1
|
Wang ZY, Nie KX, Niu JC, Cheng G. Research progress toward the influence of mosquito salivary proteins on the transmission of mosquito-borne viruses. INSECT SCIENCE 2024; 31:663-673. [PMID: 37017683 DOI: 10.1111/1744-7917.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Mosquito-borne viruses (MBVs) are a large class of viruses transmitted mainly through mosquito bites, including dengue virus, Zika virus, Japanese encephalitis virus, West Nile virus, and chikungunya virus, which pose a major threat to the health of people around the world. With global warming and extended human activities, the incidence of many MBVs has increased significantly. Mosquito saliva contains a variety of bioactive protein components. These not only enable blood feeding but also play a crucial role in regulating local infection at the bite site and the remote dissemination of MBVs as well as in remodeling the innate and adaptive immune responses of host vertebrates. Here, we review the physiological functions of mosquito salivary proteins (MSPs) in detail, the influence and the underlying mechanism of MSPs on the transmission of MBVs, and the current progress and issues that urgently need to be addressed in the research and development of MSP-based MBV transmission blocking vaccines.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Kai-Xiao Nie
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ji-Chen Niu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Chea S, Willen L, Nhek S, Ly P, Tang K, Oristian J, Salas-Carrillo R, Ponce A, Leon PCV, Kong D, Ly S, Sath R, Lon C, Leang R, Huy R, Yek C, Valenzuela JG, Calvo E, Manning JE, Oliveira F. Antibodies to Aedes aegypti D7L salivary proteins as a new serological tool to estimate human exposure to Aedes mosquitoes. Front Immunol 2024; 15:1368066. [PMID: 38751433 PMCID: PMC11094246 DOI: 10.3389/fimmu.2024.1368066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Aedes spp. are the most prolific mosquito vectors in the world. Found on every continent, they can effectively transmit various arboviruses, including the dengue virus which continues to cause outbreaks worldwide and is spreading into previously non-endemic areas. The lack of widely available dengue vaccines accentuates the importance of targeted vector control strategies to reduce the dengue burden. High-throughput tools to estimate human-mosquito contact and evaluate vector control interventions are lacking. We propose a novel serological tool that allows rapid screening of human cohorts for exposure to potentially infectious mosquitoes. Methods We tested 563 serum samples from a longitudinal pediatric cohort study previously conducted in Cambodia. Children enrolled in the study were dengue-naive at baseline and were followed biannually for dengue incidence for two years. We used Western blotting and enzyme-linked immunosorbent assays to identify immunogenic Aedes aegypti salivary proteins and measure total anti-Ae. aegypti IgG. Results We found a correlation (rs=0.86) between IgG responses against AeD7L1 and AeD7L2 recombinant proteins and those to whole salivary gland homogenate. We observed seasonal fluctuations of AeD7L1+2 IgG responses and no cross-reactivity with Culex quinquefasciatus and Anopheles dirus mosquitoes. The baseline median AeD7L1+2 IgG responses for young children were higher in those who developed asymptomatic versus symptomatic dengue. Discussion The IgG response against AeD7L1+2 recombinant proteins is a highly sensitive and Aedes specific marker of human exposure to Aedes bites that can facilitate standardization of future serosurveys and epidemiological studies by its ability to provide a robust estimation of human-mosquito contact in a high-throughput fashion.
