1
|
Khalid K, Poh CL. The development of DNA vaccines against SARS-CoV-2. Adv Med Sci 2023; 68:213-226. [PMID: 37364379 PMCID: PMC10290423 DOI: 10.1016/j.advms.2023.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND The COVID-19 pandemic exerted significant impacts on public health and global economy. Research efforts to develop vaccines at warp speed against SARS-CoV-2 led to novel mRNA, viral vectored, and inactivated vaccines being administered. The current COVID-19 vaccines incorporate the full S protein of the SARS-CoV-2 Wuhan strain but rapidly emerging variants of concern (VOCs) have led to significant reductions in protective efficacies. There is an urgent need to develop next-generation vaccines which could effectively prevent COVID-19. METHODS PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2023. RESULTS A promising solution to the problem of emerging variants is a DNA vaccine platform since it can be easily modified. Besides expressing whole protein antigens, DNA vaccines can also be constructed to include specific nucleotide genes encoding highly conserved and immunogenic epitopes from the S protein as well as from other structural/non-structural proteins to develop effective vaccines against VOCs. DNA vaccines are associated with low transfection efficiencies which could be enhanced by chemical, genetic, and molecular adjuvants as well as delivery systems. CONCLUSIONS The DNA vaccine platform offers a promising solution to the design of effective vaccines. The challenge of limited immunogenicity in humans might be solved through the use of genetic modifications such as the addition of nuclear localization signal (NLS) peptide gene, strong promoters, MARs, introns, TLR agonists, CD40L, and the development of appropriate delivery systems utilizing nanoparticles to increase uptake by APCs in enhancing the induction of potent immune responses.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia.
| |
Collapse
|
2
|
Zeng Z, Geng X, Wen X, Chen Y, Zhu Y, Dong Z, Hao L, Wang T, Yang J, Zhang R, Zheng K, Sun Z, Zhang Y. Novel receptor, mutation, vaccine, and establishment of coping mode for SARS-CoV-2: current status and future. Front Microbiol 2023; 14:1232453. [PMID: 37645223 PMCID: PMC10461067 DOI: 10.3389/fmicb.2023.1232453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.
Collapse
Affiliation(s)
- Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital of Central South University, National Regional Medical Center for Nervous System Diseases, Nanchang, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiuchao Geng
- Department of Nursing, School of Medicine, Taizhou University, Taizhou, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yixi Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zishu Dong
- Department of Zoology, Advanced Research Institute, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liangchao Hao
- Department of Plastic Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Tingting Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jifeng Yang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Ruobing Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yuhao Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Rcheulishvili N, Mao J, Papukashvili D, Feng S, Liu C, Wang X, He Y, Wang PG. Design, evaluation, and immune simulation of potentially universal multi-epitope mpox vaccine candidate: focus on DNA vaccine. Front Microbiol 2023; 14:1203355. [PMID: 37547674 PMCID: PMC10403236 DOI: 10.3389/fmicb.2023.1203355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Monkeypox (mpox) is a zoonotic infectious disease caused by the mpox virus. Mpox symptoms are similar to smallpox with less severity and lower mortality. As yet mpox virus is not characterized by as high transmissibility as some severe acute respiratory syndrome 2 (SARS-CoV-2) variants, still, it is spreading, especially among men who have sex with men (MSM). Thus, taking preventive measures, such as vaccination, is highly recommended. While the smallpox vaccine has demonstrated considerable efficacy against the mpox virus due to the antigenic similarities, the development of a universal anti-mpox vaccine remains a necessary pursuit. Recently, nucleic acid vaccines have garnered special attention owing to their numerous advantages compared to traditional vaccines. Importantly, DNA vaccines have certain advantages over mRNA vaccines. In this study, a potentially universal DNA vaccine candidate against mpox based on conserved epitopes was designed and its efficacy was evaluated via an immunoinformatics approach. The vaccine candidate demonstrated potent humoral and cellular immune responses in silico, indicating the potential efficacy in vivo and the need for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
