1
|
Zehr JD, Kosakovsky Pond SL, Shank SD, McQueary H, Grenier JK, Whittaker GR, Stanhope MJ, Goodman LB. Positive selection, genetic recombination, and intra-host evolution in novel equine coronavirus genomes and other members of the Embecovirus subgenus. Microbiol Spectr 2024; 12:e0086724. [PMID: 39373506 PMCID: PMC11542594 DOI: 10.1128/spectrum.00867-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
There are several examples of coronaviruses in the Betacoronavirus subgenus Embecovirus that have jumped from an animal to the human host. Studying how evolutionary factors shape coronaviruses in non-human hosts may provide insight into the coronavirus host-switching potential. Equids, such as horses and donkeys, are susceptible to equine coronaviruses (ECoVs). With increased testing prevalence, several ECoV genome sequences have become available for molecular evolutionary analyses, especially those from the United States of America (USA). To date, no analyses have been performed to characterize evolution within coding regions of the ECoV genome. Here, we obtain and describe four new ECoV genome sequences from infected equines from across the USA presenting clinical symptoms of ECoV, and infer ECoV-specific and Embecovirus-wide patterns of molecular evolution. Within two of the four data sets analyzed, we find evidence of intra-host evolution within the nucleocapsid (N) gene, suggestive of quasispecies development. We also identify 12 putative genetic recombination events within the ECoV genome, 11 of which fall in ORF1ab. Finally, we infer and compare sites subject to positive selection on the ancestral branch of each major Embecovirus member clade. Specifically, for the two currently identified human coronavirus (HCoV) embecoviruses that have spilled from animals to humans (HCoV-OC43 and HCoV-HKU1), we find that there are 42 and 2 such sites, respectively, perhaps reflective of the more complex ancestral evolutionary history of HCoV-OC43, which involves several different animal hosts.IMPORTANCEThe Betacoronavirus subgenus Embecovirus contains coronaviruses that not only pose a health threat to animals and humans, but also have jumped from animal to human host. Equids, such as horses and donkeys are susceptible to equine coronavirus (ECoV) infections. No studies have systematically examined evolutionary patterns within ECoV genomes. Our study addresses this gap and provides insight into intra-host ECoV evolution from infected horses. Further, we identify and report natural selection pattern differences between two embecoviruses that have jumped from animals to humans [human coronavirus OC43 and HKU1 (HCoV-OC43 and HCoV-HKU1, respectively)], and hypothesize that the differences observed may be due to the different animal host(s) that each virus circulated in prior to its jump into humans. Finally, we contribute four novel, high-quality ECoV genomes to the scientific community.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Stephen D. Shank
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Holly McQueary
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Jennifer K. Grenier
- Cornell Institute of
Biotechnology, Transcriptional Regulation and Expression
Facility, Ithaca,
New York, USA
| | - Gary R. Whittaker
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Michael J. Stanhope
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Laura B. Goodman
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| |
Collapse
|
2
|
Domanska-Blicharz K, Lisowska A, Opolska J, Ruszkowski JJ, Gogulski M, Pomorska-Mól M. Whole genome characteristics of hedgehog coronaviruses from Poland and analysis of the evolution of the Spike protein for its interspecies transmission potential. BMC Vet Res 2024; 20:424. [PMID: 39304831 PMCID: PMC11415979 DOI: 10.1186/s12917-024-04277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The hedgehogs have been recently identified as possible reservoir of Middle East respiratory syndrome coronavirus like (MERS-CoV-like). These viruses were classified as a distinct Betacoronavirus erinacei (BCoV-Eri) species within the MerBCoV-Eriirus subgenus. As coronaviruses are known for their ability to jump between different hosts, including humans, this can