1
|
Mantlo E, Trujillo JD, Gaudreault NN, Morozov I, Lewis CE, Matias-Ferreyra F, McDowell C, Bold D, Kwon T, Cool K, Balaraman V, Madden D, Artiaga B, Souza-Neto J, Doty JB, Carossino M, Balasuriya U, Wilson WC, Osterrieder N, Hensley L, Richt JA. Experimental inoculation of pigs with monkeypox virus results in productive infection and transmission to sentinels. Emerg Microbes Infect 2024; 13:2352434. [PMID: 38712637 PMCID: PMC11168330 DOI: 10.1080/22221751.2024.2352434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Monkeypox virus (MPXV) is a re-emerging zoonotic poxvirus responsible for producing skin lesions in humans. Endemic in sub-Saharan Africa, the 2022 outbreak with a clade IIb strain has resulted in ongoing sustained transmission of the virus worldwide. MPXV has a relatively wide host range, with infections reported in rodent and non-human primate species. However, the susceptibility of many domestic livestock species remains unknown. Here, we report on a susceptibility/transmission study in domestic pigs that were experimentally inoculated with a 2022 MPXV clade IIb isolate or served as sentinel contact control animals. Several principal-infected and sentinel contact control pigs developed minor lesions near the lips and nose starting at 12 through 18 days post-challenge (DPC). No virus was isolated and no viral DNA was detected from the lesions; however, MPXV antigen was detected by IHC in tissue from a pustule of a principal infected pig. Viral DNA and infectious virus were detected in nasal and oral swabs up to 14 DPC, with peak titers observed at 7 DPC. Viral DNA was also detected in nasal tissues or skin collected from two principal-infected animals at 7 DPC post-mortem. Furthermore, all principal-infected and sentinel control animals enrolled in the study seroconverted. In conclusion, we provide the first evidence that domestic pigs are susceptible to experimental MPXV infection and can transmit the virus to contact animals.
Collapse
Affiliation(s)
- Emily Mantlo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Charles E. Lewis
- Foreign Animal Disease Diagnostic Laboratory, National Bio and Agro-defense Facility, Animal and Plant Health Inspection Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bianca Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jayme Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jeffrey B. Doty
- U.S. Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Udeni Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Nikolaus Osterrieder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lisa Hensley
- Zoonotic and Emerging Disease Research Unit, National Bio- and Agro-defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Mucker EM, Freyn AW, Bixler SL, Cizmeci D, Atyeo C, Earl PL, Natarajan H, Santos G, Frey TR, Levin RH, Meni A, Arunkumar GA, Stadlbauer D, Jorquera PA, Bennett H, Johnson JC, Hardcastle K, Americo JL, Cotter CA, Koehler JW, Davis CI, Shamblin JD, Ostrowski K, Raymond JL, Ricks KM, Carfi A, Yu WH, Sullivan NJ, Moss B, Alter G, Hooper JW. Comparison of protection against mpox following mRNA or modified vaccinia Ankara vaccination in nonhuman primates. Cell 2024; 187:5540-5553.e10. [PMID: 39236707 DOI: 10.1016/j.cell.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
In 2022, mpox virus (MPXV) spread worldwide, causing 99,581 mpox cases in 121 countries. Modified vaccinia Ankara (MVA) vaccine use reduced disease in at-risk populations but failed to deliver complete protection. Lag in manufacturing and distribution of MVA resulted in additional MPXV spread, with 12,000 reported cases in 2023 and an additional outbreak in Central Africa of clade I virus. These outbreaks highlight the threat of zoonotic spillover by Orthopoxviruses. mRNA-1769, an mRNA-lipid nanoparticle (LNP) vaccine expressing MPXV surface proteins, was tested in a lethal MPXV primate model. Similar to MVA, mRNA-1769 conferred protection against challenge and further mitigated symptoms and disease duration. Antibody profiling revealed a collaborative role between neutralizing and Fc-functional extracellular virion (EV)-specific antibodies in viral restriction and ospinophagocytic and cytotoxic antibody functions in protection against lesions. mRNA-1769 enhanced viral control and disease attenuation compared with MVA, highlighting the potential for mRNA vaccines to mitigate future pandemic threats.
