1
|
Pais R, Nagraj AK, Patel R, Gavade A, Momin M, Scheele J, Seiz W, Patil J. Amino Acids Frequency and Interaction Trends: Comprehensive Analysis of Experimentally Validated Viral Antigen-Antibody Complexes. Mol Biotechnol 2025:10.1007/s12033-024-01361-w. [PMID: 39775710 DOI: 10.1007/s12033-024-01361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Antibodies have specific binding capabilities and therapeutic potential for treating various diseases, including viral infections. The amino acid composition of the hypervariable complementarity determining regions (CDR) loops and the framework regions (FR) are the determining factors for the affinity and therapeutic efficacy of the antibodies. In this study selected and curated, 77 viral antigen-human antibody complexes from Protein data bank from the Thera-SAbdab database were analyzed. The results revealed diversity indices within specific CDR regions, amino acid frequencies, paratope-epitope interactions, bond formations, and bond types among the analyzed viral Ag-Ab complexes. The finding revealed that Ser, Gly, Tyr, Thr, and Phe are prominently present in the antibody CDRs. Analysis of CDR profiles indicated an average amino acid diversity of 60-80% in heavy chain CDRs and 45-60% in light chain CDRs. Aromatic residues, particularly Tyr, Phe, and Trp showed significant involvement in the paratope-epitope interactions in the heavy chain, while Tyr, Ser, and Thr were key contributors in the light chain. Furthermore, the study examined the occurrence of amino acids in both light and heavy chains of viral Ag- human Ab complexes, analyzing the presence of amino acids as single residues, dipeptides and tripeptides. The analysis is crucial for enhancing the antibody engineering processes including, design, optimization, affinity enhancement, and overall antibody development.
Collapse
Affiliation(s)
- Roylan Pais
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Anil Kumar Nagraj
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Riya Patel
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Akshata Gavade
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Mohasin Momin
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Juergen Scheele
- Innoplexus AG, Frankfurter Str. 27, 65760, Eschborn, Germany
| | - Werner Seiz
- Innoplexus AG, Frankfurter Str. 27, 65760, Eschborn, Germany
| | - Jaspal Patil
- Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India.
| |
Collapse
|
2
|
Petit PF, Daoudlarian D, Latifyan S, Bouchaab H, Mederos N, Doms J, Abdelhamid K, Ferahta N, Mencarelli L, Joo V, Bartolini R, Stravodimou A, Shabafrouz K, Pantaleo G, Peters S, Obeid M. Tocilizumab provides dual benefits in treating immune checkpoint inhibitor-associated arthritis and preventing relapse during ICI rechallenge: the TAPIR study. Ann Oncol 2025; 36:43-53. [PMID: 39241964 DOI: 10.1016/j.annonc.2024.08.2340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND The aim of this retrospective study was to evaluate the dual efficacy of tocilizumab (TCZ) in the treatment of immune checkpoint inhibitor (ICI)-associated arthritis (ICI-AR) and the prevention of relapses after rechallenge. PATIENTS AND METHODS We identified 26 patients with ICI-AR. The primary objectives were to evaluate TCZ efficacy in ICI-AR treatment and as secondary prophylaxis during ICI rechallenge in 11 of them. Patients received prednisone (CS) at 0.3 mg/kg tapered at 0.05 mg/kg weekly for six weeks. TCZ was administered at a dose of 8 mg/kg every 2 weeks. In the subgroup receiving secondary prophylaxis (rechallenge n = 11), TCZ was reintroduced with the same regimen concurrently with ICI rechallenge, and without the addition of CS. A control group of patients (rechallenge n = 5) was rechallenged without TCZ. Secondary endpoints included post-rechallenge evaluation of ICI duration, reintroduction of CS >0.1 mg/kg/day, ICI-AR flares, and disease control rate. RESULTS The median age of the patients was 70 years. The median follow-up from ICI initiation was 864 days. Among the 20 patients treated with TCZ for ICI-AR, all (100%) achieved an ACR70 response rate, defined as greater than 70% improvement, at 10 weeks. Some 81% of these patients achieved steroid-free remission after 24 weeks on TCZ. The median follow-up period was 552 days in rechallenged patients. The results demonstrated a reduction in ICI-AR relapses upon ICI rechallenge in patients receiving TCZ prophylaxis compared with patients who did not receive prophylaxis (17% versus 40%). The requirement for CS was completely abolished with prophylaxis (0% versus 20%), and the mean duration of ICI treatment was notably extended from 113 to 206 days. The 12-month post-rechallenge outcomes showed a disease control rate of 77%. During TCZ prophylaxis, CXCL9 remained elevated, showing no decline from their concentrations at the onset of ICI-AR. CONCLUSIONS In addition to treating ICI-AR, TCZ demonstrated efficacy as a secondary prophylactic agent, preventing the recurrence of symptoms and lengthening ICI treatment duration after ICI rechallenge.