pose a particular threat to people in direct contact with hedgehogs, such as those working at animal asylums. Our previous studies have shown the presence of BCoV-Eri strains in animals collected in the wildlife rehabilitation centre. This study aimed to investigate the presence of CoV in subsequent hedgehogs collected from the urban area of Poland and their molecular characteristics. RESULTS Monitoring for the presence of coronavirus infection in hedgehogs revealed five positive individuals. The presence of BCoV-Eri was found in a total of 20% of animals tested. Our analyses revealed no correlation between CoVs positivity and animal health conditions but a higher probability of such infection in juveniles and females. The whole genome of two Polish Hedgehog coronavirus 1 strains were sequenced and compared with available counterparts from European and Asian countries. Phylogenetic analysis showed that both CoV strains formed common cluster with other similar MerBCoV-Eriirus, but they were also found to be genetically variable and most changes in the S protein were identified. Our analysis revealed that some S protein sites of the Hedgehog coronavirus 1 strains evolved under positive selection pressure and of five such sites, three are in the S1 region while the other two in the S2 region of the Spike. CONCLUSIONS BCoV-Eri is to some extent prevalent in wildlife asylums in Poland. Given that the S protein of BCoVs-Eri is highly variable and that some sites of this protein evolve under positive selection pressure, these strains could potentially acquire a favourable feature for cross-species transmission. Consequently, the threat to humans working in such asylums is particularly high. Adequate biosecurity safeguards, but also human awareness of such risks, are therefore essential.
Collapse
Affiliation(s)
- Katarzyna Domanska-Blicharz
- Department of Poultry Diseases, National Veterinary Research Institute, al. Partyzantów 57, Puławy, 24-100, Poland.
| | - Anna Lisowska
- Department of Poultry Diseases, National Veterinary Research Institute, al. Partyzantów 57, Puławy, 24-100, Poland
| | - Justyna Opolska
- Department of Poultry Diseases, National Veterinary Research Institute, al. Partyzantów 57, Puławy, 24-100, Poland
| | - Jakub J Ruszkowski
- Department of Animal Anatomy, University of Life Sciences in Poznań, ul. Wojska Polskiego 71C, Poznań, 60-625, Poland
- University Centre for Veterinary Medicine, University of Life Sciences in Poznań, Szydłowska 43, Poznań, 60-656, Poland
| | - Maciej Gogulski
- Department of Animal Anatomy, University of Life Sciences in Poznań, ul. Wojska Polskiego 71C, Poznań, 60-625, Poland
- University Centre for Veterinary Medicine, University of Life Sciences in Poznań, Szydłowska 43, Poznań, 60-656, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, University of Life Sciences in Poznań, ul. Wołyńska 35, Poznań, 60-637, Poland
| |
Collapse
|
3
|
Olarte-Castillo XA, Plimpton L, McQueary H, Sun Y, Yu YT, Cover S, Richardson AN, Jin Y, Grenier JK, Cummings KJ, Bunting E, Diuk-Wasser M, Needle D, Schuler K, Stanhope MJ, Whittaker G, Goodman LB. Detection and characterization of novel luchacoviruses, genus Alphacoronavirus, in saliva and feces of meso-carnivores in the northeastern United States. J Virol 2023; 97:e0082923. [PMID: 37882520 PMCID: PMC10688340 DOI: 10.1128/jvi.00829-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Several coronaviruses (CoVs) have been detected in domesticated, farmed, and wild meso-carnivores, causing a wide range of diseases and infecting diverse species, highlighting their important but understudied role in the epidemiology of these viruses. Assessing the viral diversity hosted in wildlife species is essential to understand their significance in the cross-species transmission of CoVs. Our focus here was on CoV discovery in meso-carnivores in the Northeast United States as a potential "hotspot" area with high density of humans and urban wildlife. This study identifies novel alphacoronaviruses circulating in multiple free-ranging wild and domestic species in this area and explores their potential epidemiological importance based on regions of the Spike gene, which are relevant for virus-host interactions.
