vitro RNA synthesis for alpha and betacoronaviruses as previously hypothesized. Our work shows the importance of studying diverse coronaviruses to reveal aspects of coronavirus replication while also identifying areas of conservation to be targeted by antiviral drugs.
Collapse
Affiliation(s)
- Thomas K. Anderson
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706
| | - Peter J. Hoferle
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706
| | - Kenneth W. Lee
- Biomolecular Chemistry Department, University of Wisconsin-Madison, Madison, WI 53706
| | - Joshua J. Coon
- Biomolecular Chemistry Department, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Robert N. Kirchdoerfer
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
27
|
Prognostic Prediction for Therapeutic Effects of Mutian on 324 Client-Owned Cats with Feline Infectious Peritonitis Based on Clinical Laboratory Indicators and Physical Signs. Vet Sci 2023; 10:vetsci10020136. [PMID: 36851440 PMCID: PMC9964428 DOI: 10.3390/vetsci10020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease classified as either effusive, non-effusive ('dry'), or a mixture ('mixed') of the forms of FIP, with mixed showing signs of both effusive and dry. To determine whether the therapeutic effect of Mutian on dry and mixed FIP can be predicted using clinical indicators before starting treatment, we entered 161 cats with mixed FIP and 163 cats with dry FIP into this study. Physical assessments, the reverse transcriptase-PCR detection of viral genes, and clinical laboratory tests (hematocrit, albumin/globulin ratio, serum amyloid A, α1-acid glycoprotein, and total bilirubin) were performed before Mutian was administered. These indicators were compared between the FIP groups that survived after receiving Mutian for 84 days and those that died before the completion of treatment. Significant differences in body temperature, appetite, and activity scores were confirmed between the surviving and non-surviving groups. The therapeutic effect was insufficient when total bilirubin levels increased in cats with the mixed form. In both of the FIP types, therapeutic effects were difficult to obtain when neurological clinical signs were observed. The therapeutic effects of Mutian on the cats with dry and mixed FIP can be predicted based on pre-treatment body temperature, appetite scores, and activity scores, as well as the presence of neurological signs.
Collapse
|
28
|
Rossi G. Acute phase proteins in cats: Diagnostic and prognostic role, future directions, and analytical challenges. Vet Clin Pathol 2023; 52 Suppl 1:37-49. [PMID: 36740231 DOI: 10.1111/vcp.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
While clinical studies on acute phase proteins (APPs) have significantly increased in the last decade, and most commercial labs are now offering major APPs in their biochemical profiles, APP testing has not been widely adopted by veterinary clinical pathologists and veterinarians. Measurement of APP concentration is a useful marker for detecting the presence or absence of inflammation in cats with various diseases. APPs can also be reliably measured in different biological fluids (eg, effusions and urine) to improve their diagnostic utility. Measurement of APPs can be extremely beneficial in cats with feline infectious peritonitis (FIP) to discriminate between FIP and non-FIP cats with similar clinical presentations. Additional benefits come from multiple and sequential measurements of APPs, particularly in the assessment of therapeutic efficacy. APPs are more sensitive than WBC counts for early detection of inflammation and to demonstrate an early remission or recurrence of the diseases. Given the potential utility of APPs, more studies are warranted, with a particular focus on the applications of APPs to guide the length of antimicrobial therapies, as suggested by the antimicrobial stewardship policy. New inflammatory markers have been discovered in human medicine, with a higher specificity for distinguishing between septic versus nonseptic inflammatory diseases. It is desirable that these new markers be investigated in veterinary medicine, to further test the power of APPs in diagnostic setting.
