1
|
Zhang YN, Gomes KB, Lee YZ, Ward G, Xie B, Auclair S, He L, Zhu J. A Single-Component Multilayered Self-Assembling Protein Nanoparticle Vaccine Based on Extracellular Domains of Matrix Protein 2 against Both Influenza A and B. Vaccines (Basel) 2024; 12:975. [PMID: 39340007 PMCID: PMC11435909 DOI: 10.3390/vaccines12090975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The development of an effective and broadly protective influenza vaccine against circulating and emerging strains remains elusive. In this study, we evaluated a potentially universal influenza vaccine based on single-component self-assembling protein nanoparticles (1c-SApNPs) presenting the conserved matrix protein 2 ectodomain (M2e) from influenza A and B viruses (IAV and IBV, respectively). We previously designed a tandem antigen comprising three IAV M2e domains of human, avian/swine, and human/swine origins (termed M2ex3). The M2ex3-presenting 1c-SApNPs conferred complete protection in mice against sequential lethal challenges with H1N1 and H3N2. To broaden this protection to cover IBVs, we designed a series of antigens incorporating different arrangements of three IAV M2e domains and three copies of IBV M2e. Tandem repeats of IAV and IBV (termed influenza A-B) M2e arrayed on the I3-01v9a 60-mer 1c-SApNP, when formulated with an oil-in-water emulsion adjuvant, generated greater M2e-specific immunogenicity and protective efficacy than the soluble influenza A-B M2e trimer, indicated by higher survival rates and reduced weight loss post-challenge. Importantly, one of the influenza A-B M2e SApNP constructs elicited 100% protection against a lethal influenza A/Puerto Rico/8/1934 (H1N1) challenge in mice and 70% protection against a lethal influenza B/Florida/4/2006 (Yamagata lineage) challenge, the latter of which has not been reported in the literature to date. Our study thus provides a promising M2e-based single-component universal vaccine candidate against the two major types of influenza virus circulating in humans.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | | | - Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | - Bomin Xie
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
- Uvax Bio, LLC, Newark, DE 19702, USA;
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Petro-Turnquist E, Corder Kampfe B, Gadeken A, Pekarek MJ, Weaver EA. Multivalent Epigraph Hemagglutinin Vaccine Protects against Influenza B Virus in Mice. Pathogens 2024; 13:97. [PMID: 38392835 PMCID: PMC10892733 DOI: 10.3390/pathogens13020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza B virus is a respiratory pathogen that contributes to seasonal epidemics, accounts for approximately 25% of global influenza infections, and can induce severe disease in young children. While vaccination is the most commonly used method of preventing influenza infections, current vaccines only induce strain-specific responses and have suboptimal efficacy when mismatched from circulating strains. Further, two influenza B virus lineages have been described, B/Yamagata-like and B/Victoria-like, and the limited cross-reactivity between the two lineages provides an additional barrier in developing a universal influenza B virus vaccine. Here, we report a novel multivalent vaccine using computationally designed Epigraph hemagglutinin proteins targeting both the B/Yamagata-like and B/Victoria-like lineages. When compared to the quadrivalent commercial vaccine, the Epigraph vaccine demonstrated increased breadth of neutralizing antibody and T cell responses. After lethal heterologous influenza B virus challenge, mice immunized with the Epigraph vaccine were completely protected against both weight loss and mortality. The superior cross-reactive immunity conferred by the Epigraph vaccine immunogens supports their continued investigation as a universal influenza B virus vaccine.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Brigette Corder Kampfe
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Science Department, North Arkansas College, Harrison, AR 72601, USA
| | - Amber Gadeken
- College of Agricultural Sciences and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Matthew J. Pekarek
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Myers ML, Gallagher JR, Woolfork DD, Stradtmann-Carvalho RK, Maldonado-Puga S, Bock KW, Boyoglu-Barnum S, Syeda H, Creanga A, Alves DA, Kanekiyo M, Harris AK. Impact of adjuvant: Trivalent vaccine with quadrivalent-like protection against heterologous Yamagata-lineage influenza B virus. Front Immunol 2022; 13:1002286. [PMID: 36248851 PMCID: PMC9561127 DOI: 10.3389/fimmu.2022.1002286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
As new vaccine technologies and platforms, such as nanoparticles and novel adjuvants, are developed to aid in the establishment of a universal influenza vaccine, studying traditional influenza split/subunit vaccines should not be overlooked. Commercially available vaccines are typically studied in terms of influenza A H1 and H3 viruses but influenza B viruses need to be examined as well. Thus, there is a need to both understand the limitations of split/subunit vaccines and develop strategies to overcome those limitations, particularly their ability to elicit cross-reactive antibodies to the co-circulating Victoria (B-V) and Yamagata (B-Y) lineages of human influenza B viruses. In this study, we compared three commercial influenza hemagglutinin (HA) split/subunit vaccines, one quadrivalent (H1, H3, B-V, B-Y HAs) and two trivalent (H1, H3, B-V HAs), to characterize potential differences in their antibody responses and protection against a B-Y challenge. We found that the trivalent adjuvanted vaccine Fluad, formulated without B-Y HA, was able to produce antibodies to B-Y (cross-lineage) on a similar level to those elicited from a quadrivalent vaccine (Flucelvax) containing both B-V and B-Y HAs. Interestingly, Fluad protected mice from a lethal cross-lineage B-Y viral challenge, while another trivalent vaccine, Fluzone HD, failed to elicit antibodies or full protection following challenge. Fluad immunization also diminished viral burden in the lungs compared to Fluzone and saline groups. The success of a trivalent vaccine to provide protection from a cross-lineage influenza B challenge, similar to a quadrivalent vaccine, suggests that further analysis of different split/subunit vaccine formulations could identify mechanisms for vaccines to target antigenically different viruses. Understanding how to increase the breadth of the immune response following immunization will be needed for universal influenza vaccine development.
Collapse
Affiliation(s)
- Mallory L Myers
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John R Gallagher
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - De'Marcus D Woolfork
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Regan K Stradtmann-Carvalho
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Samantha Maldonado-Puga
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Derron A Alves
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Audray K Harris
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|