Collapse
Affiliation(s)
- Ximena A. Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Laura Plimpton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, USA
| | - Holly McQueary
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yining Sun
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Y. Tina Yu
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Sarah Cover
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Amy N. Richardson
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yuhan Jin
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jennifer K. Grenier
- Transcriptional Regulation and Expression Facility, Biotechnology Resource Center, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Kevin J. Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Elizabeth Bunting
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture, University of New Hampshire, Durham, USA
| | - Krysten Schuler
- Cornell Wildlife Health Lab, Animal Health Diagnostic Center, Cornell College of Veterinary Medicine, Ithaca, New York, USA
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gary Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Laura B. Goodman
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Liu Y, Chen D, Wang Y, Li X, Qiu Y, Zheng M, Song Y, Li G, Song C, Liu T, Zhang Y, Guo JT, Lin H, Zhao X. Characterization of CCoV-HuPn-2018 spike protein-mediated viral entry. J Virol 2023; 97:e0060123. [PMID: 37676001 PMCID: PMC10537617 DOI: 10.1128/jvi.00601-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
Canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018) was recently isolated from a child with pneumonia. This novel human pathogen resulted from cross-species transmission of a canine coronavirus. It has been known that CCoV-HuPn-2018 uses aminopeptidase N (APN) from canines, felines, and porcines, but not humans, as functional receptors for cell entry. The molecular mechanism of cell entry in CCoV-HuPn-2018 remains poorly understood. In this study, we demonstrated that among the nine APN orthologs tested, the APN of the Mexican free-tailed bat could also efficiently support CCoV-HuPn-2018 spike (S) protein-mediated entry, raising the possibility that bats may also be an alternative host epidemiologically important for the transmission of this virus. The glycosylation at residue N747 of canine APN is critical for its receptor activity. The gain of glycosylation at the corresponding residues in human and rabbit APNs converted them to functional receptors for CCoV-HuPn-2018. Interestingly, the CCoV-HuPn-2018 spike protein pseudotyped virus infected multiple human cancer cell lines in a human APN-independent manner, whereas sialic acid appeared to facilitate the entry of the pseudotyped virus into human cancer cells. Moreover, while host cell surface proteases trypsin and TMPRSS2 did not promote the entry of CCoV-HuPn-2018, endosomal proteases cathepsin L and B are required for the entry of CCoV-HuPn-2018 in a pH-dependent manner. IFITMs and LY6E are host restriction factors for the CCoV-HuPn-2018 entry. Our results thus suggest that CCoV-HuPn-2018 has not yet evolved to be an efficient human pathogen. Collectively, this study helps us understand the cell tropism, receptor usage, cross-species transmission, natural reservoir, and pathogenesis of this potential human coronavirus. IMPORTANCE Viral entry is driven by the interaction between the viral spike protein and its specific cellular receptor, which determines cell tropism and host range and is the major constraint to interspecies transmission of coronaviruses. Aminopeptidase N (APN; also called CD13) is a cellular receptor for HCoV-229E, the newly discovered canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018), and many other animal alphacoronaviruses. We examined the receptor activity of nine APN orthologs and found that CCoV-HuPn-2018 utilizes APN from a broad range of animal species, including bats but not humans, to enter host cells. To our surprise, we found that CCoV-HuPn-2018 spike protein pseudotyped viral particles successfully infected multiple human hepatoma-derived cell lines and a lung cancer cell line, which is independent of the expression of human APN. Our findings thus provide mechanistic insight into the natural hosts and interspecies transmission of CCoV-HuPn-2018-like coronaviruses.