Collapse
Affiliation(s)
- P-F Petit
- Medical Oncology Service, CHU Helora, La Louvière, Belgium
| | - D Daoudlarian
- Department of Medicine, Immunology and Allergy Service
| | - S Latifyan
- Department of Oncology, Medical Oncology Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - H Bouchaab
- Department of Oncology, Medical Oncology Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - N Mederos
- Department of Oncology, Medical Oncology Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - J Doms
- Department of Medicine, Immunology and Allergy Service
| | - K Abdelhamid
- Department of Oncology, Medical Oncology Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - N Ferahta
- Department of Oncology, Medical Oncology Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - L Mencarelli
- Department of Medicine, Immunology and Allergy Service
| | - V Joo
- Department of Medicine, Immunology and Allergy Service
| | - R Bartolini
- Department of Medicine, Immunology and Allergy Service
| | - A Stravodimou
- Department of Oncology, Medical Oncology Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - K Shabafrouz
- Department of Oncology, Medical Oncology Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - G Pantaleo
- Department of Medicine, Immunology and Allergy Service
| | - S Peters
- Department of Oncology, Medical Oncology Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - M Obeid
- Department of Medicine, Immunology and Allergy Service.
| |
Collapse
|
3
|
Daoudlarian D, Segot A, Latifyan S, Bartolini R, Joo V, Mederos N, Bouchaab H, Demicheli R, Abdelhamid K, Ferahta N, Doms J, Stalder G, Noto A, Mencarelli L, Mosimann V, Berthold D, Stravodimou A, Sartori C, Shabafrouz K, Thompson JA, Wang Y, Peters S, Pantaleo G, Obeid M. Tocilizumab and immune signatures for targeted management of cytokine release syndrome in immune checkpoint therapy. Ann Oncol 2024:S0923-7534(24)04979-2. [PMID: 39701282 DOI: 10.1016/j.annonc.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND This study aimed to identify specific biomarkers in oncology patients experiencing immune-related cytokine release syndrome (irCRS)-like symptoms during immune checkpoint inhibitor (ICI) therapy, including severe cases like hemophagocytic lymphohistiocytosis (irHLH), and to distinguish these from sepsis. A secondary objective was to retrospectively analyze the efficacy of tocilizumab (TCZ) in treating corticosteroid (CS)-refractory high-grade irCRS. PATIENTS AND METHODS A cohort of 35 patients presenting with irCRS-like symptoms was studied, including 9 with irHLH-like manifestations and 8 with sepsis. Immune profiling was carried out using 48 mass cytometry markers, along with an analysis of 45 serum biomarkers, including 27 cytokines and 18 additional markers from the HScore. Twelve patients with high-grade irCRS refractory to CS were treated with TCZ. RESULTS Twenty-four biomarkers significantly distinguished between irHLH and grade 3 irCRS (P = 0.0027-0.0455). Hepatocyte growth factor (HGF) and ferritin had superior predictive values compared with the traditional HScore, both with a positive predictive value (PPV) and negative predictive value (NPV) of 100%. CXCL9 differentiated irHLH from grade 3 irCRS and predicted the need for TCZ treatment intensification (PPV = 90%, NPV = 100%). Additional biomarkers, including leukocyte count, neutrophils, ferritin, interleukin (IL)-6, IL-7, epidermal growth factor, fibrinogen, and granulocyte-macrophage colony-stimulating factor (GM-CSF), discriminated sepsis from high-grade irCRS (PPV = 75%-80%, NPV = 100%). Elevated frequencies of CXCR5+ or CCR4+ CD8 memory cells, CD38+ intermediate monocytes, and CD62L+ neutrophils were observed in high-grade irCRS compared with sepsis. All 12 patients with high-grade irCRS refractory to CS treated with TCZ experienced complete resolution. CONCLUSIONS This study highlights the importance of specific immunologic biomarkers in determining irCRS severity, predicting outcomes, and distinguishing between irHLH, irCRS, and sepsis. It also demonstrates the efficacy of TCZ in managing high-grade irCRS, underscoring the need for personalized therapeutic strategies based on these biomarkers.
