1
|
Chacón RD, Sánchez-Llatas CJ, L Pajuelo S, Diaz Forero AJ, Jimenez-Vasquez V, Médico JA, Soto-Ugaldi LF, Astolfi-Ferreira CS, Piantino Ferreira AJ. Molecular characterization of the meq oncogene of Marek's disease virus in vaccinated Brazilian poultry farms reveals selective pressure on prevalent strains. Vet Q 2024; 44:1-13. [PMID: 38465827 DOI: 10.1080/01652176.2024.2318198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Christian J Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | | - Andrea J Diaz Forero
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Jack A Médico
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | | | | |
Collapse
|
2
|
Chacón RD, Sánchez-Llatas CJ, Astolfi-Ferreira CS, Raso TF, Piantino Ferreira AJ. Diversity of Marek's Disease Virus Strains in Infections in Backyard and Ornamental Birds. Animals (Basel) 2024; 14:2867. [PMID: 39409816 PMCID: PMC11482489 DOI: 10.3390/ani14192867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Marek's disease is caused by Mardivirus gallidalpha2, commonly known as Marek's disease virus (MDV). This pathogen infects various bird species resulting in a range of clinical manifestations. The meq gene, which is crucial for oncogenesis, has been extensively studied, but molecular investigations of MDV in noncommercial South American birds are limited. This study detected MDV in backyard and ornamental birds from Brazil and Peru and characterized the meq gene. MDV was confirmed in all seven outbreaks examined. Three isoforms of meq (S-meq, meq, and L-meq) and two to seven proline repeat regions (PRRs) were detected among the sequenced strains. At the amino acid level, genetic profiles with low and high virulence potential were identified. Phylogenetic analysis grouped the sequences into three distinct clusters. Selection pressure analysis revealed 18 and 15 codons under positive and negative selection, respectively. The results demonstrate significant MDV diversity in the studied birds, with both high and low virulence potentials. This study highlights the importance of monitoring and characterizing circulating MDV in backyard and ornamental birds, as they can act as reservoirs for future epidemiological outbreaks.
Collapse
Affiliation(s)
- Ruy D. Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Tânia Freitas Raso
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Antonio J. Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| |
Collapse
|
3
|
Ortigas-Vasquez A, Pandey U, Renner DW, Bowen CD, Baigent SJ, Dunn J, Cheng H, Yao Y, Read AF, Nair V, Kennedy DA, Szpara ML. Comparative analysis of multiple consensus genomes of the same strain of Marek's disease virus reveals intrastrain variation. Virus Evol 2024; 10:veae047. [PMID: 39036034 PMCID: PMC11259760 DOI: 10.1093/ve/veae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Current strategies to understand the molecular basis of Marek's disease virus (MDV) virulence primarily consist of cataloging divergent nucleotides between strains with different phenotypes. However, most comparative genomic studies of MDV rely on previously published consensus genomes despite the confirmed existence of MDV strains as mixed viral populations. To assess the reliability of interstrain genomic comparisons relying on published consensus genomes of MDV, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform three-way comparisons between multiple consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). By contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Notably, we were able to identify 3 single-nucleotide polymorphisms (SNPs) in the unique long region and 16 SNPs in the unique short (US) region of CVI988GenBank.BAC that were not present in either CVI988Pirbright.lab or CVI988USDA.PA.field. Recombination analyses of field strains previously described as natural recombinants of CVI988 yielded no evidence of crossover events in the US region when either CVI988Pirbright.lab or CVI988USDA.PA.field were used to represent CVI988 instead of CVI988GenBank.BAC. We were also able to confirm that both CVI988 and Md5 populations were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. However, we did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988GenBank.BAC. Taken together, our findings suggest that continued reliance on the same published consensus genome of CVI988 may have led to an overestimation of genomic divergence between CVI988 and virulent strains and that multiple consensus genomes per strain may be necessary to ensure the accuracy of interstrain genomic comparisons.
