1
|
Xiao Z, Guo Y, Li J, Jiang X, Wu F, Wang Y, Zhang Y, Zhou W. Harnessing traditional Chinese medicine polysaccharides for combatting COVID-19. Carbohydr Polym 2024; 346:122605. [PMID: 39245521 DOI: 10.1016/j.carbpol.2024.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
With the global spread of COVID-19 posing ongoing challenges to public health systems, there is an ever-increasing demand for effective therapeutics that can mitigate both viral transmission and disease severity. This review surveys the landscape of polysaccharides derived from traditional Chinese medicine, acclaimed for their medicinal properties and potential to contribute to the COVID-19 response. We specifically focus on the capability of these polysaccharides to thwart SARS-CoV-2 entry into host cells, a pivotal step in the viral life cycle that informs transmission and pathogenicity. Moreover, we delve into the concept of trained immunity, an innate immune system feature that polysaccharides may potentiate, offering an avenue for a more moderated yet efficacious immune response against various pathogens, including SARS-CoV-2. Our comprehensive overview aims to bolster understanding of the possible integration of these substances within anti-COVID-19 measures, emphasizing the need for rigorous investigation into their potential applications and underlying mechanisms. The insights provided here strongly support ongoing investigations into the adjunctive use of polysaccharides in the management of COVID-19, with the anticipation that such findings could lead to a deeper appreciation and clearer elucidation of the antiviral potentials inherent in complex Chinese herbal remedies.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Yizhen Guo
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Jingxuan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Xuyong Jiang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Fushan Wu
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Ying Wang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
2
|
Wang WJ, Tang HT, Ou SC, Shen WJ, Chen CY, Li YC, Chang SY, Chang WC, Hsueh PR, Huang ST, Hung MC. Novel SARS-CoV-2 inhibition properties of the anti-cancer Kang Guan Recipe herbal formula. Cancer Lett 2024; 604:217198. [PMID: 39197583 DOI: 10.1016/j.canlet.2024.217198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
The ongoing COVID-19 pandemic is a persistent challenge, with continued breakthrough infections despite vaccination efforts. This has spurred interest in alternative preventive measures, including dietary and herbal interventions. Previous research has demonstrated that herbal medicines can not only inhibit cancer progression but also combat viral infections, including COVID-19 by targeting SARS-CoV-2, indicating a multifaceted potential to address both viruses and cancer. Here, we found that the Kang Guan Recipe (KGR), a novel herbal medicine formula, associates with potent inhibition activity against the SARS-CoV-2 viral infection. We demonstrate that KGR exhibits inhibitory activity against several SARS-CoV-2 variants of concern (VOCs). Mechanistically, we found that KGR can block the interaction of the viral spike and human angiotensin-converting enzyme 2 (ACE2). Furthermore, we assessed the inhibitory effect of KGR on SARS-CoV-2 viral entry in vivo, observing that serum samples from healthy human subjects having taken KGR exhibited suppressive activity against SARS-CoV-2 variants. Our investigation provides valuable insights into the potential of KGR as a novel herbal-based preventive and therapeutic strategy against COVID-19.
Collapse
Affiliation(s)
- Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsuan-Ting Tang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wan-Jou Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| | - Sui-Yuan Chang
- Dept of Clinical Laboratory Sciences and Medical Biotchnology, National Taiwan University College of Medicine, Taipei, Taiwan; Dept of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Mien-Chie Hung
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Molinero M, Perez-Pons M, González J, Barbé F, de Gonzalo-Calvo D. Decoding viral and host microRNA signatures in airway-derived biosamples: Insights for biomarker discovery in viral respiratory infections. Biomed Pharmacother 2024; 177:116984. [PMID: 38908203 DOI: 10.1016/j.biopha.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The global public health crisis caused by the COVID-19 pandemic has intensified the global concern regarding viral respiratory tract infections. Despite their considerable impact on health, society and the economy, effective management of these conditions remains a significant challenge. Integrating high-throughput analyses is pivotal for early detection, prognostication of adverse outcomes, elucidating pathogenetic pathways and developing therapeutic approaches. In recent years, microRNAs (miRNAs), a subset of small noncoding RNAs (ncRNAs), have emerged as promising tools for molecular phenotyping. Current evidence suggests that miRNAs could serve as innovative biological markers, aiding in informed medical decision-making. The cost-effective quantification of miRNAs in standardized samples using techniques routinely employed in clinical laboratories has become feasible. In this context, samples obtained from the airways represent a valuable source of information due to their direct exposure to the infectious agent and host response within the respiratory tract. This review explores viral and host miRNA profiling in airway-derived biosamples as a source of molecular information to guide patient management, with a specific emphasis on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Wei X, Luo D, Li H, Li Y, Cen S, Huang M, Jiang X, Zhong G, Zeng W. The roles and potential mechanisms of plant polysaccharides in liver diseases: a review. Front Pharmacol 2024; 15:1400958. [PMID: 38966560 PMCID: PMC11222613 DOI: 10.3389/fphar.2024.1400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
