1
|
Müller T, Alasfar L, Preuß F, Zimmermann L, Streitz M, Hundsdörfer P, Eggert A, Schulte J, von Stackelberg A, Oevermann L. Lower incidence of grade II-IV acute Graft-versus-Host-Disease in pediatric patients recovering with high Vδ2+ T cells after allogeneic stem cell transplantation with unmanipulated bone marrow grafts: a prospective single-center cohort study. Front Immunol 2024; 15:1433785. [PMID: 39136029 PMCID: PMC11317287 DOI: 10.3389/fimmu.2024.1433785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Gamma delta (γδ) T cells represent a minor fraction of human T cell repertoire but play an important role in mediating anti-infectious and anti-tumorous effects in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We performed a prospective study to analyze the effect of different transplant modalities on immune reconstitution of γδ T cells and subsets. CD3, CD4 and CD8 T cells were analyzed in parallel. Secondly, we examined the impact of γδ T cell reconstitution on clinical outcomes including acute Graft-versus-Host-Disease (aGvHD) and viral infections. Our cohort includes 49 pediatric patients who received unmanipulated bone marrow grafts from matched unrelated (MUD) or matched related (MRD) donors. The cohort includes patients with malignant as well as non-malignant diseases. Cell counts were measured using flow cytometry at 15, 30, 60, 100, 180 and 240 days after transplantation. Cells were stained for CD3, CD4, CD8, CD45, TCRαβ, TCRγδ, TCRVδ1, TCRVδ2, HLA-DR and combinations. Patients with a MRD showed significantly higher Vδ2+ T cells than those with MUD at timepoints +30, +60, +100 (p<0.001, respectively) and +180 (p<0.01) in univariate analysis. These results remained significant in multivariate analysis. Patients recovering with a high relative abundance of total γδ T cells and Vδ2+ T cells had a significantly lower cumulative incidence of grade II-IV aGvHD after transplantation (p=0.03 and p=0.04, respectively). A high relative abundance of Vδ2+ T cells was also associated with a lower incidence of EBV infection (p=0.02). Patients with EBV infection on the other hand showed higher absolute Vδ1+ T cell counts at days +100 and +180 after transplantation (p=0.046 and 0.038, respectively) than those without EBV infection. This result remained significant in a multivariate time-averaged analysis (q<0.1). Our results suggest a protective role of γδ T cells and especially Vδ2+ T cell subset against the development of aGvHD and EBV infection after pediatric HSCT. Vδ1+ T cells might be involved in the immune response after EBV infection. Our results encourage further research on γδ T cells as prognostic markers after HSCT and as possible targets of adoptive T cell transfer strategies.
Collapse
Affiliation(s)
- Thilo Müller
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lina Alasfar
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Internal Medicine V: Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Friederike Preuß
- Department of Cardiology, Angiology and Intensive Care Medicine, German Heart Center Berlin, Berlin, Germany
| | - Lisa Zimmermann
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Streitz
- Department of Experimental Animal Facilities and Biorisk Management (ATB), Friedrich-Löffler-Institut, Greifswald, Germany
| | | | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Schulte
- Department of Pediatrics I – Haematology, Oncology, Gastroenterology, Nephrology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Oevermann
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
2
|
Pagliuca S, Schmid C, Santoro N, Simonetta F, Battipaglia G, Guillaume T, Greco R, Onida F, Sánchez-Ortega I, Yakoub-Agha I, Kuball J, Hazenberg MD, Ruggeri A. Donor lymphocyte infusion after allogeneic haematopoietic cell transplantation for haematological malignancies: basic considerations and best practice recommendations from the EBMT. Lancet Haematol 2024; 11:e448-e458. [PMID: 38796194 DOI: 10.1016/s2352-3026(24)00098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/28/2024]
Abstract
Since the early description of three patients with relapsed leukaemia after allogeneic haematopoietic cell transplantation (HCT) who obtained complete remission after donor lymphocyte infusions (DLIs), the added value of this procedure to induce or maintain graft-versus-leukaemia immunity has been undisputed. For more than 30 years, DLIs have become common practice as prophylactic, pre-emptive, or therapeutic immunotherapy. However, as with many aspects of allogeneic HCT, centres have developed their own routines and practices, and many questions related to the optimal applications and toxicity, or to the immunobiology of DLI induced tumour-immunity, remain. As a part of the Practice Harmonization and Guidelines Committee and the Cellular Therapy and Immunobiology Working Party of the European Society for Blood and Marrow Transplantation effort, a panel of experts with clinical and translational knowledge in transplantation immunology and cellular therapy met during a 2-day workshop in September, 2023, in Lille, France, and developed a set of consensus-based recommendations for the application of unmanipulated DLI after allogeneic HCT for haematological malignancies. Given the absence of prospective data in the majority of publications, these recommendations are mostly based on retrospective studies and expert consensus.