Collapse
Affiliation(s)
- Eric M Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | - Sandra L Bixler
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Catherine A Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeff W Koehler
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Christopher I Davis
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Joshua D Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Kristin Ostrowski
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jo Lynne Raymond
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Keersten M Ricks
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA; Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA.
| |
Collapse
|
3
|
Derhab N. Human monkeypox virus: A systematic critical review during the pandemic peak. Indian J Med Microbiol 2024; 51:100704. [PMID: 39134221 DOI: 10.1016/j.ijmmb.2024.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND In July 2022, the world health organization (WHO) announced the monkeypox virus (MPXV) as a public health emergency of international concern, due to the unprecedented global transmission of the disease beyond previously endemic countries in Africa. METHODS For this systematic review, the author searched the "web of science" (WoS) database, which retrieves 138 articles on MPXV, published between 01-04-2022 and 22-09-2022. This period witnessed the maximum cases of infection as confirmed by the WHO. Seventy articles were used for in-depth analysis, after excluding papers not highly relevant to the topic. RESULTS AND CONCLUSIONS The current review demonstrates different types of MPXV identification analysis, transmission of MPXV, clinical features, immune responses against MPXV, the mutations, and phylogenetic analysis. It also identifies the patients with high-risk complications and determines the other diseases related to MPXV. This paper provides suggestions for the suitable usage of vaccines or antiviral drugs as a procedure to control the outbreak and preventive strategies related to the humans. This research discusses significant implications and recommendations to contribute in reducing the spread of MPXV and presents avenues for upcoming MPXV research.
Collapse
Affiliation(s)
- Neama Derhab
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, Damanhour, Egypt.
| |
Collapse
|
4
|
Moretti M, Meuwissen A, Rezende AM, Zange S, Van Nedervelde E, de Block T, Vercauteren K, Demuyser T, Allard SD. Breakthrough Mpox Outbreak Investigation, the Delicate Balance Between Host Immune Response and Viral Immune Escape. Sex Transm Dis 2024; 51:499-503. [PMID: 38647249 DOI: 10.1097/olq.0000000000001974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Limited data are available on Mpox breakthrough infections. PURPOSE The purpose of this study is to investigate a Mpox breakthrough outbreak in 3 vaccinated individuals. METHODS Study participants provided informed consent. Serology testing was performed in one involved individual (ID-1) using an in-house assay detecting anti-orthopoxvirus IgG. Whole genome sequencing (WGS) was carried out and compared with the reference sequence ON563414.3 ( https://www.ncbi.nlm.nih.gov/nuccore/ON563414.3/ ). RESULTS Three individuals vaccinated with modified vaccinia Ankara-Bavaria Nordic contracted Mpox following one sexual intercourse event. One of them (ID-1) had received only one vaccine dose, while the other two were fully vaccinated. ID-1 presented to the sexual health clinic of the Universitair Ziekenhuis Brussel with proctitis related to Mpox. Despite one vaccination, serology testing Three months post vaccine showed absence of Mpox virus (MPXV) specific antibodies in ID-1. In contrast, 2 weeks after the sexual intercourse, seroconversion occurred. Whole genome sequencing of the isolated MPXV showed, compared with the reference sequence, a total of seven single nucleotide variants with four of them indicating protein amino-acid changes. CONCLUSION Incomplete MPXV vaccination as well as MPXV variants might result in breakthrough infections. Preventive measures, such as MPVX vaccination, could maintain immunity in individuals with higher risk of MPXV infection, and might lower disease severity.