Collapse
Affiliation(s)
- Alejandro Ortigas-Vasquez
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel W Renner
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Chris D Bowen
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Susan J Baigent
- Viral Oncogenesis Group, The Pirbright Institute, Woking GU24 0NF, UK
| | - John Dunn
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30605, USA
| | - Hans Cheng
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Yongxiu Yao
- Viral Oncogenesis Group, The Pirbright Institute, Woking GU24 0NF, UK
| | - Andrew F Read
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Woking GU24 0NF, UK
| | - Dave A Kennedy
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Moriah L Szpara
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Zhu ZJ, Teng M, Liu Y, Chen FJ, Yao Y, Li EZ, Luo J. Immune escape of avian oncogenic Marek's disease herpesvirus and antagonistic host immune responses. NPJ Vaccines 2024; 9:109. [PMID: 38879650 PMCID: PMC11180173 DOI: 10.1038/s41541-024-00905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Marek's disease virus (MDV) is a highly pathogenic and oncogenic alpha herpesvirus that causes Marek's disease (MD), which is one of the most important immunosuppressive and rapid-onset neoplastic diseases in poultry. The onset of MD lymphomas and other clinical diseases can be efficiently prevented by vaccination; these vaccines are heralded as the first demonstration of a successful vaccination strategy against a cancer. However, the persistent evolution of epidemic MDV strains towards greater virulence has recently resulted in frequent outbreaks of MD in vaccinated chicken flocks worldwide. Herein, we provide an overall review focusing on the discovery and identification of the strategies by which MDV evades host immunity and attacks the immune system. We have also highlighted the decrease in the immune efficacy of current MD vaccines. The prospects, strategies and new techniques for the development of efficient MD vaccines, together with the possibilities of antiviral therapy in MD, are also discussed.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Man Teng
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Yu Liu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Fu-Jia Chen
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - En-Zhong Li
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China.
| | - Jun Luo
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China.
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
- Longhu Laboratory, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
5
|
Motai Y, Murata S, Sato J, Nishi A, Maekawa N, Okagawa T, Konnai S, Ohashi K. Characterization of a Very Short Meq Protein Isoform in a Marek's Disease Virus Strain in Japan. Vet Sci 2024; 11:43. [PMID: 38275925 PMCID: PMC10818563 DOI: 10.3390/vetsci11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Marek's disease virus (MDV) causes malignant lymphoma (Marek's disease; MD) in chickens. The Meq protein is essential for tumorigenesis since it regulates the expression of host and viral genes. Previously, we reported that the deletion of the short isoform of Meq (S-Meq) decreases the pathogenicity of MDV. Recently, we identified a further short isoform of Meq (very short isoform of Meq, VS-Meq) in chickens with MD in Japan. A 64-amino-acid deletion was confirmed at the C-terminus of VS-Meq. We measured the transcriptional regulation by VS-Meq in three gene promoters to investigate the effect of VS-Meq on protein function. Wild-type VS-Meq decreased the transrepression of the pp38 promoter but did not alter the transactivation activity of the Meq and Bcl-2 promoters. The deletion in VS-Meq did not affect the activity of the pp38 promoter but enhanced the transactivation activities of the Meq and Bcl-2 promoters. Collectively, the deletion of VS-Meq potentially enhanced the activity of the Meq promoter, while other amino acid sequences in wild-type VS-Meq seemed to affect the weak transrepression of the pp38 promoter. Further investigation is required to clarify the effects of these changes on pathogenicity.
Collapse
Affiliation(s)
- Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Akihito Nishi
- Chuo Livestock Hygiene Service Center, Agriculture Promotion Department, Kochi Prefecture, 3229 Otsu, Takaoka-cho, Tosa 781-1102, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
6
|
Ortigas-Vasquez A, Pandey U, Renner D, Bowen C, Baigent SJ, Dunn J, Cheng H, Yao Y, Read AF, Nair V, Kennedy DA, Szpara ML. Comparative Analysis of Multiple Consensus Genomes of the Same Strain of Marek's Disease Virus Reveals Intrastrain Variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.04.556264. [PMID: 37732198 PMCID: PMC10508761 DOI: 10.1101/2023.09.04.556264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Current strategies to understand the molecular basis of Marek's disease virus (MDV) virulence primarily consist of cataloguing divergent nucleotides between strains with different phenotypes. However, each MDV strain is typically represented by a single consensus genome despite the confirmed existence of mixed viral populations. To assess the reliability of single-consensus interstrain genomic comparisons, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform 3-way comparisons between consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). In contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Phylogenomic analyses showed all three Md5 consensus genomes clustered closely together, while also showing that CVI988 GenBank.BAC diverged from CVI988 Pirbright.lab and CVI988 USDA.PA.field . Comparison of CVI988 consensus genomes revealed 19 SNPs in the unique regions of CVI988 GenBank.BAC that were not present in either CVI988 Pirbright.lab or CVI988 USDA.PA.field . Finally, we evaluated the genomic heterogeneity of CVI988 and Md5 populations by identifying positions with >2% read support for alternative alleles in two ultra-deeply sequenced samples. We were able to confirm that both populations of CVI988 and Md5 were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. We did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988 GenBank.BAC . Taken together, our findings confirm that consensus genomes of the same strain of MDV can vary and suggest that multiple consensus genomes per strain are needed in order to maximize the accuracy of interstrain genomic comparisons.
