1
|
Wang X, Chen X, Ding Y, Xu P, Wang C, Wei X, Peng H, Cui C, Kang O, Chen Y, Wei Z, Huang W, Qin Y. Isolation, identification, and pathogenicity evaluation of a novel Cluster 3 Tembusu virus isolated from geese in China. Poult Sci 2024; 104:104684. [PMID: 39718055 DOI: 10.1016/j.psj.2024.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
Tembusu virus (TMUV) is a significant pathogen that poses a considerable threat to the waterfowl farming industry in China and is classified into three distinct genetic clusters. In 2024, a suspected outbreak of TMUV infection was reported at a goose farm in Guangdong Province, China. A strain of TMUV, designated GDE19-2024, was successfully isolated using chicken embryos. Homology and genetic evolutionary analyses suggest that GDE19-2024 is categorized within cluster 3 of TMUV and exhibits a close genetic affiliation with other strains in this cluster. Nonetheless, GDE19-2024 has experienced two distinct mutations at the 149th and 157th amino acid positions of the E protein, setting it apart from other TMUV strains within cluster 3. The pathogenicity assay revealed that the GDE19-2024 strain possesses the ability to infect both geese and ducks, leading to viremia and effective viral replication in multiple organs. Notably, GDE19-2024 demonstrated considerable pathogenicity in goslings, resulting in a mortality rate of 62.5 % among 7-day-old goslings and causing hemorrhagic lesions in various organs of the infected geese. Conversely, GDE19-2024 exhibits relatively low pathogenicity in ducks, as evidenced by the manifestation of only mild and transient clinical symptoms in infected ducklings, without resulting in mortality. Furthermore, the extent of organ damage in ducks is less severe compared to that observed in infected goslings. This observation suggests that cluster 3 TMUV may be more adapted to geese, exhibiting increased pathogenicity in this species. Our findings provide a foundational basis for understanding the genetic evolution and pathogenicity of cluster 3 TMUV in China.
Collapse
Affiliation(s)
- Xuying Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Xiaopeng Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Yangbao Ding
- Technology Center of Nanning Customs, Nanning, Guangxi, China
| | - Pengju Xu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Cui Wang
- Liuzhou Center for Animal Disease Prevention and Control, Liuzhou, 545005, China
| | - Xiaofang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Chang Cui
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Ouyang Kang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
| |
Collapse
|
2
|
Kim SW, Park JY, Kim KW, Yu CD, Hu F, Lv JF, Li YF, Cha SY, Jang HK, Kang M, Wei B. Lack of Serological and Molecular Evidence of Duck Tembusu Virus Infection in Ducks from South Korea. Vet Sci 2024; 11:564. [PMID: 39591338 PMCID: PMC11599125 DOI: 10.3390/vetsci11110564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The duck Tembusu virus (DTMUV), an emerging flavivirus, has led to severe neurological disorders and substantial economic losses in the duck industry throughout Asia. Considering South Korea's increasing duck production and its strategic location along the East Asian-Australasian Flyway, this study aimed to assess the presence of DTMUV in South Korea to evaluate potential risks to the poultry industry. We performed a comprehensive serological survey of 1796 serum samples from broiler and breeder ducks collected between 2011 and 2023, alongside molecular detection tests on 51 duck flocks exhibiting suspected clinical signs of DTMUV infection. The absence of serological and molecular evidence for DTMUV or other flavivirus infections suggests that these viruses have not yet affected South Korean duck populations. These findings underscore the critical need for ongoing surveillance, given the virus's potential to disrupt agriculture and pose public health risks. The study also emphasizes the importance of maintaining stringent biosecurity measures and conducting further research to monitor and prevent DTMUV transmission, particularly due to the possible role of migratory birds and other vectors in spreading zoonotic diseases.
Collapse
Affiliation(s)
- Sang-Won Kim
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-W.K.)
| | - Jong-Yeol Park
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-W.K.)
| | - Ki-Woong Kim
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-W.K.)
| | - Cheng-Dong Yu
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-W.K.)
| | - Feng Hu
- Shandong Provincial Key Laboratory of Livestock and Poultry Breeding, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jun-Feng Lv
- Shandong Provincial Key Laboratory of Livestock and Poultry Breeding, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu-Feng Li
- Shandong Provincial Key Laboratory of Livestock and Poultry Breeding, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Se-Yeoun Cha
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-W.K.)
| | - Hyung-Kwan Jang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-W.K.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| | - Min Kang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-W.K.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| | - Bai Wei
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-W.K.)
| |
Collapse
|
3
|
Cheng Y, Wang R, Wu Q, Chen J, Wang A, Wu Z, Sun F, Zhu S. Advancements in Research on Duck Tembusu Virus Infections. Viruses 2024; 16:811. [PMID: 38793692 PMCID: PMC11126125 DOI: 10.3390/v16050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.