Collapse
Affiliation(s)
- Marco Moretti
- From the Department of Internal Medicine and Infectious Diseases, Vrije Universiteit Brussel (VUB), Universitair ziekenhuis Brussel, Brussels
| | - Annelies Meuwissen
- From the Department of Internal Medicine and Infectious Diseases, Vrije Universiteit Brussel (VUB), Universitair ziekenhuis Brussel, Brussels
| | | | - Sabine Zange
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Els Van Nedervelde
- From the Department of Internal Medicine and Infectious Diseases, Vrije Universiteit Brussel (VUB), Universitair ziekenhuis Brussel, Brussels
| | - Tessa de Block
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Koen Vercauteren
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Sabine D Allard
- From the Department of Internal Medicine and Infectious Diseases, Vrije Universiteit Brussel (VUB), Universitair ziekenhuis Brussel, Brussels
| |
Collapse
|
5
|
Nucera F, Bonina L, Cipolla A, Pirina P, Hansbro PM, Adcock IM, Caramori G. Poxviridae Pneumonia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:183-204. [PMID: 38801579 DOI: 10.1007/978-3-031-57165-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviridae family includes several viruses that infecting humans usually causes skin lesions only, but in some cases their clinical course is complicated by viral pneumonia (with or without bacterial superinfections). Historically variola virus has been the poxviridae most frequently associated with the development of pneumonia with many large outbreaks worldwide before its eradication in 1980. It is still considered a biological threat for its potential in biological warfare and bioterrorism. Smallpox pneumonia can be severe with the onset of acute respiratory distress syndrome (ARDS) and death. Vaccinia virus, used for vaccination against smallpox exceptionally, in immunocompromised patients, can induce generalized (with also lung involvement) severe disease after vaccination. MPXV virus occasionally can cause pneumonia particularly in immunocompromised patients. The pathophysiology of poxviridae pneumonia is still an area of active research; however, in animal models these viruses can cause both direct damage to the lower airways epithelium and a hyperinflammatory syndrome, like a cytokine storm. Multiple mechanisms of immune evasion have also been described. The treatment of poxviridae pneumonia is mainly based on careful supportive care. Despite the absence of randomized clinical trials in patients with poxviridae pneumonia there are antiviral drugs, such as tecovirimat, cidofovir and brincidofovir, FDA-approved for use in smallpox and also available under an expanded access protocol for treatment of MPXV. There are 2 (replication-deficient modified vaccinia Ankara and replication-competent vaccinia virus) smallpox vaccines FDA-approved with the first one also approved for prevention of MPXV in adults that are at high risk of infection.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Letterio Bonina
- Virologia, Dipartimento di Patologia delle Malattie Umane "G. Barresi", Università degli Studi di Messina, Messina, Italy
| | - Antonino Cipolla
- Pneumologia, Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Catania, Catania, Italy
| | - Pietro Pirina
- Pneumologia, Dipartimento di Medicina, Chirurgia e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
6
|
Rabaan AA, Al-Shwaikh SA, Alfouzan WA, Al-Bahar AM, Garout M, Halwani MA, Albayat H, Almutairi NB, Alsaeed M, Alestad JH, Al-Mozaini MA, Ashgar TMA, Alotaibi S, Abuzaid AA, Aldawood Y, Alsaleh AA, Al-Afghani HM, Altowaileb JA, Alshukairi AN, Arteaga-Livias K, Singh KKB, Imran M. A Comprehensive Review on Monkeypox Viral Disease with Potential Diagnostics and Therapeutic Options. Biomedicines 2023; 11:1826. [PMID: 37509466 PMCID: PMC10376530 DOI: 10.3390/biomedicines11071826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this review is to give an up-to-date, thorough, and timely overview of monkeypox (Mpox), a severe infectious viral disease. Furthermore, this review provides an up-to-date treatment option for Mpox. The monkeypox virus (MPXV) has remained the most virulent poxvirus for humans since the elimination of smallpox approximately 41 years ago, with distribution mainly in central and west Africa. Mpox in humans is a zoonotically transferred disease that results in symptoms like those of smallpox. It had spread throughout west and central Africa when it was first diagnosed in the Republic of Congo in 1970. Mpox has become a major threat to global health security, necessitating a quick response by virologists, veterinarians, public health professionals, doctors, and researchers to create high-efficiency diagnostic tests, vaccinations, antivirals, and other infection control techniques. The emergence of epidemics outside of Africa emphasizes the disease's global significance. A better understanding of Mpox's dynamic epidemiology may be attained by increased surveillance and identification of cases.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Seham A Al-Shwaikh