Collapse
Affiliation(s)
- Yongmei Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yuanyuan Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Peking University Ditan Teaching Hospital, Beijing, China
| | - Xinglin Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yaruo Qiu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Peking University Ditan Teaching Hospital, Beijing, China
| | - Mei Zheng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yanjun Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Guoli Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Tingting Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Hanxin Lin
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
- Molecular Genetics Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Xuesen Zhao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| |
Collapse
|
5
|
Poonsin P, Wiwatvisawakorn V, Chansaenroj J, Poovorawan Y, Piewbang C, Techangamsuwan S. Canine respiratory coronavirus in Thailand undergoes mutation and evidences a potential putative parent for genetic recombination. Microbiol Spectr 2023; 11:e0226823. [PMID: 37707446 PMCID: PMC10581155 DOI: 10.1128/spectrum.02268-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Canine respiratory coronavirus (CRCoV) is associated with canine infectious respiratory disease complex. Although its detection has been reported worldwide, the genomic characteristics and evolutionary patterns of this virus remain poorly defined. In this study, 21 CRCoV sequences obtained from dogs in Thailand during two episodes (2013-2015, group A; 2021-2022, group B) were characterized and analyzed. The genomic characteristics of Thai CRCoVs changed from 2013 to 2022 and showed a distinct phylogenetic cluster. Phylogenetic analysis of the spike (S) genes divided the analyzed CRCoV strains into five clades. The full-length genome characterization revealed that all Thai CRCoVs possessed a nonsense mutation within the nonstructural gene located between the S and envelope genes, leading to a truncated putative nonstructural protein. Group B Thai CRCoV strains represented the signature nonsynonymous mutations in the S gene that was not identified in group A Thai CRCoVs, suggesting the ongoing evolutionary process of Thai CRCoVs. Although no evidence of recombination of Thai CRCoV strains was found, our analysis identified one Thai CRCoV strain as a potential parent virus for a CRCoV strain found in the United States. Selective pressure analysis of the hypervariable S region indicated that the CRCoV had undergone purifying selection during evolution. Evolutionary analysis suggested that the CRCoV was emerged in 1992 and was first introduced in Thailand in 2004, sharing a common ancestor with Korean CRCoV strains. These findings regarding the genetic characterization and evolutionary analysis of CRCoVs add to the understanding of CRCoVs. IMPORTANCE Knowledge of genomic characterization of the CRCoV is still limited and its evolution remains poorly investigated. We, therefore, investigated the full-length genome of CRCoV in Thailand for the first time and analyzed the evolutionary dynamic of CRCoV. Genomic characterization of Thai CRCoV strains revealed that they possess unique genome structures and have undergone nonsynonymous mutations, which have not been reported in previously described CRCoV strains. Our work suggests that the Thai CRCoVs were not undergone mutation through genetic recombination for their evolution. However, one Thai CRCoV strain PP158_THA_2015 was found to be a potential parent virus for the CRCoV strains found in the United States. This study provides an understanding of the genomic characterization and highlights the signature mutations and ongoing evolutionary process of CRCoV that could be crucial for monitoring in the future.
Collapse
Affiliation(s)
- Panida Poonsin
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Jira Chansaenroj
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Olarte-Castillo XA, Plimpton L, McQueary H, Sun Y, Yu YT, Cover S, Richardson AN, Jin Y, Grenier JK, Cummings KJ, Bunting E, Diuk-Wasser M, Needle D, Schuler K, Stanhope MJ, Whittaker G, Goodman LB. Detection and characterization of novel luchacoviruses, genus Alphacoronavirus, shed in saliva and feces of meso-carnivores in the northeastern United States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.541188. [PMID: 37745528 PMCID: PMC10515766 DOI: 10.1101/2023.05.31.541188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Small to mid-sized carnivores, or meso-carnivores, comprise a group of diverse mammals, many of which can adapt to anthropogenically disturbed environments. Wild meso-carnivores living in urban areas may get exposed to or spread pathogens to other species, including stray/feral domestic animals. Several coronaviruses (CoVs) have been detected in domesticated and farmed meso-carnivores, but knowledge of CoVs circulating in free-ranging wild meso-carnivores remains limited. In this study, we analyzed 321 samples collected between 2016 and 2022 from 9 species of free-ranging wild meso-carnivores and stray/feral domestic cats in the northeastern United States. Using a pan-CoV PCR, we screened tissues, feces, and saliva, nasal, and rectal swabs. We detected CoV RNA in fecal and saliva samples of animals in four species: fisher (Pekania pennanti), bobcat (Lynx rufus), red fox (Vulpes vulpes), and domestic cat (Felis catus). Next-generation sequencing revealed that all these viruses belonged to the Luchacovirus subgenus (Alphacoronavirus genus), previously reported only in rodents and lagomorphs (i.e., rabbits). Genetic comparison of the 3'-end of the genome (~12,000bp) revealed that although the viruses detected group with, and have a genetic organization similar to other luchacoviruses, they are genetically distinct from those from rodents and lagomorphs. Genetic characterization of the spike protein revealed that the meso-carnivore luchacoviruses do not have an S1/S2 cleavage motif but do have highly variable structural loops containing cleavage motifs similar to those identified in certain pathogenic CoVs. This study highlights the importance of characterizing the spike protein of CoVs in wild species for further targeted epidemiologic monitoring.