Collapse
Affiliation(s)
- Gabriele Rossi
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia.,Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
29
|
Wang Z, Yang L, Song XQ. Oral GS-441524 derivatives: Next-generation inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase. Front Immunol 2022; 13:1015355. [PMID: 36561747 PMCID: PMC9763260 DOI: 10.3389/fimmu.2022.1015355] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
GS-441524, an RNA-dependent RNA polymerase (RdRp) inhibitor, is a 1'-CN-substituted adenine C-nucleoside analog with broad-spectrum antiviral activity. However, the low oral bioavailability of GS-441524 poses a challenge to its anti-SARS-CoV-2 efficacy. Remdesivir, the intravenously administered version (version 1.0) of GS-441524, is the first FDA-approved agent for SARS-CoV-2 treatment. However, clinical trials have presented conflicting evidence on the value of remdesivir in COVID-19. Therefore, oral GS-441524 derivatives (VV116, ATV006, and GS-621763; version 2.0, targeting highly conserved viral RdRp) could be considered as game-changers in treating COVID-19 because oral administration has the potential to maximize clinical benefits, including decreased duration of COVID-19 and reduced post-acute sequelae of SARS-CoV-2 infection, as well as limited side effects such as hepatic accumulation. This review summarizes the current research related to the oral derivatives of GS-441524, and provides important insights into the potential factors underlying the controversial observations regarding the clinical efficacy of remdesivir; overall, it offers an effective launching pad for developing an oral version of GS-441524.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| |
Collapse
|
30
|
Cook S, Wittenburg L, Yan VC, Theil JH, Castillo D, Reagan KL, Williams S, Pham CD, Li C, Muller FL, Murphy BG. An Optimized Bioassay for Screening Combined Anticoronaviral Compounds for Efficacy against Feline Infectious Peritonitis Virus with Pharmacokinetic Analyses of GS-441524, Remdesivir, and Molnupiravir in Cats. Viruses 2022; 14:v14112429. [PMID: 36366527 PMCID: PMC9697187 DOI: 10.3390/v14112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease of cats that currently lacks licensed and affordable vaccines or antiviral therapeutics. The disease has a spectrum of clinical presentations including an effusive ("wet") form and non-effusive ("dry") form, both of which may be complicated by neurologic or ocular involvement. The feline coronavirus (FCoV) biotype, termed feline infectious peritonitis virus (FIPV), is the etiologic agent of FIP. The objective of this study was to determine and compare the in vitro antiviral efficacies of the viral protease inhibitors GC376 and nirmatrelvir and the nucleoside analogs remdesivir (RDV), GS-441524, molnupiravir (MPV; EIDD-2801), and β-D-N4-hydroxycytidine (NHC; EIDD-1931). These antiviral agents were functionally evaluated using an optimized in vitro bioassay system. Antivirals were assessed as monotherapies against FIPV serotypes I and II and as combined anticoronaviral therapies (CACT) against FIPV serotype II, which provided evidence for synergy for selected combinations. We also determined the pharmacokinetic properties of MPV, GS-441524, and RDV after oral administration to cats in vivo as well as after intravenous administration of RDV. We established that orally administered MPV at 10 mg/kg, GS-441524 and RDV at 25 mg/kg, and intravenously administered RDV at 7 mg/kg achieves plasma levels greater than the established corresponding EC50 values, which are sustained over 24 h for GS-441514 and RDV.
Collapse
Affiliation(s)
- Sarah Cook
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
- Correspondence:
| | - Luke Wittenburg
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Victoria C. Yan
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jacob H. Theil
- Office of Research, Campus Veterinary Services, University of California-Davis, Davis, CA 95616, USA
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Krystle L. Reagan
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Sonyia Williams
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Cong-Dat Pham
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chun Li
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Florian L. Muller
- Sporos Bioventures, @JLABS Suite 201, 2450 Holcombe Blvd, Houston, TX 77021, USA
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
31
|
Krentz D, Zwicklbauer K, Felten S, Bergmann M, Dorsch R, Hofmann-Lehmann R, Meli ML, Spiri AM, von Both U, Alberer M, Hönl A, Matiasek K, Hartmann K. Clinical Follow-Up and Postmortem Findings in a Cat That Was Cured of Feline Infectious Peritonitis with an Oral Antiviral Drug Containing GS-441524. Viruses 2022; 14:v14092040. [PMID: 36146845 PMCID: PMC9506130 DOI: 10.3390/v14092040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
This is the first report on a clinical follow-up and postmortem examination of a cat that had been cured of feline infectious peritonitis (FIP) with ocular manifestation by successful treatment with an oral multicomponent drug containing GS-441524. The cat was 6 months old when clinical signs (recurrent fever, lethargy, lack of appetite, and fulminant anterior uveitis) appeared. FIP was diagnosed by ocular tissue immunohistochemistry after enucleation of the affected eye. The cat was a participant in a FIP treatment study, which was published recently. However, 240 days after leaving the clinic healthy, and 164 days after the end of the 84 days of treatment, the cured cat died in a road traffic accident. Upon full postmortem examination, including histopathology and immunohistochemistry, there were no residual FIP lesions observed apart from a generalized lymphadenopathy due to massive lymphoid hyperplasia. Neither feline coronavirus (FCoV) RNA nor FCoV antigen were identified by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemistry, respectively, in any tissues or body fluids, including feces. These results prove that oral treatment with GS-441524 leads to the cure of FIP-associated changes and the elimination of FCoV from all tissues.