- Department of Commitment Management, Directorate of Health Affairs in the Eastern Province, Dammam 31176, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Ali M Al-Bahar
- Department of Laboratory, Dhahran Long Term Care Hospital, Dhahran 34257, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Norah B Almutairi
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Mohammed Alsaeed
- Infectious Disease Division, Department of Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Jeehan H Alestad
- Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow G1 1XQ, UK
- Microbiology Department, Collage of Medicine, Jabriya 46300, Kuwait
| | - Maha A Al-Mozaini
- Immunocompromsised Host Research Section, Department of Infection and Immunity, King Faisal, Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Tala M Al Ashgar
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Sultan Alotaibi
- Molecular Microbiology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Yahya Aldawood
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Hani M Al-Afghani
- Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia
- iGene Center for Research and Training, Jeddah 2022, Saudi Arabia
| | - Jaffar A Altowaileb
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 22233, Saudi Arabia
| | - Kovy Arteaga-Livias
- Escuela de Medicina-Filial Ica, Universidad Privada San Juan Bautista, Ica 11000, Peru
- Escuela de Medicina, Universidad Nacional Hermilio Valdizán, Huanuco 10000, Peru
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
7
|
Rabaan AA, Alasiri NA, Aljeldah M, Alshukairiis AN, AlMusa Z, Alfouzan WA, Abuzaid AA, Alamri AA, Al-Afghani HM, Al-Baghli N, Alqahtani N, Al-Baghli N, Almoutawa MY, Mahmoud Alawi M, Alabdullah M, Bati NAA, Alsaleh AA, Tombuloglu H, Arteaga-Livias K, Al-Ahdal T, Garout M, Imran M. An Updated Review on Monkeypox Viral Disease: Emphasis on Genomic Diversity. Biomedicines 2023; 11:1832. [PMID: 37509470 PMCID: PMC10376458 DOI: 10.3390/biomedicines11071832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Monkeypox virus has remained the most virulent poxvirus since the elimination of smallpox approximately 41 years ago, with distribution mostly in Central and West Africa. Monkeypox (Mpox) in humans is a zoonotically transferred disease that results in a smallpox-like disease. It was first diagnosed in 1970 in the Democratic Republic of the Congo (DRC), and the disease has spread over West and Central Africa. The purpose of this review was to give an up-to-date, thorough, and timely overview on the genomic diversity and evolution of a re-emerging infectious disease. The genetic profile of Mpox may also be helpful in targeting new therapeutic options based on genes, mutations, and phylogeny. Mpox has become a major threat to global health security, necessitating a quick response by virologists, veterinarians, public health professionals, doctors, and researchers to create high-efficiency diagnostic tests, vaccinations, antivirals, and other infection control techniques. The emergence of epidemics outside of Africa emphasizes the disease's global significance. Increased monitoring and identification of Mpox cases are critical tools for obtaining a better knowledge of the ever-changing epidemiology of this disease.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Nada A Alasiri
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abeer N Alshukairiis
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia
| | - Zainab AlMusa
- Infectious Disease Section, Internal Medicine Department, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Aref A Alamri
- Molecular Microbiology and Cytogenetics Department, Riyadh Regional Laboratory, Riyadh 11425, Saudi Arabia
| | - Hani M Al-Afghani
- Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia
- iGene Center for Research and Training, Jeddah 2022, Saudi Arabia
| | - Nadira Al-Baghli
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Nawal Alqahtani
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Nadia Al-Baghli
- Directorate of Health Affairs, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Mashahed Y Almoutawa
- Primary Healthcare, Qatif Health Network, Eastern Health Cluster, Safwa 32833, Saudi Arabia
| | - Maha Mahmoud Alawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 22254, Saudi Arabia
- Infection Control and Environmental Health Unit, King Abdulaziz University Hospital, Jeddah 22254, Saudi Arabia
| | - Mohammed Alabdullah
- Department of Infectious Diseases, Almoosa Specialist Hospital, Al Mubarraz 36342, Saudi Arabia
| | - Neda A Al Bati