Collapse
Affiliation(s)
- Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Laura Willen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sreynik Nhek
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Piseth Ly
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Kristina Tang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - James Oristian
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Roberto Salas-Carrillo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Aiyana Ponce
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dara Kong
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Sokna Ly
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ratanak Sath
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chanthap Lon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
- National Dengue Control Program, Ministry of Health, Phnom Penh, Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
| | - Christina Yek
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jessica E. Manning
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Fabiano Oliveira
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Williams AE, Gittis AG, Botello K, Cruz P, Martin-Martin I, Valenzuela Leon PC, Sumner B, Bonilla B, Calvo E. Structural and functional comparisons of salivary α-glucosidases from the mosquito vectors Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 167:104097. [PMID: 38428508 PMCID: PMC10955559 DOI: 10.1016/j.ibmb.2024.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Mosquito vectors of medical importance both blood and sugar feed, and their saliva contains bioactive molecules that aid in both processes. Although it has been shown that the salivary glands of several mosquito species exhibit α-glucosidase activities, the specific enzymes responsible for sugar digestion remain understudied. We therefore expressed and purified three recombinant salivary α-glucosidases from the mosquito vectors Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus and compared their functions and structures. We found that all three enzymes were expressed in the salivary glands of their respective vectors and were secreted into the saliva. The proteins, as well as mosquito salivary gland extracts, exhibited α-glucosidase activity, and the recombinant enzymes displayed preference for sucrose compared to p-nitrophenyl-α-D-glucopyranoside. Finally, we solved the crystal structure of the Ae. aegypti α-glucosidase bound to two calcium ions at a 2.3 Ångstrom resolution. Molecular docking suggested that the Ae. aegypti α-glucosidase preferred di- or polysaccharides compared to monosaccharides, consistent with enzymatic activity assays. Comparing structural models between the three species revealed a high degree of similarity, suggesting similar functional properties. We conclude that the α-glucosidases studied herein are important enzymes for sugar digestion in three mosquito species.
Collapse
Affiliation(s)
- Adeline E Williams
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Apostolos G Gittis
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karina Botello
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Phillip Cruz
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Benjamin Sumner
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Brian Bonilla
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
4
|
Loh SN, Anthony IR, Gavor E, Lim XS, Kini RM, Mok YK, Sivaraman J. Recognition of Aedes aegypti Mosquito Saliva Protein LTRIN by the Human Receptor LTβR for Controlling the Immune Response. BIOLOGY 2024; 13:42. [PMID: 38248473 PMCID: PMC10813304 DOI: 10.3390/biology13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Salivary proteins from mosquitoes have received significant attention lately due to their potential to develop therapeutic treatments or vaccines for mosquito-borne diseases. Here, we report the characterization of LTRIN (lymphotoxin beta receptor inhibitor), a salivary protein known to enhance the pathogenicity of ZIKV by interrupting the LTβR-initiated NF-κB signaling pathway and, therefore, diminish the immune responses. We demonstrated that the truncated C-terminal LTRIN (ΔLTRIN) is a dimeric protein with a stable alpha helix-dominant secondary structure, which possibly aids in withstanding the temperature fluctuations during blood-feeding events. ΔLTRIN possesses two Ca2+ binding EF-hand domains, with the second EF-hand motif playing a more significant role in interacting with LTβR. Additionally, we mapped the primary binding regions of ΔLTRIN on LTβR using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and identified that 91QEKAHIAEHMDVPIDTSKMSEQELQFHY118 from the N-terminal of ΔLTRIN is the major interacting region. Together, our studies provide insight into the recognition of LTRIN by LTβR. This finding may aid in a future therapeutic and transmission-blocking vaccine development against ZIKV.
Collapse
Affiliation(s)
- Su Ning Loh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Ian Russell Anthony
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Edem Gavor
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Xin Shan Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - R. Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yu Keung Mok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| |
Collapse
|
5
|
Martin-Martin I, Kojin BB, Aryan A, Williams AE, Molina-Cruz A, Valenzuela-Leon PC, Shrivastava G, Botello K, Minai M, Adelman ZN, Calvo E. Aedes aegypti D7 long salivary proteins modulate blood feeding and parasite infection. mBio 2023; 14:e0228923. [PMID: 37909749 PMCID: PMC10746281 DOI: 10.1128/mbio.02289-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE During blood feeding, mosquitoes inject saliva into the host skin, preventing hemostasis and inflammatory responses. D7 proteins are among the most abundant components of the saliva of blood-feeding arthropods. Aedes aegypti, the vector of yellow fever and dengue, expresses two D7 long-form salivary proteins: D7L1 and D7L2. These proteins bind and counteract hemostatic agonists such as biogenic amines and leukotrienes. D7L1 and D7L2 knockout mosquitoes showed prolonged probing times and carried significantly less Plasmodium gallinaceum oocysts per midgut than wild-type mosquitoes. We hypothesize that reingested D7s play a vital role in the midgut microenvironment with important consequences for pathogen infection and transmission.