Collapse
Affiliation(s)
- Ximena A. Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Laura Plimpton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Holly McQueary
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Yining Sun
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Y. Tina Yu
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sarah Cover
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Amy N. Richardson
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Yuhan Jin
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jennifer K. Grenier
- Transcriptional Regulation and Expression Facility, Biotechnology Resource Center, Institute of Biotechnology, Cornell University
| | - Kevin J. Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Elizabeth Bunting
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture, University of New Hampshire
| | - Krysten Schuler
- Cornell Wildlife Health Lab, Animal Health Diagnostic Center, Cornell College of Veterinary Medicine, 240 Farrier Road, Ithaca, NY 14853
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gary Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Laura B. Goodman
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Bianchini F, Crivelli V, Abernathy ME, Guerra C, Palus M, Muri J, Marcotte H, Piralla A, Pedotti M, De Gasparo R, Simonelli L, Matkovic M, Toscano C, Biggiogero M, Calvaruso V, Svoboda P, Cervantes Rincón T, Fava T, Podešvová L, Shanbhag AA, Celoria A, Sgrignani J, Stefanik M, Hönig V, Pranclova V, Michalcikova T, Prochazka J, Guerrini G, Mehn D, Ciabattini A, Abolhassani H, Jarrossay D, Uguccioni M, Medaglini D, Pan-Hammarström Q, Calzolai L, Fernandez D, Baldanti F, Franzetti-Pellanda A, Garzoni C, Sedlacek R, Ruzek D, Varani L, Cavalli A, Barnes CO, Robbiani DF. Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein. Sci Immunol 2023; 8:eade0958. [PMID: 36701425 PMCID: PMC9972897 DOI: 10.1126/sciimmunol.ade0958] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Virginia Crivelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | | | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Harold Marcotte
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Raoul De Gasparo
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Milos Matkovic
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Chiara Toscano
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Maira Biggiogero
- Clinical Research Unit, Clinica Luganese Moncucco; Lugano, Switzerland
| | | | - Pavel Svoboda
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences; Brno, Czech Republic
| | - Tomás Cervantes Rincón
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Tommaso Fava
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Lucie Podešvová
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Akanksha A. Shanbhag
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Celoria
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Michal Stefanik
- Veterinary Research Institute; Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno; Brno, Czech Republic
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Veronika Pranclova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia; Ceske Budejovice, Czech Republic
| | - Tereza Michalcikova
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences; Tehran, Iran
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | | | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Daniel Fernandez
- Sarafan ChEM-H Macromolecular Structure Knowledge Center, Stanford University; Stanford, USA
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia; Pavia, Italy
| | | | - Christian Garzoni
- Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; Lugano, Switzerland
| | - Radislav Sedlacek
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Christopher O. Barnes
- Department of Biology, Stanford University; Stanford, USA
- Chan Zuckerberg Biohub; San Francisco, USA
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| |
Collapse
|
8
|
Zehr JD, Kosakovsky Pond SL, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic feline coronavirus phenotypes. Virus Evol 2023; 9:vead019. [PMID: 37038392 PMCID: PMC10082545 DOI: 10.1093/ve/vead019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Feline coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed feline enteric coronavirus [FECV]), with around 12 per cent developing into deadly feline infectious peritonitis (FIP; feline infectious peritonitis virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV- and FECV-specific signals of positive selection. We analyzed full-length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site (FCS) and the other within the fusion domain of Spike. We also found fifteen sites subject to positive selection associated with FIPV within Spike, eleven of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were fourteen sites (twelve novel sites) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 FCS and adjacent to C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype and included twenty-four positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV-wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that it is unlikely to be one singular 'switch' mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas 78352, France