Collapse
|
7
|
Fiddaman SR, Dimopoulos EA, Lebrasseur O, du Plessis L, Vrancken B, Charlton S, Haruda AF, Tabbada K, Flammer PG, Dascalu S, Marković N, Li H, Franklin G, Symmons R, Baron H, Daróczi-Szabó L, Shaymuratova DN, Askeyev IV, Putelat O, Sana M, Davoudi H, Fathi H, Mucheshi AS, Vahdati AA, Zhang L, Foster A, Sykes N, Baumberg GC, Bulatović J, Askeyev AO, Askeyev OV, Mashkour M, Pybus OG, Nair V, Larson G, Smith AL, Frantz LAF. Ancient chicken remains reveal the origins of virulence in Marek's disease virus. Science 2023; 382:1276-1281. [PMID: 38096384 DOI: 10.1126/science.adg2238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens.
Collapse
Affiliation(s)
| | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS/Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Sophy Charlton
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Ashleigh F Haruda
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabbada
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | | | | | - Hannah Li
- Institute of Immunity and Transplantation, University College London, London, UK
| | | | | | | | | | - Dilyara N Shaymuratova
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Igor V Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | | | - Maria Sana
- Departament de Prehistòria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Homa Fathi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Amir Saed Mucheshi
- Department of Art and Architecture, Payame Noor University (PNU), Tehran, Iran
| | - Ali Akbar Vahdati
- Iranian Ministry of Cultural Heritage, Tourism, and Handicrafts, North Khorasan Office, Iran
| | - Liangren Zhang
- Department of Archaeology, School of History, Nanjing University, China
| | | | - Naomi Sykes
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Gabrielle Cass Baumberg
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Jelena Bulatović
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Arthur O Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Oleg V Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Marjan Mashkour
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
- CNRS, National Museum Natural History Paris, Paris, France
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Venugopal Nair
- Department of Biology, University of Oxford, Oxford, UK
- Viral Oncogenesis Group, Pirbright Institute, Woking, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | - Laurent A F Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universitat, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Li W, Meng H, Liang X, Peng J, Irwin DM, Shen X, Shen Y. The genome evolution of Marek's disease viruses in chickens and turkeys in China. Virus Genes 2023; 59:845-851. [PMID: 37851282 DOI: 10.1007/s11262-023-02034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
The virus that causes Marek's disease (MD) is globally ubiquitous in chickens, continuously evolving, and poses a significant threat to the poultry industry. Although vaccines are extensively used, MD still occurs frequently and the virus has evolved increased virulence in China. Here, we report an outbreak of MD in vaccinated chickens and unvaccinated turkeys in a backyard farm in Guangdong province, China, in 2018. Phylogenetic analysis revealed two lineages of MDVs at this farm, with one lineage, containing isolates from two turkeys and five chickens, clustering with virulent Chinese strains and displays a relatively high genetic divergence from the vaccine strains. These new isolates appear to have broken through vaccine immunity, yielding this outbreak of MD in chickens and turkeys. The second lineage included four chicken isolates that clustered with the CVI988 and 814 vaccine strains. The large diversity of MDVs in this single outbreak reveals a complex circulation of MDVs in China. Poor breeding conditions and the weak application of disease prevention and control measures make backyard farms a hotbed for the evolution of viruses that cause infectious diseases. This is especially important in MDV as the MD vaccines do not provide sterilizing immunity, which allows the replication and shedding of virulent field viruses by vaccinated individuals and supporting the continuous evolution of MDVs. Hence, constant monitoring of the evolution of MDVs is necessary to understand the evolution of these field viruses and potential expansions of their host range.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huifang Meng
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xianghui Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jinyu Peng
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xuejuan Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|