Collapse
Affiliation(s)
- D Daoudlarian
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Immunology and Allergy Service, University of Lausanne, Lausanne, Switzerland
| | - A Segot
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Service and Central Laboratory of Hematology, University of Lausanne, Lausanne, Switzerland
| | - S Latifyan
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - R Bartolini
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Immunology and Allergy Service, University of Lausanne, Lausanne, Switzerland
| | - V Joo
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Immunology and Allergy Service, University of Lausanne, Lausanne, Switzerland
| | - N Mederos
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - H Bouchaab
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - R Demicheli
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - K Abdelhamid
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - N Ferahta
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - J Doms
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Immunology and Allergy Service, University of Lausanne, Lausanne, Switzerland
| | - G Stalder
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Service and Central Laboratory of Hematology, University of Lausanne, Lausanne, Switzerland; Service of Hematology, Institut Central des Hôpitaux, Hôpital du Valais, Sion, Switzerland
| | - A Noto
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Immunology and Allergy Service, University of Lausanne, Lausanne, Switzerland
| | - L Mencarelli
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Immunology and Allergy Service, University of Lausanne, Lausanne, Switzerland
| | - V Mosimann
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - D Berthold
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - A Stravodimou
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - C Sartori
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Internal Medicine Service, University of Lausanne, Lausanne, Switzerland
| | - K Shabafrouz
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - J A Thompson
- Department of Medicine, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, USA
| | - Y Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, Medical Oncology Service, University of Lausanne, Lausanne, Switzerland
| | - G Pantaleo
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Immunology and Allergy Service, University of Lausanne, Lausanne, Switzerland
| | - M Obeid
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Immunology and Allergy Service, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Quagliariello V, Canale ML, Bisceglia I, Maurea C, Gabrielli D, Tarantini L, Paccone A, Inno A, Oliva S, Cadeddu Dessalvi C, Zito C, Caraglia M, Berretta M, D’Aiuto G, Maurea N. Addressing Post-Acute COVID-19 Syndrome in Cancer Patients, from Visceral Obesity and Myosteatosis to Systemic Inflammation: Implications in Cardio-Onco-Metabolism. Biomedicines 2024; 12:1650. [PMID: 39200115 PMCID: PMC11351439 DOI: 10.3390/biomedicines12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology described several shared risk factors that predispose patients to both cardiovascular disease and cancer. Post-acute COVID-19 syndrome is a chronic condition that occurs in many patients who have experienced a SARS-CoV-2 infection, mainly based on chronic fatigue, sedentary lifestyle, cramps, breathing difficulties, and reduced lung performance. Post-acute COVID-19 exposes patients to increased visceral adiposity, insulin resistance, myosteatosis, and white adipose tissue content (surrounded by M1 macrophages and characterized by a Th1/Th17 phenotype), which increases the risk of cardiovascular mortality and cancer recurrence. In this review, the main metabolic affections of post-acute COVID-19 syndrome in cancer patients at low and high risk of cardiomyopathies will be summarized. Furthermore, several non-pharmacological strategies aimed at reducing atherosclerotic and cardiac risk will be provided, especially through anti-inflammatory nutrition with a low insulin and glycemic index, appropriate physical activity, and immune-modulating bioactivities able to reduce visceral obesity and myosteatosis, improving insulin-related signaling and myocardial metabolism.