Collapse
Affiliation(s)
- Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany
- Correspondence:
| | - Katharina Zwicklbauer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, D-80337 Munich, Germany
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, D-80337 Munich, Germany
| | - Anne Hönl
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany
| |
Collapse
|
32
|
Romanelli P, Paltrinieri S, Bonfanti U, Castaman MG, Monza E, Bertazzolo W. Utility of the Ratio between Lactate Dehydrogenase (LDH) Activity and Total Nucleated Cell Counts in Effusions (LDH/TNCC Ratio) for the Diagnosis of Feline Infectious Peritonitis (FIP). Animals (Basel) 2022; 12:ani12172262. [PMID: 36077981 PMCID: PMC9454717 DOI: 10.3390/ani12172262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: We tested the hypothesis that the ratio between lactate dehydrogenase activity (LDH) and total nucleated cell counts (TNCC) in effusions may be useful to diagnose feline infectious peritonitis (FIP). Methods: LDH/TNCC ratio was retrospectively evaluated in 648 effusions grouped based on cytology and physicochemical analysis (step 1), on the probability of FIP estimated by additional tests on fluids (step 2) or on other biological samples (step 3, n = 471). Results of different steps were statistically compared. Receiver Operating Characteristic (ROC) curves were designed to assess whether the ratio identify the samples with FIP “probable/almost confirmed”. The cut-offs with the highest positive likelihood ratio (LR+) or Youden Index (YI) or with equal sensitivity and specificity were determined. Results: A high median LDH/TNCC ratio was found in FIP effusions (step1: 2.01) and with probable or almost confirmed FIP (step 2: 1.99; 2.20 respectively; step 3: 1.26; 2.30 respectively). The optimal cut-offs were 7.54 (LR+ 6.58), 0.62 (IY 0.67, sensitivity: 89.1%; specificity 77.7%), 0.72 (sensitivity and specificity: 79.2%) in step 2 and 2.27 (LR+ 10.39), 0.62 (IY 0.65, sensitivity: 82.1%; specificity 83.0%), 0.54 (sensitivity: 82.1%; specificity 81.9%) in step 3. Conclusions: a high LDH/TNCC ratio support a FIP diagnosis.