Plant polysaccharides (PP) demonstrate a diverse array of biological and pharmacological properties. This comprehensive review aims to compile and present the multifaceted roles and underlying mechanisms of plant polysaccharides in various liver diseases. These diseases include non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), fibrosis, drug-induced liver injury (DILI), and hepatocellular carcinoma (HCC). This study aims to elucidate the intricate mechanisms and therapeutic potential of plant polysaccharides, shedding light on their significance and potential applications in the management and potential prevention of these liver conditions. An exhaustive literature search was conducted for this study, utilizing prominent databases such as PubMed, Web of Science, and CNKI. The search criteria focused on the formula "(plant polysaccharides liver disease) NOT (review)" was employed to ensure the inclusion of original research articles up to the year 2023. Relevant literature was extracted and analyzed from these databases. Plant polysaccharides exhibit promising pharmacological properties, particularly in the regulation of glucose and lipid metabolism and their anti-inflammatory and immunomodulatory effects. The ongoing progress of studies on the molecular mechanisms associated with polysaccharides will offer novel therapeutic strategies for the treatment of chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Xianzhi Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Daimin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haonan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yagang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Shizhuo Cen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoping Zhong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| |
Collapse
|
5
|
Li M, Zhang Y, Liu J, Zhang D. Complementary and alternative medicine: A narrative review of nutritional approaches for cancer-related fatigue. Medicine (Baltimore) 2024; 103:e37480. [PMID: 38489718 PMCID: PMC10939540 DOI: 10.1097/md.0000000000037480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Cancer-related fatigue (CRF) is a common symptom among patients with cancer, with a prevalence of >49%. CRF significantly affects the quality of life of patients and may also affect their overall survival. Pharmacological interventions serve as a last resort after carefully weighing the risks and benefits, with limited benefits for patients, many side effects, and adverse reactions. Compared to traditional medicine, nutritional approaches have fewer side effects, are highly accepted by patients, and do not affect the antitumor treatment of patients. Many studies have shown that nutritional approaches, as a form of complementary and alternative medicine, help improve the symptoms of CRF and the quality of life of patients. This study was designed to examine nutritional approaches to CRF and assess their effectiveness of nutritional approaches in improving CRF. We present an overview of clinical trials investigating nutritional approaches for CRF that have been published over the last 2 decades. A total of 33 records were obtained from 3 databases: Web of Science, MEDLINE, and PubMed. Some nutritional approaches, such as melatonin, PG2, and S-adenosyl-l-methionine, are potential options for CRF treatment. However, the trials included in the review varied widely in quality, most were weak in methodology, and there is currently insufficient evidence to conclude with certainty the effectiveness of nutritional approaches in reducing CRF. Therefore, the design and methods used in future complementary and alternative medicine trials should be more rigorous.
Collapse
Affiliation(s)
- Meng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yue Zhang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, China
| | - Jimin Liu
- The Third Clinical Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dong Zhang
- College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Xie Z, Jiang N, Lin M, He X, Li B, Dong Y, Chen S, Lv G. The Mechanisms of Polysaccharides from Tonic Chinese Herbal Medicine on the Enhancement Immune Function: A Review. Molecules 2023; 28:7355. [PMID: 37959774 PMCID: PMC10648855 DOI: 10.3390/molecules28217355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Tonic Chinese herbal medicine is a type of traditional Chinese medicine, and its primary function is to restore the body's lost nutrients, improve activity levels, increase disease resistance, and alleviate physical exhaustion. The body's immunity can be strengthened by its polysaccharide components, which also have a potent immune-system-protecting effect. Several studies have demonstrated that tonic Chinese herbal medicine polysaccharides can improve the body's immune response to tumor cells, viruses, bacteria, and other harmful substances. However, the regulatory mechanisms by which various polysaccharides used in tonic Chinese herbal medicine enhance immune function vary. This study examines the regulatory effects of different tonic Chinese herbal medicine polysaccharides on immune organs, immune cells, and immune-related cytokines. It explores the immune response mechanism to understand the similarities and differences in the effects of tonic Chinese herbal medicine polysaccharides on immune function and to lay the foundation for the future development of tonic Chinese herbal medicine polysaccharide products.
Collapse
Affiliation(s)
- Zhiyi Xie
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Ninghua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China;
| | - Minqiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yingjie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Suhong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|