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| | | | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Carlo Maurea
- Neurology Department, University of Salerno, 84084 Fisciano, Italy;
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Luigi Tarantini
- Divisione di Cardiologia, Arcispedale S. Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio-Emilia, 42122 Reggio Emilia, Italy;
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy;
| | - Stefano Oliva
- UOSD Cardiologia di Interesse Oncologico IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | | | - Concetta Zito
- Cardiology Division, University Hospital Polyclinic G. Martino, University of Messina, 98122 Messina, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 7, 80138 Naples, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | | | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| |
Collapse
|
5
|
Currie C, Myklebust TÅ, Bjerknes C, Framroze B. Assessing the Potential of an Enzymatically Liberated Salmon Oil to Support Immune Health Recovery from Acute SARS-CoV-2 Infection via Change in the Expression of Cytokine, Chemokine and Interferon-Related Genes. Int J Mol Sci 2024; 25:6917. [PMID: 39000027 PMCID: PMC11241394 DOI: 10.3390/ijms25136917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Cytokines, chemokines, and interferons are released in response to viral infection with the ultimate aim of viral clearance. However, in SARS-CoV-2 infection, there is an imbalanced immune response, with raised cytokine levels but only a limited interferon response with inefficient viral clearance. Furthermore, the inflammatory response can be exaggerated, which risks both acute and chronic sequelae. Several observational studies have suggested a reduced risk of progression to severe COVID-19 in subjects with a higher omega-3 index. However, randomized studies of omega-3 supplementation have failed to replicate this benefit. Omega-3 fats provide important anti-inflammatory effects; however, fatty fish contains many other fatty acids that provide health benefits distinct from omega-3. Therefore, the immune health benefit of whole salmon oil (SO) was assessed in adults with mild to moderate COVID-19. Eleven subjects were randomized to best supportive care (BSC) with or without a full spectrum, enzymatically liberated SO, dosed at 4g daily, for twenty-eight days. Nasal swabs were taken to measure the change in gene expression of markers of immune response and showed that the SO provided both broad inflammation-resolving effects and improved interferon response. The results also suggest improved lung barrier function and enhanced immune memory, although the clinical relevance needs to be assessed in longer-duration studies. In conclusion, the salmon oil was well tolerated and provided broad inflammation-resolving effects, indicating a potential to enhance immune health.
Collapse
Affiliation(s)
- Crawford Currie
- Hofseth BioCare, Keiser Wilhelms Gate 24, 6003 Alesund, Norway; (C.B.); (B.F.)
| | - Tor Åge Myklebust
- Department of Research and Innovation, More og Romsdal Hospital Trust, 6026 Ålesund, Norway;
- Department of Registration, Cancer Registry of Norway, 0379 Oslo, Norway
| | - Christian Bjerknes
- Hofseth BioCare, Keiser Wilhelms Gate 24, 6003 Alesund, Norway; (C.B.); (B.F.)
| | - Bomi Framroze
- Hofseth BioCare, Keiser Wilhelms Gate 24, 6003 Alesund, Norway; (C.B.); (B.F.)