An Y, Zhao G, Duan H, Zhang N, Duan M, Xu S, Liu X, Han Y, Zheng T, Li X, Hou J, Zhang Z, Bi Y, Zhao X, Xu K, Dai L, Wang B, Gao GF. Robust and protective immune responses induced by heterologous prime-boost vaccination with DNA-protein dimeric RBD vaccines for COVID-19. J Med Virol 2023; 95:e28948. [PMID: 37436839 DOI: 10.1002/jmv.28948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic posed great impacts on public health. To fight against the pandemic, robust immune responses induced by vaccination are indispensable. Previously, we developed a subunit vaccine adjuvanted by aluminum hydroxide, ZF2001, based on the dimeric tandem-repeat RBD immunogen, which has been approved for clinical use. This dimeric RBD design was also explored as an mRNA vaccine. Both showed potent immunogenicity. In this study, a DNA vaccine candidate encoding RBD-dimer was designed. The humoral and cellular immune responses induced by homologous and heterologous prime-boost approaches with DNA-RBD-dimer and ZF2001 were assessed in mice. Protection efficacy was studied by the SARS-CoV-2 challenge. We found that the DNA-RBD-dimer vaccine was robustly immunogenic. Priming with DNA-RBD-dimer followed by ZF2001 boosting induced higher levels of neutralizing antibodies than homologous vaccination with either DNA-RBD-dimer or ZF2001, elicited polyfunctional cellular immunity with a TH 1-biased polarization, and efficiently protected mice against SARS-CoV-2 infection in the lung. This study demonstrated the robust and protective immune responses induced by the DNA-RBD-dimer candidate and provided a heterologous prime-boost approach with DNA-RBD-dimer and ZF2001.
Collapse
Affiliation(s)
- Yaling An
- Savaid Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Gan Zhao
- Advaccine Biopharmaceutics (Suzhou) Co. Ltd, Suzhou, China
| | - Huixin Duan
- Savaid Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ning Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Minrun Duan
- School of Life Sciences, Yunnan University, Kunming, China
| | - Senyu Xu
- Savaid Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xueyuan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxuan Han
- Savaid Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Tianyi Zheng
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jiawang Hou
- Advaccine Biopharmaceutics (Suzhou) Co. Ltd, Suzhou, China
| | - Zhiyu Zhang
- Advaccine Biopharmaceutics (Suzhou) Co. Ltd, Suzhou, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bin Wang
- Advaccine Biopharmaceutics (Suzhou) Co. Ltd, Suzhou, China
| | - George F Gao
- Savaid Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wang X, Liu C, Rcheulishvili N, Papukashvili D, Xie F, Zhao J, Hu X, Yu K, Yang N, Pan X, Liu X, Wang PG, He Y. Strong immune responses and protection of PcrV and OprF-I mRNA vaccine candidates against Pseudomonas aeruginosa. NPJ Vaccines 2023; 8:76. [PMID: 37231060 DOI: 10.1038/s41541-023-00672-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a leading cause of hospital-acquired and ventilator-associated pneumonia. The multidrug-resistance (MDR) rate of PA is increasing making the management of PA a global challenge. Messenger RNA (mRNA) vaccines represent the most promising alternative to conventional vaccines and are widely studied for viral infection and cancer immunotherapy while rarely studied for bacterial infections. In this study, two mRNA vaccines encoding PcrV- the key component of the type III secretion system in Pseudomonas and the fusion protein OprF-I comprising outer membrane proteins OprF and OprI were constructed. The mice were immunized with either one of these mRNA vaccines or with the combination of both. Additionally, mice were vaccinated with PcrV, OprF, or the combination of these two proteins. Immunization with either mRNA-PcrV or mRNA-OprF-I elicited a Th1/Th2 mixed or slighted Th1-biased immune response, conferred broad protection, and reduced bacterial burden and inflammation in burn and systemic infection models. mRNA-PcrV induced significantly stronger antigen-specific humoral and cellular immune responses and higher survival rate compared with the OprF-I after challenging with all the PA strains tested. The combined mRNA vaccine demonstrated the best survival rate. Moreover, the mRNA vaccines showed the superiority over protein vaccines. These results suggest that mRNA-PcrV as well as the mixture of mRNA-PcrV and mRNA-OprF-I are promising vaccine candidates for the prevention of PA infection.