- Medical and Clinical Affairs, Rural Health Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Kovy Arteaga-Livias
- Escuela de Medicina-Filial Ica, Universidad Privada San Juan Bautista, Ica 11000, Peru
- Escuela de Medicina, Universidad Nacional Hermilio Valdizán, Huanuco 10000, Peru
| | - Tareq Al-Ahdal
- Research Associate, Institute of Global Health, Heidelberg University, Neuenheimerfeld130/3, 69120 Heidelberg, Germany
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
8
|
Manenti A, Solfanelli N, Cantaloni P, Mazzini L, Leonardi M, Benincasa L, Piccini G, Marchi S, Boncioli M, Spertilli Raffaelli C, Tacconi D, Mattiuzzo G, Kistner O, Montomoli E, Trombetta CM. Evaluation of Monkeypox- and Vaccinia virus-neutralizing antibodies in human serum samples after vaccination and natural infection. Front Public Health 2023; 11:1195674. [PMID: 37415699 PMCID: PMC10321151 DOI: 10.3389/fpubh.2023.1195674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction In early to mid-2022, an unexpected outbreak of Monkeypox virus infections occurred outside the African endemic regions. Vaccines originally developed in the past to protect against smallpox are one of the available countermeasures to prevent and protect against Orthopoxvirus infections. To date, there are few studies on the cross-reactivity of neutralizing antibodies elicited by previous vaccinia virus-based vaccination and/or Monkeypox virus infection. The aim of this study was to evaluate a possible approach to performing Monkeypox and vaccinia live-virus microneutralization assays in which the read-out is based on the production of cytopathic effect in the cell monolayer. Methods Given the complexity of Orthopoxviruses, the microneutralization assay was performed in such a way as to uncover a potential role of complement, with and without the addition of an external source of Baby Rabbit Complement. A set of human serum samples from individuals who had been naturally infected with Monkeypox virus and individuals who may have and not have undergone vaccinia virus vaccinations, was used to evaluate the performance, sensitivity, and specificity of the assay. Results and conclusions The results of the present study confirm the presence and cross-reactivity of antibodies elicited by vaccinia-based vaccines, which proved able to neutralize the Monkeypox virus in the presence of an external source of complement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | - Danilo Tacconi
- Department of Infectious Diseases, Ospedale San Donato, Arezzo, Italy
| | - Giada Mattiuzzo
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | | | - Emanuele Montomoli
- VisMederi Srl, Siena, Italy
- VisMederi Research Srl, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudia Maria Trombetta
- VisMederi Research Srl, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
9
|
Falendysz EA, Lopera JG, Rocke TE, Osorio JE. Monkeypox Virus in Animals: Current Knowledge of Viral Transmission and Pathogenesis in Wild Animal Reservoirs and Captive Animal Models. Viruses 2023; 15:v15040905. [PMID: 37112885 PMCID: PMC10142277 DOI: 10.3390/v15040905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Mpox, formerly called monkeypox, is now the most serious orthopoxvirus (OPXV) infection in humans. This zoonotic disease has been gradually re-emerging in humans with an increasing frequency of cases found in endemic areas, as well as an escalating frequency and size of epidemics outside of endemic areas in Africa. Currently, the largest known mpox epidemic is spreading throughout the world, with over 85,650 cases to date, mostly in Europe and North America. These increased endemic cases and epidemics are likely driven primarily by decreasing global immunity to OPXVs, along with other possible causes. The current unprecedented global outbreak of mpox has demonstrated higher numbers of human cases and greater human-to-human transmission than previously documented, necessitating an urgent need to better understand this disease in humans and animals. Monkeypox virus (MPXV) infections in animals, both naturally occurring and experimental, have provided critical information about the routes of transmission; the viral pathogenicity factors; the methods of control, such as vaccination and antivirals; the disease ecology in reservoir host species; and the conservation impacts on wildlife species. This review briefly described the epidemiology and transmission of MPXV between animals and humans and summarizes past studies on the ecology of MPXV in wild animals and experimental studies in captive animal models, with a focus on how animal infections have informed knowledge concerning various aspects of this pathogen. Knowledge gaps were highlighted in areas where future research, both in captive and free-ranging animals, could inform efforts to understand and control this disease in both humans and animals.