Collapse
Affiliation(s)
- Simona Pagliuca
- Department of Hematology, Nancy University Hospital, Nancy, France; UMR 7365, IMoPA, Lorraine University, CNRS, Vandœuvre-lès-Nancy, France
| | - Christoph Schmid
- Department of Haematology and Oncology, Augsburg University Hospital and Medical Faculty Comprehensive Cancer Center, Bavarian Cancer Research Center, Augsburg, Germany
| | - Nicole Santoro
- Haematology Unit, Department of Oncology and Hematology, Santo Spirito Hospital, Pescara, Italy
| | - Federico Simonetta
- Division of Haematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giorgia Battipaglia
- Haematology Department and Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Thierry Guillaume
- Division of Haematology, Nantes University Hospital, Nantes, France; INSERM U1232 CNRS, CRCINA, Nantes, France
| | - Raffaella Greco
- Haematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Onida
- Haematology and BMT Unit, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | | | | | - Jurgen Kuball
- Department of Haematology and Center for Translational Immunology, UMC Utrecht, Utrecht, Netherlands
| | - Mette D Hazenberg
- Department of Haematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annalisa Ruggeri
- Haematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Jullien M, Guillaume T, Le Bourgeois A, Peterlin P, Garnier A, Eveillard M, Le Bris Y, Bouzy S, Tessoulin B, Gastinne T, Dubruille V, Touzeau C, Mahé B, Blin N, Lok A, Vantyghem S, Sortais C, Antier C, Moreau P, Scotet E, Béné MC, Chevallier P. Phase I study of zoledronic acid combined with escalated doses of interleukine-2 for early in vivo generation of Vγ9Vδ2 T-cells after haploidentical stem cell transplant with posttransplant cyclophosphamide. Am J Hematol 2024; 99:350-359. [PMID: 38165016 DOI: 10.1002/ajh.27191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The presence of donor Vγ9Vδ2 T-cells after haploidentical hematopoietic stem cell transplant (h-HSCT) has been associated with improved disease-free survival. These cells kill tumor cells in a non-MHC restricted manner, do not induce graft-versus-host disease (GVHD), and can be generated by stimulation with zoledronic acid (ZA) in combination with interleukin-2 (IL-2). This monocentric phase I, open-label, dose-escalating study (ClinicalTrials.gov: NCT03862833) aimed at evaluating the safety and possibility to generate Vγ9Vδ2 T-cells early after h-HSCT. It applied a standard 3 + 3 protocol to determine the maximum tolerated dose (MTD) of increasing low-doses of IL-2 (5 days [d] per week, 4 weeks) in combination with a single dose of ZA, starting both the first Monday after d + 15 posttransplant. Vγ9Vδ2 T-cell monitoring was performed by multiparameter flow cytometry on blood samples and compared with a control cohort of h-HSCT recipients. Twenty-six patients were included between April 2019 and September 2022, 16 of whom being ultimately treated and seven being controls who received h-HSCT only. At the three dose levels tested, 1, 0, and 1 dose-limiting toxicities were observed. MTD was not reached. A significantly higher number of Vγ9Vδ2 T-cells was observed during IL-2 treatment compared with controls. In conclusion, early in vivo generation of Vγ9Vδ2 T-cells is feasible after h-HSCT by using a combination of ZA and repeated IL-2 infusions. This study paves the way to a future phase 2 study, with the hope to document lesser posttransplant relapse with this particular adaptive immunotherapy.