Collapse
Affiliation(s)
- Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
- Laboratory of Medical Entomology, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Azadeh Aryan
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Adeline E. Williams
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Karina Botello
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
6
|
Visser I, Koenraadt CJ, Koopmans MP, Rockx B. The significance of mosquito saliva in arbovirus transmission and pathogenesis in the vertebrate host. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
7
|
Identification of Aedes aegypti salivary gland proteins interacting with human immune receptor proteins. PLoS Negl Trop Dis 2022; 16:e0010743. [PMID: 36070318 PMCID: PMC9484696 DOI: 10.1371/journal.pntd.0010743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/19/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Mosquito saliva proteins modulate the human immune and hemostatic systems and control mosquito-borne pathogenic infections. One mechanism through which mosquito proteins may influence host immunity and hemostasis is their interactions with key human receptor proteins that may act as receptors for or coordinate attacks against invading pathogens. Here, using pull-down assays and proteomics-based mass spectrometry, we identified 11 Ae. aegypti salivary gland proteins (SGPs) (e.g., apyrase, Ae. aegypti venom allergen-1 [AaVA-1], neutrophil stimulating protein 1 [NeSt1], and D7 proteins), that interact with one or more of five human receptor proteins (cluster of differentiation 4 [CD4], CD14, CD86, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin [DC-SIGN], and Toll-like receptor 4 [TLR4]). We focused on CD4- and DC-SIGN-interacting proteins and confirmed that CD4 directly interacts with AaVA-1, D7, and NeST1 recombinant proteins and that AaVA-1 showed a moderate interaction with DC-SIGN using ELISA. Bacteria responsive protein 1 (AgBR1), an Ae. aegypti saliva protein reported to enhance ZIKV infection in humans but that was not identified in our pull-down assay moderately interacts with CD4 in the ELISA assay. Functionally, we showed that AaVA-1 and NeST1 proteins promoted activation of CD4+ T cells. We propose the possible impact of these interactions and effects on mosquito-borne viral infections such as dengue, Zika, and chikungunya viruses. Overall, this study provides key insight into the vector-host (protein-protein) interaction network and suggests roles for these interactions in mosquito-borne viral infections. Here, we report our results from a pull-down assay and ELISA, which identified Ae. aegypti salivary gland proteins that interact with one or more of five human receptor proteins. Some of these interactions could affect the expression of costimulatory molecules involved in host defense against pathogens. This underscores the potential proviral or antiviral roles of these interactions on mosquito-borne viral infections. Our study provides a preliminary enquiry into the vector (mosquito)-host (human) interaction networks and how this interaction could be further investigated and harnessed as a strategy to augment existing vector-borne diseases control approaches.
Collapse
|
8
|
Lu S, Martin-Martin I, Ribeiro JM, Calvo E. A deeper insight into the sialome of male and female Ochlerotatus triseriatus mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103800. [PMID: 35787945 PMCID: PMC9494274 DOI: 10.1016/j.ibmb.2022.103800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Over the last 20 years, advancements in sequencing technologies have highlighted the unique composition of the salivary glands of blood-feeding arthropods. Further biochemical and structural data demonstrated that salivary proteins can disrupt host hemostasis, inflammation and immunity, which favors pathogen transmission. Previously, a Sanger-based sialome of adult Ochlerotatus triseriatus female salivary glands was published based on 731 expressed sequence tag (ESTs). Here, we revisited O. triseriatus salivary gland contents using an Illumina-based sequencing approach of both male and female tissues. In the current data set, we report 10,317 DNA coding sequences classified into several functional classes. The translated transcripts also served as a reference database for proteomic analysis of O. triseriatus female saliva, in which unique peptides from 101 proteins were found. Finally, comparison of male and female libraries allowed for the identification of female-enriched transcripts that are potentially related to blood acquisition and virus transmission.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jose M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|