1
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024; 32:1877-1892. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Wang Y, Chen F, Qu W, Gong Y, Wang Y, Chen L, Zhou Q, Mo J, Zhang H, Lin L, Bi T, Wang X, Gu J, Li Y, Sui L. Alternative splicing in the genome of HPV and its regulation. Front Cell Infect Microbiol 2024; 14:1443868. [PMID: 39502170 PMCID: PMC11534716 DOI: 10.3389/fcimb.2024.1443868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HR-HPV) is the main cause of cervical cancer. These chronic infections are characterized by high expression of the HPV E6 and E7 oncogenes and the absence of the L1 and L2 capsid proteins. The regulation of HPV gene expression plays a crucial role in both the viral life cycle and rare oncogenic events. Alternative splicing of HPV mRNA is a key mechanism in post-transcriptional regulation. Through alternative splicing, HPV mRNA is diversified into various splice isoforms with distinct coding potentials, encoding multiple proteins and influencing the expression of HPV genes. The spliced mRNAs derived from a donor splicing site within the E6 ORF and one of the different acceptor sites located in the early mRNA contain E6 truncated mRNAs, named E6*. E6* is one of the extensively studied splicing isoforms. However, the role of E6* proteins in cancer progression remains controversial. Here, we reviewed and compared the alternative splicing events occurring in the genomes of HR-HPV and LR-HPV. Recently, new HPV alternative splicing regulatory proteins have been continuously discovered, and we have updated the regulation of HPV alternative splicing. In addition, we summarized the functions of known splice isoforms from three aspects: anti-tumorigenic, tumorigenic, and other cancer-related functions, including not only E6*, but also E6^E7, E8^E2, and so on. Comprehending their contributions to cancer development enhances insights into the carcinogenic mechanisms of HPV and explores the potential utility of alternative splicing in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Fang Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wenjie Qu
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingxin Gong
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yan Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Limei Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qi Zhou
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiayin Mo
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongwei Zhang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lin Lin
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Tianyi Bi
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xujie Wang
- Department of Obstetrics and Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Jiashi Gu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Shanghai, China
| | - Yanyun Li
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Long Sui
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
3
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Kuehner F, Wong M, Straub E, Doorbar J, Iftner T, Roden RBS, Stubenrauch F. Mus musculus papillomavirus 1 E8^E2 represses expression of late protein E4 in basal-like keratinocytes via NCoR/SMRT-HDAC3 co-repressor complexes to enable wart formation in vivo. mBio 2023; 14:e0069623. [PMID: 37382436 PMCID: PMC10470772 DOI: 10.1128/mbio.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
High-risk human papillomaviruses (PV) account for approximately 600,000 new cancers per year. The early protein E8^E2 is a conserved repressor of PV replication, whereas E4 is a late protein that arrests cells in G2 and collapses keratin filaments to facilitate virion release. While inactivation of the Mus musculus PV1 (MmuPV1) E8 start codon (E8-) increases viral gene expression, surprisingly, it prevents wart formation in FoxN1nu/nu mice. To understand this surprising phenotype, the impact of additional E8^E2 mutations was characterized in tissue culture and mice. MmuPV1 and HPV E8^E2 similarly interact with cellular NCoR/SMRT-HDAC3 co-repressor complexes. Disruption of the splice donor sequence used to generate the E8^E2 transcript or E8^E2 mutants (mt) with impaired binding to NCoR/SMRT-HDAC3 activates MmuPV1 transcription in murine keratinocytes. These MmuPV1 E8^E2 mt genomes also fail to induce warts in mice. The phenotype of E8^E2 mt genomes in undifferentiated cells resembles productive PV replication in differentiated keratinocytes. Consistent with this, E8^E2 mt genomes induced aberrant E4 expression in undifferentiated keratinocytes. In line with observations for HPV, MmuPV1 E4-positive cells displayed a shift to the G2 phase of the cell cycle. In summary, we propose that in order to enable both expansion of infected cells and wart formation in vivo, MmuPV1 E8^E2 inhibits E4 protein expression in the basal keratinocytes that would otherwise undergo E4-mediated cell cycle arrest. IMPORTANCE Human papillomaviruses (PVs) initiate productive replication, which is characterized by genome amplification and expression of E4 protein strictly within suprabasal, differentiated keratinocytes. Mus musculus PV1 mutants that disrupt splicing of the E8^E2 transcript or abolish the interaction of E8^E2 with cellular NCoR/SMRT-HDAC3 co-repressor complexes display increased gene expression in tissue culture but are unable to form warts in vivo. This confirms that the repressor activity of E8^E2 is required for tumor formation and genetically defines a conserved E8 interaction domain. E8^E2 prevents expression of E4 protein in basal-like, undifferentiated keratinocytes and thereby their arrest in G2 phase. Since binding of E8^E2 to NCoR/SMRT-HDAC3 co-repressor is required to enable expansion of infected cells in the basal layer and wart formation in vivo, this interaction represents a novel, conserved, and potentially druggable target.
Collapse
Affiliation(s)
- Franziska Kuehner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - Margaret Wong
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Elke Straub
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Iftner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - Richard B. S. Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Frank Stubenrauch
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
5
|
Deregulation of host gene expression by HPV16 E8^E2 knock-out genomes is due to increased productive replication. Virology 2023; 581:39-47. [PMID: 36870121 DOI: 10.1016/j.virol.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Productive replication of human papillomaviruses (HPV) only takes place in differentiating keratinocytes. The HPV16 E8^E2 protein acts as a repressor of viral gene expression and genome replication and HPV16 E8^E2 knock-out (E8-) genomes display enhanced viral late protein expression in differentiated cells. Global transcriptome analysis of differentiated HPV16 wild-type and E8-cell lines revealed a small number of differentially expressed genes which are not related to cell cycle, DNA metabolism or keratinocyte differentiation. The analysis of selected genes suggested that deregulation requires cell differentiation and positively correlated with the expression of viral late, not early transcripts. Consistent with this, the additional knock-out of the viral E4 and E5 genes, which are known to enhance productive replication, attenuated the deregulation of these host cell genes. In summary, these data reveal that productive HPV16 replication modulates host cell transcription.
Collapse
|