Collapse
Affiliation(s)
- Maxime Jullien
- Hematology Department, Nantes University Hospital, Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Thierry Guillaume
- Hematology Department, Nantes University Hospital, Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | | | - Pierre Peterlin
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Alice Garnier
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Marion Eveillard
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Hematology Biology, Nantes University Hospital, Nantes, France
| | - Yannick Le Bris
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Hematology Biology, Nantes University Hospital, Nantes, France
| | - Simon Bouzy
- Hematology Biology, Nantes University Hospital, Nantes, France
| | - Benoît Tessoulin
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Thomas Gastinne
- Hematology Department, Nantes University Hospital, Nantes, France
| | | | - Cyrille Touzeau
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Béatrice Mahé
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Nicolas Blin
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Anne Lok
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Sophie Vantyghem
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Clara Sortais
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Chloé Antier
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Philippe Moreau
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Emmanuel Scotet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Marie C Béné
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Hematology Biology, Nantes University Hospital, Nantes, France
| | - Patrice Chevallier
- Hematology Department, Nantes University Hospital, Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
4
|
Winstead M, Hill M, Amin Z, Lugt MV, Chen X, Szabolcs P. Graft-versus-host disease is associated with skewed γδ T-cell clonality after umbilical cord blood transplantation in children with nonmalignant diseases. Cytotherapy 2023; 25:1091-1100. [PMID: 37422745 DOI: 10.1016/j.jcyt.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/07/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AIMS The γδ T-cells (GDT) are a subpopulation of lymphocytes expressing a distinct T-cell receptor coded by the TRG and TRD genes. GDTs may have immunoregulatory function after stem cell transplantation (SCT), but the relationship between GDT clonality and acute graft-versus-host disease (aGVHD) is not known. METHODS We prospectively studied spectratype complex complexity of TCR Vγ (γ) and TCR Vδ (δ) pre-SCT and at approximately day 100 and day 180 post-SCT in a cohort of immunocompetent children receiving allogeneic umbilical cord blood SCT for nonmalignant diseases, with identical reduced-intensity conditioning and aGVHD prophylaxis. RESULTS We studied 13 children undergoing SCT at a median age of 0.9 years (total range 0.4-16.6). In those with grade 0-1 aGVHD (N = 10), the spectratype complexity of most γ and δ genes was not significantly different from baseline at day 100 or day 180 post-SCT, and there was balanced expression of genes at the γ and δ loci. In those with grade 3 aGVHD (N = 3), spectratype complexity was significantly below baseline at day 100 and day 180, and there was relative overexpression of δ2. CD3+ cell counts were also lower in participants with grade 3 aGVHD. CONCLUSIONS Recovery of a polyclonal GDT repertoire is an early part of immunological recovery after SCT. γ and δ gene expression is balanced in young children before and after SCT. Severe aGVHD is associated with GDT oligoclonality post-SCT and with skewed expression of δ2, which has not been previously reported. This association may reflect aGVHD therapy or aGVHD-associated immune dysregulation. Further studies of GDT clonality during the early post-SCT period may establish whether abnormal GDT spectratype precedes the clinical manifestations of aGVHD.
Collapse
Affiliation(s)
- Mike Winstead
- Division of Blood and Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Memphis Hill
- Division of Blood and Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zarreen Amin
- Division of Blood and Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark Vander Lugt
- Division of Blood and Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaohua Chen
- Division of Blood and Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Szabolcs
- Division of Blood and Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Eiz-Vesper B, Ravens S, Maecker-Kolhoff B. αβ and γδ T-cell responses to Epstein-Barr Virus: insights in immunocompetence, immune failure and therapeutic augmentation in transplant patients. Curr Opin Immunol 2023; 82:102305. [PMID: 36963323 DOI: 10.1016/j.coi.2023.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/26/2023]
Abstract
Epstein-Barr Virus (EBV) is a human gamma herpes virus, which causes several diseases in immunocompetent (mononucleosis, chronic fatigue syndrome, gastric cancer, endemic Burkitt's lymphoma, head and neck cancer) and immunosuppressed (post-transplant lymphoproliferative disease, EBV-associated soft tissue tumors) patients. It elicits a complex humoral and cellular immune response with both innate and adaptive immune components. Substantial progress has been made in understanding the interplay of immune cells in EBV-associated diseases in recent years, and several therapeutic approaches have been developed to augment cellular immunity toward EBV for control of EBV-associated malignancy. This review will focus on recent developments in immunosuppressed transplant recipients.
Collapse
Affiliation(s)
- Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Germany; CRC900 Microbial persistence and its control; German Center for Infection Research (DZIF)
| | - Sarina Ravens
- CRC900 Microbial persistence and its control; Institute of Immunology, Hannover Medical School, Germany
| | - Britta Maecker-Kolhoff
- CRC900 Microbial persistence and its control; German Center for Infection Research (DZIF); Department of Pediatric Hematology and Oncology, Hannover Medical School, Germany.
| |
Collapse
|
6
|
Pathogen-specific T Cells: Targeting Old Enemies and New Invaders in Transplantation and Beyond. Hemasphere 2023; 7:e809. [PMID: 36698615 PMCID: PMC9831191 DOI: 10.1097/hs9.0000000000000809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 01/27/2023] Open
Abstract
Adoptive immunotherapy with virus-specific cytotoxic T cells (VSTs) has evolved over the last three decades as a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after solid organ or allogeneic hematopoietic cell-transplantation (allo-HCT). Since the early proof-of-principle studies demonstrating that seropositive donor-derived T cells, specific for the commonest pathogens post transplantation, namely cytomegalovirus or Epstein-Barr virus (EBV) and generated by time- and labor-intensive protocols, could effectively control viral infections, major breakthroughs have then streamlined the manufacturing process of pathogen-specific T cells (pSTs), broadened the breadth of target recognition to even include novel emerging pathogens and enabled off-the-shelf administration or pathogen-naive donor pST production. We herein review the journey of evolution of adoptive immunotherapy with nonengineered, natural pSTs against infections and virus-associated malignancies in the transplant setting and briefly touch upon recent achievements using pSTs outside this context.