Collapse
Affiliation(s)
- Pierpaolo Romanelli
- MYLAV Veterinary Laboratory La Vallonea, 20017 Passirana di Rho, Italy
- Correspondence:
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
| | - Ugo Bonfanti
- MYLAV Veterinary Laboratory La Vallonea, 20017 Passirana di Rho, Italy
| | | | - Elisa Monza
- MYLAV Veterinary Laboratory La Vallonea, 20017 Passirana di Rho, Italy
| | - Walter Bertazzolo
- MYLAV Veterinary Laboratory La Vallonea, 20017 Passirana di Rho, Italy
| |
Collapse
|
33
|
Meli ML, Spiri AM, Zwicklbauer K, Krentz D, Felten S, Bergmann M, Dorsch R, Matiasek K, Alberer M, Kolberg L, von Both U, Hartmann K, Hofmann-Lehmann R. Fecal Feline Coronavirus RNA Shedding and Spike Gene Mutations in Cats with Feline Infectious Peritonitis Treated with GS-441524. Viruses 2022; 14:1069. [PMID: 35632813 PMCID: PMC9147249 DOI: 10.3390/v14051069] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
As previously demonstrated by our research group, the oral multicomponent drug Xraphconn® containing GS-441524 was effective at curing otherwise fatal feline infectious peritonitis (FIP) in 18 feline coronavirus (FCoV)-infected cats. The aims of the current study were to investigate, using samples from the same animals as in the previous study, (1) the effect of treatment on fecal viral RNA shedding; (2) the presence of spike gene mutations in different body compartments of these cats; and (3) viral RNA shedding, presence of spike gene mutations, and anti-FCoV antibody titers in samples of 12 companion cats cohabitating with the treated cats. Eleven of the eighteen treated FIP cats (61%) were shedding FCoV RNA in feces within the first three days after treatment initiation, but all of them tested negative by day 6. In one of these cats, fecal shedding reoccurred on day 83. Two cats initially negative in feces were transiently positive 1-4 weeks into the study. The remaining five cats never shed FCoV. Viral RNA loads in feces decreased with time comparable with those in blood and effusion. Specific spike gene mutations linked to systemic FCoV spread were consistently found in blood and effusion from treated FIP cats, but not in feces from treated or companion cats. A new mutation that led to a not yet described amino acid change was identified, indicating that further mutations may be involved in the development of FIP. Eight of the twelve companion cats shed FCoV in feces. All but one of the twelve companion cats had anti-FCoV antibodies. Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP. Nonetheless, re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.
Collapse
Affiliation(s)
- Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| | - Katharina Zwicklbauer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany;
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
- German Center for Infection Research (DZIF), Partner Site Munich, D-80337 Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| |
Collapse
|
34
|
Addie DD, Silveira C, Aston C, Brauckmann P, Covell-Ritchie J, Felstead C, Fosbery M, Gibbins C, Macaulay K, McMurrough J, Pattison E, Robertson E. Alpha-1 Acid Glycoprotein Reduction Differentiated Recovery from Remission in a Small Cohort of Cats Treated for Feline Infectious Peritonitis. Viruses 2022; 14:v14040744. [PMID: 35458474 PMCID: PMC9027977 DOI: 10.3390/v14040744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a systemic immune-mediated inflammatory perivasculitis that occurs in a minority of cats infected with feline coronavirus (FCoV). Various therapies have been employed to treat this condition, which was previously usually fatal, though no parameters for differentiating FIP recovery from remission have been defined to enable clinicians to decide when it is safe to discontinue treatment. This retrospective observational study shows that a consistent reduction of the acute phase protein alpha-1 acid glycoprotein (AGP) to within normal limits (WNL, i.e., 500 μg/mL or below), as opposed to duration of survival, distinguishes recovery from remission. Forty-two cats were diagnosed with FIP: 75% (12/16) of effusive and 54% (14/26) of non-effusive FIP cases recovered. Presenting with the effusive or non-effusive form did not affect whether or not a cat fully recovered (p = 0.2). AGP consistently reduced to WNL in 26 recovered cats but remained elevated in 16 cats in remission, dipping to normal once in two of the latter. Anaemia was present in 77% (23/30) of the cats and resolved more quickly than AGP in six recovered cats. The presence of anaemia did not affect the cat’s chances of recovery (p = 0.1). Lymphopenia was observed in 43% (16/37) of the cats and reversed in nine recovered cats but did not reverse in seven lymphopenic cats in the remission group. Fewer recovered cats (9/24: 37%) than remission cats (7/13: 54%) were lymphopenic, but the difference was not statistically different (p = 0.5). Hyperglobulinaemia was slower than AGP to return to WNL in the recovered cats. FCoV antibody titre was high in all 42 cats at the outset. It decreased significantly in 7 recovered cats but too slowly to be a useful parameter to determine discontinuation of antiviral treatments. Conclusion: a sustained return to normal levels of AGP was the most rapid and consistent indicator for differentiating recovery from remission following treatment for FIP. This study provides a useful model for differentiating recovery from chronic coronavirus disease using acute phase protein monitoring.