Collapse
Affiliation(s)
- Xingyun Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Cong Liu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fengfei Xie
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiao Zhao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xing Hu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Kaiwei Yu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Nuo Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xuehua Pan
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xueyan Liu
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China.
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Zhang T, Wang Z, Yang J, Xu X. Immunogenicity of novel DNA vaccines encoding receptor-binding domain (RBD) dimer-Fc fusing antigens derived from different SARS-CoV-2 variants of concern. J Med Virol 2023; 95:e28563. [PMID: 36755368 DOI: 10.1002/jmv.28563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
The continuously emerging of severe acute respiratory syndrome coronavirus-2 variants of concern (VOCs) led to a decline in effectiveness of the first-generation vaccines. Therefore, optimized vaccines and vaccination strategies, which show advantages in protecting against VOCs, are urgently needed. Here we constructed an optimized DNA vaccine plasmid containing built-in CpG adjuvant, and designed vaccine candidates encoding five forms of antigens derived from Wuhan-Hu-1. The results showed that plasmid with receptor binding domain (RBD) dimer-Fc fusing antigen (2RBD-Fc) induced the highest level of RBD-specific IgG and neutralizing antibodies in mice. Then 2dRBD-Fc and 2omRBD-Fc vaccines, respectively derived from delta and omicron VOCs, were constructed. The 2dRBD-Fc induced potent humoral and cellular immune responses, while the immunogenicity of 2omRBD-Fc was low. We also observed that sequential immunization with 2RBD-Fc, 2dRBD-Fc and 2omRBD-Fc effectively elicited neutralizing antibodies against each immunized strain, and RBD-specific T cell responses. To be noted, the Wuhan-Hu-1, delta and omicron neutralizing antibody titers induced by sequential immunization were comparable to that induced by repetitive immunization with 2RBD-Fc, 2dRBD-Fc or 2omRBD-Fc respectively. The results suggest that sequential immunization with DNA vaccines encoding potent antigens derived from different VOCs, may be a promising strategy to elicit immune responses against multiple variants.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biophysics and Structural Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Zhirong Wang
- Department of Biophysics and Structural Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaojiao Yang
- Department of Biophysics and Structural Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Papukashvili D, Rcheulishvili N, Liu C, Wang X, He Y, Wang PG. Strategy of developing nucleic acid-based universal monkeypox vaccine candidates. Front Immunol 2022; 13:1050309. [PMID: 36389680 PMCID: PMC9646902 DOI: 10.3389/fimmu.2022.1050309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 08/08/2023] Open
Abstract
Until May 2022, zoonotic infectious disease monkeypox (MPX) caused by the monkeypox virus (MPXV) was one of the forgotten viruses considered to be geographically limited in African countries even though few cases outside of Africa were identified. Central and West African countries are known to be endemic for MPXV. However, since the number of human MPX cases has rapidly increased outside of Africa the global interest in this virus has markedly grown. The majority of infected people with MPXV have never been vaccinated against smallpox virus. Noteworthily, the MPXV spreads fast in men who have sex with men (MSM). Preventive measures against MPXV are essential to be taken, indeed, vaccination is the key. Due to the antigenic similarities, the smallpox vaccine is efficient against MPXV. Nevertheless, there is no specific MPXV vaccine until now. Nucleic acid vaccines deserve special attention since the emergency approval of two messenger RNA (mRNA)-based coronavirus disease 2019 (COVID-19) vaccines in 2020. This milestone in vaccinology has opened a new platform for developing more mRNA- or DNA-based vaccines. Certainly, this type of vaccine has a number of advantages including time- and cost-effectiveness over conventional vaccines. The platform of nucleic acid-based vaccines gives humankind a huge opportunity. Ultimately, there is a strong need for developing a universal vaccine against MPXV. This review will shed the light on the strategies for developing nucleic acid vaccines against MPXV in a timely manner. Consequently, developing nucleic acid-based vaccines may alleviate the global threat against MPXV.
Collapse
Affiliation(s)
| | | | | | | | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|