Collapse
|
7
|
Langan D, Wang R, Tidwell K, Mitiku S, Farrell A, Johnson C, Parks A, Suarez L, Jain S, Kim S, Jones K, Oelke M, Zeldis J. AIM™ platform: A new immunotherapy approach for viral diseases. Front Med (Lausanne) 2022; 9:1070529. [PMID: 36619639 PMCID: PMC9822776 DOI: 10.3389/fmed.2022.1070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
In addition to complications of acute diseases, chronic viral infections are linked to both malignancies and autoimmune disorders. Lack of adequate treatment options for Epstein-Barr virus (EBV), Human T-lymphotropic virus type 1 (HTLV-1), and human papillomavirus (HPV) remains. The NexImmune Artificial Immune Modulation (AIM) nanoparticle platform can be used to direct T cell responses by mimicking the dendritic cell function. In one application, AIM nanoparticles are used ex vivo to enrich and expand (E+E) rare populations of multi-antigen-specific CD8+ T cells for use of these cells as an AIM adoptive cell therapy. This study has demonstrated using E+E CD8+ T cells, the functional relevance of targeting EBV, HTLV-1, and HPV. Expanded T cells consist primarily of effector memory, central memory, and self-renewing stem-like memory T cells directed at selected viral antigen peptides presented by the AIM nanoparticle. T cells expanded against either EBV- or HPV-antigens were highly polyfunctional and displayed substantial in vitro cytotoxic activity against cell lines expressing the respective antigens. Our initial work was in the context of exploring T cells expanded from healthy donors and restricted to human leukocyte antigen (HLA)-A*02:01 serotype. AIM Adoptive Cell Therapies (ACT) are also being developed for other HLA class I serotypes. AIM adoptive cell therapies of autologous or allogeneic T cells specific to antigens associated with acute myeloid leukemia and multiple myeloma are currently in the clinic. The utility and flexibility of the AIM nanoparticle platform will be expanded as we advance the second application, an AIM injectable off-the-shelf nanoparticle, which targets multiple antigen-specific T cell populations to either activate, tolerize, or destroy these targeted CD8+ T cells directly in vivo, leaving non-target cells alone. The AIM injectable platform offers the potential to develop new multi-antigen specific therapies for treating infectious diseases, cancer, and autoimmune diseases.
Collapse
|
8
|
Bernicke B, Engelbogen N, Klein K, Franzenburg J, Borzikowsky C, Peters C, Janssen O, Junker R, Serrano R, Kabelitz D. Analysis of the Seasonal Fluctuation of γδ T Cells and Its Potential Relation with Vitamin D 3. Cells 2022; 11:1460. [PMID: 35563767 PMCID: PMC9099506 DOI: 10.3390/cells11091460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
In addition to its role in bone metabolism, vitamin D3 exerts immunomodulatory effects and has been proposed to contribute to seasonal variation of immune cells. This might be linked to higher vitamin D3 levels in summer than in winter due to differential sun exposure. γδ T cells comprise a numerically small subset of T cells in the blood, which contribute to anti-infective and antitumor immunity. We studied the seasonal fluctuation of γδ T cells, the possible influence of vitamin D3, and the effect of the active metabolite 1α,25(OH)2D3 on the in vitro activation of human γδ T cells. In a retrospective analysis with 2625 samples of random blood donors, we observed higher proportions of γδ T cells in winter when compared with summer. In a prospective study over one year with a small cohort of healthy adults who did or did not take oral vitamin D3 supplementation, higher proportions of γδ T cells were present in donors without oral vitamin D3 uptake, particularly in spring. However, γδ T cell frequency in blood did not directly correlate with serum levels of 25(OH)D3. The active metabolite 1α,25(OH)2D3 inhibited the in vitro activation of γδ T cells at the level of proliferation, cytotoxicity, and interferon-γ production. Our study reveals novel insights into the seasonal fluctuation of γδ T cells and the immunomodulatory effects of vitamin D3.
Collapse
Affiliation(s)
- Birthe Bernicke
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Nils Engelbogen
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (N.E.); (J.F.); (R.J.)
| | - Katharina Klein
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Jeanette Franzenburg
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (N.E.); (J.F.); (R.J.)
| | - Christoph Borzikowsky
- Institute of Bioinformatics and Statistics, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany;
| | - Christian Peters
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Ralf Junker
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (N.E.); (J.F.); (R.J.)
| | - Ruben Serrano
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| |
Collapse
|
9
|
Champagne E. Special Issue “Gamma Delta T Cells in Immune Response against Viruses”. Viruses 2022; 14:v14040736. [PMID: 35458466 PMCID: PMC9024634 DOI: 10.3390/v14040736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eric Champagne
- Infinity, Université Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paul Sabatier, CEDEX 03, 31024 Toulouse, France
| |
Collapse
|