Collapse
|
10
|
Beig M, Mohammadi M, Nafe Monfared F, Nasereslami S. Monkeypox: An emerging zoonotic pathogen. World J Virol 2022; 11:426-434. [PMID: 36483104 PMCID: PMC9724206 DOI: 10.5501/wjv.v11.i6.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/22/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Monkeypox virus (MPXV), which belongs to the orthopoxvirus genus, causes zoonotic viral disease. This review discusses the biology, epidemiology, and evolution of MPXV infection, particularly cellular, human, and viral factors, virus transmission dynamics, infection, and persistence in nature. This review also describes the role of recombination, gene loss, and gene gain in MPXV evol-vement and the role of signal transduction in MPXV infection and provides an overview of the current access to therapeutic options for the treatment and prevention of MPXV. Finally, this review highlighted gaps in knowledge and proposed future research endeavors to address the unresolved questions.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Microbiology, Pasteur Institute of Iran, Tehran 5423566512, Iran
| | - Mehrdad Mohammadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 8715973449, Iran
| | - Fatemeh Nafe Monfared
- Department of Virology, Tehran University of Medical Sciences, Tehran 5151561892, Iran
| | - Somaieh Nasereslami
- Department of Virology, Faculty of Medicine, Tarbiat Modares University, Tehran 5214632542, Iran
| |
Collapse
|
11
|
Mucker EM, Shamblin JD, Goff AJ, Bell TM, Reed C, Twenhafel NA, Chapman J, Mattix M, Alves D, Garry RF, Hensley LE. Evaluation of Virulence in Cynomolgus Macaques Using a Virus Preparation Enriched for the Extracellular Form of Monkeypox Virus. Viruses 2022; 14:v14091993. [PMID: 36146799 PMCID: PMC9505131 DOI: 10.3390/v14091993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The 2022 global human monkeypox outbreak emphasizes the importance of maintaining poxvirus research, including enriching a basic understanding of animal models for developing and advancing therapeutics and vaccines. Intravenous administration of monkeypox virus in macaques is arguably one of the best animal models for evaluating the efficacy of medical countermeasures. Here we addressed one criticism of the model, a requirement for a high-titer administration of virus, as well as improving our understanding of monkeypox virus pathogenesis. To do so, we infected macaques with a challenge dose containing a characterized inoculum enriched for the extracellular form of monkeypox virus. Although there were some differences between diseases caused by the enriched preparation compared with a relatively similar unpurified preparation, we were unable to reduce the viral input with the enriched preparation and maintain severe disease. We found that inherent factors contained within the serum of nonhuman primate blood affect the stability of the monkeypox extracellular virions. As a first step to study a role of the extracellular form in transmission, we also showed the presence of this form in the oropharyngeal swabs from nonhuman primates exposed to monkeypox virus.
Collapse
Affiliation(s)
- Eric M. Mucker
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Frederick, MD 21702, USA
- Correspondence:
| | - Josh D. Shamblin
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Arthur J. Goff
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Todd M. Bell
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Christopher Reed
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Nancy A. Twenhafel
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Jennifer Chapman
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Marc Mattix
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Derron Alves
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Infectious Disease Pathogenesis Section, Rockville, MD 20852, USA
| | - Robert F. Garry
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Zalgen Labs, Frederick, MD 21703, USA
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Lisa E. Hensley
- United States Department of Agriculture, Zoonotic and Emerging Disease Unit, Manhattan, KS 66505, USA
| |
Collapse
|