Collapse
Affiliation(s)
- Yuting Cheng
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Ruoheng Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Qingguo Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Jinying Chen
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Anping Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Zhi Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Fang Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Shanyuan Zhu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| |
Collapse
|
4
|
Yang Q, Ding Y, Yao W, Chen S, Jiang Y, Yang L, Bao G, Yang K, Fan S, Du Q, Wang Q, Wang G. Pathogenicity and Interspecies Transmission of Cluster 3 Tembusu Virus Strain TMUV HQ-22 Isolated from Geese. Viruses 2023; 15:2449. [PMID: 38140690 PMCID: PMC10747935 DOI: 10.3390/v15122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Since 2010, the Tembusu virus (TMUV) has been highly prevalent in China, causing significant economic losses to the poultry industry. In 2022, a suspected outbreak of TMUV occurred at a goose farm located in Anhui Province. A strain of TMUV, TMUV HQ-22, was isolated from the infected geese. Phylogenetic analysis using the E gene of the HQ-22 strain demonstrated its affiliation with cluster 3, a less commonly reported cluster in comparison to the main circulating cluster, cluster 2. Through a comparison of the envelope (E) protein of HQ-22 with other typical TMUV strains, a mutation at the 157th amino acid position was identified, wherein valine (V) in cluster 3 changed to alanine (A), a characteristic that is unique to cluster 2. These findings highlight the diversity and complexity of the TMUV strains circulating in China. In our experimental analysis, an injection of TMUV HQ-22 into the muscles of 3-day-old goslings resulted in severe neurological symptoms and a mortality rate of 60%. Similarly, the intracranial or intranasal infection of 3-week-old ICR mice with TMUV HQ-22 led to severe neurological symptoms and respective mortality rates of 100% or 10%. In summary, our study isolated a TMUV strain, TMUV HQ-22, from geese that belongs to cluster 3 and exhibits significant pathogenicity in both goslings and ICR mice. These results emphasize the genetic diversity of the TMUV circulating in China and expand the host range beyond mosquitoes to include ducks, chickens, geese, and even mice. It is crucial to not underestimate the risk of TMUV infection in mammals, warranting our utmost attention.
Collapse
Affiliation(s)
- Qing Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Yingying Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Weiping Yao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Shuyue Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Yaqian Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Linping Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Guangbin Bao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Kang Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Shinuo Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Qingqing Du
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Qing Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| |
Collapse
|
5
|
Wang Y, Zhang X, Zhang Z, Xu R, Yang P, Yuan P, Zhang L, Cui Y, Xie Z, Li J. Reverse transcription recombinase-aided amplification assay combined with a lateral flow dipstick for detection of duck Tembusu virus. J Virol Methods 2023; 322:114810. [PMID: 37689372 DOI: 10.1016/j.jviromet.2023.114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
Duck Tembusu virus disease, caused by duck Tembusu virus (DTMUV), brings great harm to duck industry. Early diagnosis is of great significance for the prevention and control of this disease. In order to develop a specific and sensitive method for rapid diagnosis of DTMUV, reverse-transcriptase recombinase aided amplification combined with lateral flow dipstick (RT-RAA-LFD) method for detection of DTMUV was established. Firstly, downstream primer was labeled with biotin and probe was labeled with FAM, and primer concentration, reaction time, and reaction temperature were optimized. Then, the specificity and sensitivity of this method was investigated. The results of specificity test showed that it had no cross reaction with other common pathogens such as low pathogenic avian influenza virus (AIV), Newcastle disease virus (NDV), duck hepatitis A virus (DHV), and duck Reovirus. The results of sensitivity test showed that the minimum detection limit of this method was 10 copies/μL, which was 1000 times than conventional RT-PCR (104 copies/μL), and equivalent to that of fluorescent quantitative PCR. Furthermore, this RT-RAA-LFD method demonstrated excellent intragroup and intergroup consistency. Finally, the RT-RAA-LFD assay and real-time PCR were both utilized to examine 58 clinical samples concurrently. The results showed that the RT-RAA-LFD method (5/58) was more sensitive than the fluorescence quantitative PCR method (4/58). In summary, RT-RAA-LFD method established in this study had a strong specificity and high sensitivity, which provided technical support for clinical detection of DTMUV.