| |
Collapse
|
6
|
Joo V, Abdelhamid K, Noto A, Latifyan S, Martina F, Daoudlarian D, De Micheli R, Pruijm M, Peters S, Hullin R, Gaide O, Pantaleo G, Obeid M. Primary prophylaxis with mTOR inhibitor enhances T cell effector function and prevents heart transplant rejection during talimogene laherparepvec therapy of squamous cell carcinoma. Nat Commun 2024; 15:3664. [PMID: 38693123 PMCID: PMC11063183 DOI: 10.1038/s41467-024-47965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The application of mammalian target of rapamycin inhibition (mTORi) as primary prophylactic therapy to optimize T cell effector function while preserving allograft tolerance remains challenging. Here, we present a comprehensive two-step therapeutic approach in a male patient with metastatic cutaneous squamous cell carcinoma and heart transplantation followed with concomitant longitudinal analysis of systemic immunologic changes. In the first step, calcineurin inhibitor/ mycophenolic acid is replaced by the mTORi everolimus to achieve an improved effector T cell status with increased cytotoxic activity (perforin, granzyme), enhanced proliferation (Ki67) and upregulated activation markers (CD38, CD69). In the second step, talimogene laherparepvec (T-VEC) injection further enhances effector function by switching CD4 and CD8 cells from central memory to effector memory profiles, enhancing Th1 responses, and boosting cytotoxic and proliferative activities. In addition, cytokine release (IL-6, IL-18, sCD25, CCL-2, CCL-4) is enhanced and the frequency of circulating regulatory T cells is increased. Notably, no histologic signs of allograft rejection are observed in consecutive end-myocardial biopsies. These findings provide valuable insights into the dynamics of T cell activation and differentiation and suggest that timely initiation of mTORi-based primary prophylaxis may provide a dual benefit of revitalizing T cell function while maintaining allograft tolerance.
Collapse
Affiliation(s)
- Victor Joo
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Karim Abdelhamid
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Alessandra Noto
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Sofiya Latifyan
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Federica Martina
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Douglas Daoudlarian
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Rita De Micheli
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Menno Pruijm
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Nephrology Division, Rue du Bugnon 17, CH-1011, Lausanne, Switzerland
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Roger Hullin
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Cardiology, Cardiovascular Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Olivier Gaide
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Dermatology Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
7
|
Megasari NLA, Khairunisa SQ, Arizandy RY, Wijaksana IKE, Wungu CDK. Cytokine profiles of mild-to-moderate SARS-CoV-2 infected and recovered pre-vaccinated individuals residing in Indonesia. PeerJ 2024; 12:e17257. [PMID: 38646483 PMCID: PMC11032655 DOI: 10.7717/peerj.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Background Accumulating evidence suggests the involvement of cytokine-mediated inflammation, in clinical severity and death related to SARS-CoV-2 infection, especially among pre-vaccinated individuals. An increased risk of death was also described among SARS-CoV-2 recovered individuals, which might be correlated with prolonged inflammatory responses. Despite being among the countries with the highest cumulative deaths due to COVID-19, evidence regarding cytokine profiles among SARS-CoV-2 infected and recovered pre-vaccinated individuals in Indonesia is scarce. Thus, this study aimed to describe the cytokines profiles of pre-vaccinated individuals residing in Indonesia, with mild-to-moderate SARS-CoV-2 infection and those who recovered. Methods Sixty-one sera from 24 hospitalized patients with mild-to-moderate SARS-CoV-2 infection, 24 individuals recovered from asymptomatic-to-moderate SARS-CoV-2 infection, and 13 healthy controls unexposed to SARS-CoV-2 were used in this study. Quantification of serum cytokine levels, including IL-6, IL-8, IP-10, TNF-α, CCL-2, CCL-3, CCL-4, and CXCL-13, was performed using a Luminex multi-analyte-profiling (xMAP)-based assay. Results The levels of IL-8 along with CCL-2 and CCL-4, were significantly higher (p ≤ 0.01) in hospitalized patients with mild-to-moderate SARS-CoV-2 infection and recovered individuals compared to healthy controls. However, no significant difference was observed in these cytokine levels between infected and recovered individuals. On the other hand, there were no significant differences in several other cytokine levels, including IL-6, IL-10, TNF-α, CCL-3, and CXCL-13, among all groups. Conclusion IL-8, CCL-2, and CCL-4 were significantly elevated in pre-vaccinated Indonesian individuals with mild-to-moderate SARS-CoV-2 infection and those who recovered. The cytokine profiles described in this study might indicate inflammatory responses not only among SARS-CoV-2 infected, but also recovered individuals.