Collapse
Affiliation(s)
- Diane D. Addie
- Independent Researcher, 64470 Etchebar, France
- Correspondence:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sweet AN, André NM, Stout AE, Licitra BN, Whittaker GR. Clinical and Molecular Relationships between COVID-19 and Feline Infectious Peritonitis (FIP). Viruses 2022; 14:481. [PMID: 35336888 PMCID: PMC8954060 DOI: 10.3390/v14030481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) has led the medical and scientific community to address questions surrounding the pathogenesis and clinical presentation of COVID-19; however, relevant clinical models outside of humans are still lacking. In felines, a ubiquitous coronavirus, described as feline coronavirus (FCoV), can present as feline infectious peritonitis (FIP)-a leading cause of mortality in young cats that is characterized as a severe, systemic inflammation. The diverse extrapulmonary signs of FIP and rapidly progressive disease course, coupled with a closely related etiologic agent, present a degree of overlap with COVID-19. This paper will explore the molecular and clinical relationships between FIP and COVID-19. While key differences between the two syndromes exist, these similarities support further examination of feline coronaviruses as a naturally occurring clinical model for coronavirus disease in humans.
Collapse
Affiliation(s)
- Arjun N. Sweet
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Nicole M. André
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Alison E. Stout
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Beth N. Licitra
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| |
Collapse
|
36
|
Hobi S, Beatty JA, Sandy JR, Barrs VR. Successful management of feline pemphigus foliaceus with pentoxifylline and topical hydrocortisone aceponate. Vet Med Sci 2022; 8:937-944. [PMID: 35212177 PMCID: PMC9122467 DOI: 10.1002/vms3.768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The treatment regimen for feline pemphigus foliaceus (PF), an autoimmune disease caused by auto-antibodies against proteins of the desmosome junction, usually includes high doses of oral or parenteral immunosuppressive drugs, typically glucocorticoids. This case adds to a growing body of evidence that topical hydrocortisone aceponate is effective for the treatment of feline PF, and demonstrates the practical use of a non-invasive diagnostic method for histopathology when owners refuse a biopsy to support a clinical diagnosis of PF. Finally, this case highlights an international trend of owner-initiated treatment of feline infectious peritonitis (FIP) using unlicensed, unregistered drugs.
Collapse
Affiliation(s)
- Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Kowloon, Hong Kong, China
| | - Julia A Beatty
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Kowloon, Hong Kong, China
| | - Jeanine R Sandy
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Kowloon, Hong Kong, China
| | - Vanessa R Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Kowloon, Hong Kong, China
| |
Collapse
|
37
|
Therapeutic Effects of Mutian ® Xraphconn on 141 Client-Owned Cats with Feline Infectious Peritonitis Predicted by Total Bilirubin Levels. Vet Sci 2021; 8:vetsci8120328. [PMID: 34941855 PMCID: PMC8705141 DOI: 10.3390/vetsci8120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus or its variant, referred to as the FIP virus. Recently, favorable treatment outcomes of the anti-viral drug Mutian® Xraphconn (Mutian X) were noted in cats with FIP. Thus, the therapeutic efficacy of Mutian X in cats with FIP must be explored, although the predictors of therapeutic success remain unknown. In the present study, we administered Mutian X to 141 pet cats with effusive FIP following initial veterinarian examinations. Of these, 116 cats survived but the remaining 25 died during treatment. Pre-treatment signalment, viral gene expression, and representative laboratory parameters for routine FIP diagnosis (i.e., hematocrit, albumin-to-globulin ratio, total bilirubin, serum amyloid-A, and α1-acid glycoprotein) were statistically compared between the survivor and non-survivor groups. The majority of these parameters, including hematocrit, albumin-to-globulin ratio, serum amyloid-A, α1-acid glycoprotein, and viral gene expression, were comparable between the two groups. Interestingly, however, total bilirubin levels in the survivor group were significantly lower than those in the non-survivor group (p < 0.0001). Furthermore, in almost all surviving cats with effusive FIP (96.6%, 28/29), the pre-treatment total bilirubin levels were below 0.5 mg/dL; however, the survival rate decreased drastically (14.3%, 1/7) when the pre-treatment total bilirubin levels exceeded 4.0 mg/dL. Thus, circulating total bilirubin levels may act as a prognostic risk factor for severe FIP and may serve as the predictor of the therapeutic efficacy of Mutian X against this fatal disease.
Collapse
|