| | - Ximena A Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alexander G Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Laura B Goodman
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Zehr JD, Pond SLK, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic Feline Coronavirus phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523607. [PMID: 36712007 PMCID: PMC9882035 DOI: 10.1101/2023.01.11.523607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Feline Coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed Feline Enteric Coronavirus [FECV]), with around 12% developing into deadly Feline Infectious Peritonitis (FIP; Feline Infectious Peritonitis Virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV and FECV specific signals of positive selection. We analyzed full length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site, and the other within the fusion domain of Spike. We also found 15 sites subject to positive selection associated with FIPV within Spike, 11 of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were 14 sites (12 novel) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 furin cleavage site and adjacent C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype, and included 24 positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that is unlikely to be one singular "switch" mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouyen-Josas, France
| | - Ximena A. Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Alexander G. Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D. Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M. Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Annette Choi
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gary R. Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Laura B. Goodman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
10
|
Bianchini F, Crivelli V, Abernathy ME, Guerra C, Palus M, Muri J, Marcotte H, Piralla A, Pedotti M, De Gasparo R, Simonelli L, Matkovic M, Toscano C, Biggiogero M, Calvaruso V, Svoboda P, Rincón TC, Fava T, Podešvová L, Shanbhag AA, Celoria A, Sgrignani J, Stefanik M, Hönig V, Pranclova V, Michalcikova T, Prochazka J, Guerrini G, Mehn D, Ciabattini A, Abolhassani H, Jarrossay D, Uguccioni M, Medaglini D, Pan-Hammarström Q, Calzolai L, Fernandez D, Baldanti F, Franzetti-Pellanda A, Garzoni C, Sedlacek R, Ruzek D, Varani L, Cavalli A, Barnes CO, Robbiani DF. Human neutralizing antibodies to cold linear epitopes and to subdomain 1 of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.24.515932. [PMID: 36482967 PMCID: PMC9727766 DOI: 10.1101/2022.11.24.515932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Emergence of SARS-CoV-2 variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera , including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization and, like fp.006 and hr2.016, protects mice when present as bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae , including SARS-CoV-2 variants. One sentence summary Broadly cross-reactive antibodies that protect from SARS-CoV-2 variants are revealed by virus coldspot-driven discovery.
Collapse
Affiliation(s)
- Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Virginia Crivelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | | | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Harold Marcotte
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Raoul De Gasparo
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Milos Matkovic
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Chiara Toscano
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Maira Biggiogero
- Clinical Research Unit, Clinica Luganese Moncucco; Lugano, Switzerland
| | | | - Pavel Svoboda
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences; Brno, Czech Republic
| | - Tomás Cervantes Rincón
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Tommaso Fava
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Lucie Podešvová
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Akanksha A. Shanbhag
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Celoria
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Michal Stefanik
- Veterinary Research Institute; Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno; Brno, Czech Republic
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Veronika Pranclova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia; Ceske Budejovice, Czech Republic
| | - Tereza Michalcikova
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences; Tehran, Iran
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | | | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Daniel Fernandez
- Sarafan ChEM-H Macromolecular Structure Knowledge Center, Stanford University; Stanford, USA
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia; Pavia, Italy
| | | | - Christian Garzoni
- Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; Lugano, Switzerland
| | - Radislav Sedlacek
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Christopher O. Barnes
- Department of Biology, Stanford University; Stanford, USA
- Chan Zuckerberg Biohub; San Francisco, USA
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| |
Collapse
|