1
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
2
|
Caini S, Meijer A, Nunes MC, Henaff L, Zounon M, Boudewijns B, Del Riccio M, Paget J. Probable extinction of influenza B/Yamagata and its public health implications: a systematic literature review and assessment of global surveillance databases. THE LANCET. MICROBE 2024; 5:100851. [PMID: 38729197 DOI: 10.1016/s2666-5247(24)00066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 05/12/2024]
Abstract
Early after the start of the COVID-19 pandemic, the detection of influenza B/Yamagata cases decreased globally. Given the potential public health implications of this decline, in this Review, we systematically analysed data on influenza B/Yamagata virus circulation (for 2020-23) from multiple complementary sources of information. We identified relevant articles published in PubMed and Embase, and data from the FluNet, Global Initiative on Sharing All Influenza Data, and GenBank databases, webpages of respiratory virus surveillance systems from countries worldwide, and the Global Influenza Hospital Surveillance Network. A progressive decline of influenza B/Yamagata detections was reported across all sources, in absolute terms (total number of cases), as positivity rate, and as a proportion of influenza B detections. Sporadically reported influenza B/Yamagata cases since March, 2020 were mostly vaccine-derived, attributed to data entry errors, or have yet to be definitively confirmed. The likelihood of extinction necessitates a rapid response in terms of reassessing the composition of influenza vaccines, enhanced surveillance for B/Yamagata, and a possible change in the biosafety level when handling B/Yamagata viruses in laboratories.
Collapse
Affiliation(s)
- Saverio Caini
- Netherlands Institute for Health Services Research (NIVEL), Utrecht, Netherlands.
| | - Adam Meijer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marta C Nunes
- Center of Excellence in Respiratory Pathogens (CERP), Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Team Public Health, Epidemiology and Evolutionary Ecology of Infectious Diseases, Université Claude Bernard 1, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon, France; South African Medical Research Council, Vaccines & Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Laetitia Henaff
- Centre International de Recherche en Infectiologie, Team Public Health, Epidemiology and Evolutionary Ecology of Infectious Diseases, Université Claude Bernard 1, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Malaika Zounon
- Center of Excellence in Respiratory Pathogens (CERP), Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Team Public Health, Epidemiology and Evolutionary Ecology of Infectious Diseases, Université Claude Bernard 1, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Bronke Boudewijns
- Netherlands Institute for Health Services Research (NIVEL), Utrecht, Netherlands
| | - Marco Del Riccio
- Netherlands Institute for Health Services Research (NIVEL), Utrecht, Netherlands; Department of Health Sciences, University of Florence, Florence, Italy
| | - John Paget
- Netherlands Institute for Health Services Research (NIVEL), Utrecht, Netherlands
| |
Collapse
|
3
|
Lieber CM, Kang HJ, Aggarwal M, Lieberman NA, Sobolik EB, Yoon JJ, Natchus MG, Cox RM, Greninger AL, Plemper RK. Influenza A virus resistance to 4'-fluorouridine coincides with viral attenuation in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563370. [PMID: 37905070 PMCID: PMC10614940 DOI: 10.1101/2023.10.20.563370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD 50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU. Author Summary Reduced sensitivity to FDA-approved influenza drugs is a major obstacle to effective antiviral therapy. We have previously demonstrated oral efficacy of a novel clinical candidate drug, 4'-FlU, against seasonal, pandemic, and highly pathogenic avian influenza viruses. In this study, we have determined possible routes of influenza virus escape from 4'-FlU and addressed whether resistance imposes a viral fitness penalty, affecting pathogenicity or ability to transmit. We identified three distinct clusters of mutations that lead to moderately reduced viral sensitivity to the drug. Testing of resistant variants against two chemically unrelated nucleoside analog inhibitors of influenza virus, conditionally approved favipiravir and the broad-spectrum SARS-CoV-2 drug molnupiravir, revealed cross-resistance of one cluster with favipiravir, whereas no viral escape from molnupiravir was noted. We found that the resistant variants are severely attenuated in mice, impaired in their ability to invade the lower respiratory tract and cause viral pneumonia in ferrets, and transmission-defective or compromised. We could fully mitigate lethal infection of mice with the resistant variants with standard or 5-fold elevated oral dose of 4'-FlU. These results demonstrate that partial viral escape from 4'-FlU is feasible in principle, but escape mutation clusters are unlikely to reach clinical significance or persist in circulating influenza virus strains.
Collapse
|
4
|
Fonseca HAR, Furtado RHM, Zimerman A, Lemos PA, Franken M, Monfardini F, Pedrosa RP, Patriota RDLS, Passos LCS, Dall'Orto FTC, Hoffmann Filho CR, Nascimento BR, Baldissera FA, Pereira CAC, Caramori PRA, de Andrade PB, Esteves C, Salim EF, da Silva JH, Pedro IC, Silva MCR, de Pedri EH, Carioca ACRD, de Piano LPA, Albuquerque CSN, Moia DDF, Momesso RGRAP, Machado FP, Damiani LP, Soares RVP, Schettino GP, Rizzo LV, Nicolau JC, Berwanger O. INFLUENZA VACCINATION STRATEGY IN ACUTE CORONARY SYNDROMES: THE VIP-ACS TRIAL. Eur Heart J 2022; 43:4378-4388. [PMID: 36030400 DOI: 10.1093/eurheartj/ehac472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Remo Holanda M Furtado
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Cardiology division, Hospital Israelita Albert Einstein, São PauloBrazil.,Instituto do Coracao (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - André Zimerman
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro A Lemos
- Cardiology division, Hospital Israelita Albert Einstein, São PauloBrazil
| | - Marcelo Franken
- Cardiology division, Hospital Israelita Albert Einstein, São PauloBrazil
| | - Frederico Monfardini
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Cesar Augusto C Pereira
- Instituto do Coracao (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Carlos Esteves
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Elke Ferreira Salim
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Izabela Chave Pedro
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Ana Carla R D Carioca
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Diogo D F Moia
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Felipe P Machado
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Lucas P Damiani
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Luiz V Rizzo
- Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Brazil
| | - José Carlos Nicolau
- Instituto do Coracao (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Otávio Berwanger
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|