1
|
Lebeau G, El Safadi D, Hoarau M, Meilhac O, Krejbich-Trotot P, Viranaicken W. Zika virus restriction of host antioxidant response is mediated by intracellular NS1 and reveals its ability to upregulate Bach1 expression. Biochem Biophys Res Commun 2024; 690:149312. [PMID: 38016247 DOI: 10.1016/j.bbrc.2023.149312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Zika virus (ZIKV), has gained global attention due to its association with severe disorders, including microcephaly and congenital Zika syndrome. We investigated the role of ZIKV nonstructural protein 1 (NS1) in altering the host's antioxidant response. Using a stable cell line expressing NS1, we found that NS1 significantly reduced the expression of antioxidant-related genes, including heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), and sequestosome-1 (SQSTM1), which are regulated NRF2. Interestingly, this effect was attributed to increased expression of BACH1, a factor that competes with NRF2 for binding to certain antioxidant responsive elements (ARE). Thus, ZIKV NS1-mediated disruption of the antioxidant system is linked to BACH1 overexpression. These findings offer insights into ZIKV pathogenesis and suggest potential therapeutic strategies targeting the NRF2-BACH1 axis.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France
| | - Daed El Safadi
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France
| | - Mathilde Hoarau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, 77 avenue du Docteur Jean-Marie Dambreville, 97410, Saint-Pierre, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, 77 avenue du Docteur Jean-Marie Dambreville, 97410, Saint-Pierre, France
| | - Pascale Krejbich-Trotot
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France
| | - Wildriss Viranaicken
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France; Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, 77 avenue du Docteur Jean-Marie Dambreville, 97410, Saint-Pierre, France.
| |
Collapse
|
2
|
Denolly S, Stukalov A, Barayeu U, Rosinski AN, Kritsiligkou P, Joecks S, Dick TP, Pichlmair A, Bartenschlager R. Zika virus remodelled ER membranes contain proviral factors involved in redox and methylation pathways. Nat Commun 2023; 14:8045. [PMID: 38052817 DOI: 10.1038/s41467-023-43665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a global health issue, yet neither antiviral therapy nor a vaccine are available. ZIKV is an enveloped RNA virus, replicating in the cytoplasm in close association with ER membranes. Here, we isolate ER membranes from ZIKV-infected cells and determine their proteome. Forty-six host cell factors are enriched in ZIKV remodeled membranes, several of these having a role in redox and methylation pathways. Four proteins are characterized in detail: thioredoxin reductase 1 (TXNRD1) contributing to folding of disulfide bond containing proteins and modulating ZIKV secretion; aldo-keto reductase family 1 member C3 (AKR1C3), regulating capsid protein abundance and thus, ZIKV assembly; biliverdin reductase B (BLVRB) involved in ZIKV induced lipid peroxidation and increasing stability of viral transmembrane proteins; adenosylhomocysteinase (AHCY) indirectly promoting m6A methylation of ZIKV RNA by decreasing the level of S- adenosyl homocysteine and thus, immune evasion. These results highlight the involvement of redox and methylation enzymes in the ZIKV life cycle and their accumulation at virally remodeled ER membranes.
Collapse
Affiliation(s)
- Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Alexey Stukalov
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alina N Rosinski
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Paraskevi Kritsiligkou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sebastian Joecks
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Giri R, Bhardwaj T, Kapuganti SK, Saumya KU, Sharma N, Bhardwaj A, Joshi R, Verma D, Gadhave K. Widespread amyloid aggregates formation by Zika virus proteins and peptides. Protein Sci 2023; 32:e4833. [PMID: 37937856 PMCID: PMC10682691 DOI: 10.1002/pro.4833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023]
Abstract
Viral pathogenesis typically involves numerous molecular mechanisms. Protein aggregation is a relatively unknown characteristic of viruses, despite the fact that viral proteins have been shown to form terminally misfolded forms. Zika virus (ZIKV) is a neurotropic one with the potential to cause neurodegeneration. Its protein amyloid aggregation may link the neurodegenerative component to the pathogenicity associated with the viral infection. Therefore, we investigated protein aggregation in the ZIKV proteome as a putative pathogenic route and one of the alternate pathways. We discovered that it contains numerous anticipated aggregation-prone regions in this investigation. To validate our prediction, we used a combination of supporting experimental techniques routinely used for morphological characterization and study of amyloid aggregates. Several ZIKV proteins and peptides, including the full-length envelope protein, its domain III (EDIII) and fusion peptide, Pr N-terminal peptide, NS1 β-roll peptide, membrane-embedded signal peptide 2K, and cytosolic region of NS4B protein, were shown to be highly aggregating in our study. Because our findings show that viral proteins can form amyloids in vitro, we need to do a thorough functional study of these anticipated APRs to understand better the role of amyloids in the pathophysiology of ZIKV infection.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Taniya Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Shivani K. Kapuganti
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Kumar Udit Saumya
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Nitin Sharma
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Aparna Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Richa Joshi
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Deepanshu Verma
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Kundlik Gadhave
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|