Collapse
Affiliation(s)
- Ni Luh Ayu Megasari
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Postgraduate School, Airlangga University, Surabaya, Indonesia
| | | | | | - I. Komang Evan Wijaksana
- Department of Periodontology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
8
|
Prakash S, Dhanushkodi NR, Singer M, Quadiri A, Zayou L, Vahed H, Coulon PG, Ibraim IC, Tafoya C, Hitchcock L, Landucci G, Forthal DN, El Babsiri A, Tifrea DF, Figueroa CJ, Nesburn AB, Kuppermann BD, Gil D, Jones TM, Ulmer JB, BenMohamed L. A Broad-Spectrum Multi-Antigen mRNA/LNP-Based Pan-Coronavirus Vaccine Induced Potent Cross-Protective Immunity Against Infection and Disease Caused by Highly Pathogenic and Heavily Spike-Mutated SARS-CoV-2 Variants of Concern in the Syrian Hamster Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580225. [PMID: 38405942 PMCID: PMC10888826 DOI: 10.1101/2024.02.14.580225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-γ+TNFα+CD4+ and CD69+IFN-γ+TNFα+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Izabela Coimbra Ibraim
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Christine Tafoya
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Lauren Hitchcock
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Gary Landucci
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Donald N. Forthal
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Assia El Babsiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, Irvine, CA 92697
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns & Critical Care, School of Medicine, Irvine, CA 92697
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| |
Collapse
|
9
|
Cambier S, Beretta F, Pörtner N, Metzemaekers M, de Carvalho AC, Martens E, Kaes J, Aelbrecht C, Jacobs C, Van Mol P, Wauters E, Meersseman P, Hermans G, Marques RE, Vanaudenaerde B, Vos R, Wauters J, Gouwy M, Proost P. Proteolytic inactivation of CXCL12 in the lungs and circulation of COVID-19 patients. Cell Mol Life Sci 2023; 80:234. [PMID: 37505242 PMCID: PMC11073220 DOI: 10.1007/s00018-023-04870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The human chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is involved in several homeostatic processes and pathologies through interaction with its cognate G protein-coupled receptor CXCR4. Recent research has shown that CXCL12 is present in the lungs and circulation of patients with coronavirus disease 2019 (COVID-19). However, the question whether the detected CXCL12 is bioactive was not addressed. Indeed, the activity of CXCL12 is regulated by NH2- and COOH-terminal post-translational proteolysis, which significantly impairs its biological activity. The aim of the present study was to characterize proteolytic processing of CXCL12 in broncho-alveolar lavage (BAL) fluid and blood plasma samples from critically ill COVID-19 patients. Therefore, we optimized immunosorbent tandem mass spectrometry proteoform analysis (ISTAMPA) for detection of CXCL12 proteoforms. In patient samples, this approach uncovered that CXCL12 is rapidly processed by site-specific NH2- and COOH-terminal proteolysis and ultimately degraded. This proteolytic inactivation occurred more rapidly in COVID-19 plasma than in COVID-19 BAL fluids, whereas BAL fluid samples from stable lung transplantation patients and the non-affected lung of lung cancer patients (control groups) hardly induced any processing of CXCL12. In COVID-19 BAL fluids with high proteolytic activity, processing occurred exclusively NH2-terminally and was predominantly mediated by neutrophil elastase. In low proteolytic activity BAL fluid and plasma samples, NH2- and COOH-terminal proteolysis by CD26 and carboxypeptidases were observed. Finally, protease inhibitors already approved for clinical use such as sitagliptin and sivelestat prevented CXCL12 processing and may therefore be of pharmacological interest to prolong CXCL12 half-life and biological activity in vivo.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
| | - Fabio Beretta
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
| | - Ana Carolina de Carvalho
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Celine Aelbrecht
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Cato Jacobs
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Van Mol
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Meersseman
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Greet Hermans
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Bart Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium.
| |
Collapse
|