Collapse
Affiliation(s)
- Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xue Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhenyan Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ruixue Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pingping Yang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Peng Yuan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lianzhi Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanshun Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhijing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jianliang Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
6
|
Zhu S, Tang Y, Diao Y. Development and biochemical characteristics of a monoclonal antibody against prM protein of Tembusu virus. Poult Sci 2023; 102:103065. [PMID: 37751643 PMCID: PMC10522996 DOI: 10.1016/j.psj.2023.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Tembusu virus (TMUV), a pathogenic member of the Flavivirus family, is an infectious diseases that seriously jeopardize duck health in 2010 in China. TMUV disease causes significant economic losses to the duck industry. This study aimed to prepare monoclonal antibodies against TMUV prM protein and to identify their epitopes. The 501bp prM gene was amplified to the pET-32a prokaryotic expression vector and expressed as a recombinant protein of size 38 KD in Escherichia coli. The purified recombinant proteins were inoculated into BALB/c mice to generate splenic lymphocytes capable of secreting anti-prM antibodies, and hybridoma cells were obtained after fusion with SP2/0 cells. A new hybridoma cell line named B27, which stably secreted IgG1-antibody against TMUV prM with high antibody titers up to 1:1:3,276,800 was screened. This monoclonal antibody (mAb) is well specific and can be used for ELISA/Western-blot (WB)/indirect fluorescence assay (IFA) etc. The mAb B27 has poor neutralization ability and concentration dependence, with a maximum neutralization degree of 23.87% at antibody dilution 10-6. Next, we truncated prM gene and expressed the truncated protein to screen antigen epitopes. The mAb's linear antigen epitope of the TMUV prM protein was first identified and was accurate to 6 consecutive amino acids 59GYEPED64, which located in the pr protein. Bioinformatic analysis showed that this antigenic epitope was located on the surface of the antigen, which was conducive to the direct contact of antigen antibody and conformed to the properties of antigenic epitopes. In addition, its 6 amino acids are highly homologous among 27 published TMUV strains, indicating that its epitope is stable. This study will help to further understand the protein structure and the function of prM, and lay the foundation for establishing specific prM detection methods and the mechanistic study of TMUV prM protein.
Collapse
Affiliation(s)
- Siming Zhu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease, Tai'an, Shandong, 271018, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease, Tai'an, Shandong, 271018, China.
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease, Tai'an, Shandong, 271018, China
| |
Collapse
|
7
|
Liao JY, Tang H, Xiong WJ, Liu TN, Li JY, Xia JY, Xiao CT. Isolation and characterization of a novel goose ovaritis-associated cluster 3 Tembusu virus. Poult Sci 2023; 102:102867. [PMID: 37390547 PMCID: PMC10466228 DOI: 10.1016/j.psj.2023.102867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023] Open
Abstract
Tembusu virus (TMUV) is a member of the genus Flavivirus in the family Flaviviridae. Currently, TMUV was classified into 4 distinct clusters, with cluster 2 strains widely distributed in duck and goose populations in Asia, causing significant economic losses to the producing industries. In this study, a novel TMUV strain TMUV/goose/CHN/2019/HNU-NX2 (HNU-NX2-2019) was isolated and characterized from geese with ovaritis from Hunan province, China. Phylogenetic analyses of genome and the E gene indicated the present TMUV could be grouped into the newly defined TMUV cluster 3. The genome of HNU-NX2-2019 showed the highest identities of 98.1% to 98.2% to the cluster 3 TMUVs newly identified in 2020 and 2021 from chickens with a severe egg-drop syndrome from Guangdong, Guangxi and Shandong provinces of China, which were all showing a close relation to a mosquito-origin TMUV (KT607936) identified in 2012. Further experiments confirmed HNU-NX2-2019 could grow well in chicken fibroblast cell line DF-1 and in SPF chicken embryos, with titers varied from 107.3 to 108.8 viral genomic copies per mL in the culture solutions. A pilot virus challenge study in 3-day-old chicks demonstrated that this virus could efficiently infect chicks with virus distributed in the brains, small intestines and other visceral organs, with titers varied from 105.4 to 106.7viral genomic copies per gram of the tissues. Furthermore, HNU-NX2-2019 can induce specific antibody in ducklings but with no obvious disease and virus shedding, and on necropsy no TMUV was detected in the tissues in the present study. This is the first report to identify a novel cluster 3 TUMV from goose, and further demonstrated this goose TMUV strain could infect chicken efficiently but not in ducklings under the present experimental conditions, which highlighted intensive attentions may be paid to this novel mosquito-origin cluster 3 TMUV.
Collapse
Affiliation(s)
- Jing-Ying Liao
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Hui Tang
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Wei-Jie Xiong
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Tian-Ning Liu
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Jie-Yu Li
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Jun-Yong Xia
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Chao-Ting Xiao
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China.
| |
Collapse
|
8
|
Yin Y, Xiong C, Shi K, Long F, Feng S, Qu S, Lu W, Huang M, Lin C, Sun W, Li Z. Multiplex digital PCR: a superior technique to qPCR for the simultaneous detection of duck Tembusu virus, duck circovirus, and new duck reovirus. Front Vet Sci 2023; 10:1222789. [PMID: 37662994 PMCID: PMC10469322 DOI: 10.3389/fvets.2023.1222789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Duck Tembusu virus (DTMUV), duck circovirus (DuCV), and new duck reovirus (NDRV) have seriously hindered the development of the poultry industry in China. To detect the three pathogens simultaneously, a multiplex digital PCR (dPCR) was developed and compared with multiplex qPCR in this study. The multiplex dPCR was able to specifically detect DTMUV, DuCV, and NDRV but not amplify Muscovy duck reovirus (MDRV), Muscovy duck parvovirus (MDPV), goose parvovirus (GPV), H4 avian influenza virus (H4 AIV), H6 avian influenza virus (H6 AIV), and Newcastle disease virus (NDV). The standard curves showed excellent linearity in multiplex dPCR and qPCR and were positively correlated. The sensitivity results showed that the lowest detection limit of multiplex dPCR was 1.3 copies/μL, which was 10 times higher than that of multiplex qPCR. The reproducibility results showed that the intra- and interassay coefficients of variation were 0.06-1.94%. A total of 173 clinical samples were tested to assess the usefulness of the method; the positive detection rates for DTMUV, DuCV, and NDRV were 18.5, 29.5, and 14.5%, respectively, which were approximately 4% higher than those of multiplex qPCR, and the kappa values for the clinical detection results of multiplex dPCR and qPCR were 0.85, 0.89, and 0.86, indicating that the two methods were in excellent agreement.
Collapse
Affiliation(s)
- Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Chenyong Xiong
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Sujie Qu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Wenjun Lu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Meizhi Huang
- Longan Center for Animal Disease Control and Prevention, Nanning, China
| | - Changhua Lin
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi State Farms Yongxin Animal Husbandry Group Xijiang Co., Ltd., Guigang, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Hu D, Wu C, Wang R, Yao X, Nie K, Lv Q, Fu S, Yin Q, Su W, Li F, Xu S, He Y, Liang G, Li X, Wang H. Persistence of Tembusu Virus in Culex tritaeniorhynchus in Yunnan Province, China. Pathogens 2023; 12:490. [PMID: 36986412 PMCID: PMC10058924 DOI: 10.3390/pathogens12030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The Tembusu virus (TMUV), a member of the Flaviviridae family, can be transmitted via mosquitoes and cause poultry disease. In 2020, a strain of TMUV (YN2020-20) was isolated from mosquito samples collected in Yunnan province, China. In vitro experiments showed that TMUV-YN2020-20 produced a significant cytopathic effect (CPE) in BHK, DF-1, and VERO cells, while the CPE in C6/36 cells was not significant. Phylogenetic analysis revealed that the strain belonged to Cluster 3.2 and was closely related to the Yunnan mosquito-derived isolates obtained in 2012 and the Shandong avian-derived isolate obtained in 2014. Notably, TMUV-YN2020-20 developed five novel mutations (E-V358I, NS1-Y/F/I113L, NS4A-T/A89V, NS4B-D/E/N/C22S, and NS5-E638G) at loci that were relatively conserved previously. The results of this study demonstrate the continuous circulation and unique evolution of TMUV in mosquitoes in Yunnan province and suggest that appropriate surveillance should be taken.
Collapse
Affiliation(s)
- Danhe Hu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chao Wu
- Yunnan Institute of Parasitic Diseases, Pu’er 665000, China
| | - Ruichen Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaohui Yao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kai Nie
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Quan Lv
- Yunnan Institute of Parasitic Diseases, Pu’er 665000, China
| | - Shihong Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qikai Yin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenzhe Su
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Fan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Songtao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar 843399, China
| | - Huanyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|