1
|
Tsoi JYH, Cai J, Situ J, Lam WJ, Shun EHK, Leung JKY, Chen LL, Chan BPC, Yeung ML, Li X, Chan KH, Wong JSC, Kwan MYW, To KKW, Yuen KY, Sridhar S. Autoantibodies against angiotensin-converting enzyme 2 (ACE2) after COVID-19 infection or vaccination. J Med Virol 2023; 95:e29313. [PMID: 38100626 DOI: 10.1002/jmv.29313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Autoantibodies against angiotensin-converting enzyme 2 (ACE2) are frequently reported in patients during coronavirus disease 2019 (COVID-19) with evidence for a pathogenic role in severe infection. However, little is known of the prevalence or clinical significance of ACE2 autoantibodies in late convalescence or following COVID-19 vaccination. In this study, we measured ACE2 autoantibodies in a cohort of 182 COVID-19 convalescent patients, 186 COVID-19 vaccine recipients, and 43 adolescents with post-mRNA vaccine myopericarditis using two ACE2 enzymatic immunoassays (EIAs). ACE2 IgM autoantibody EIA median optical densities (ODs) were lower in convalescent patients than pre-COVID-19 control samples with only 2/182 (1.1%) convalescents testing positive. Similarly, only 3/182 (1.6%) convalescent patients tested positive for ACE2 IgG, but patients with history of moderate-severe COVID-19 tended to have significantly higher median ODs than controls and mild COVID-19 patients. In contrast, ACE2 IgG antibodies were detected in 10/186 (5.4%) COVID-19 vaccine recipients after two doses of vaccination. Median ACE2 IgG EIA ODs of vaccine recipients were higher than controls irrespective of the vaccine platform used (inactivated or mRNA). ACE2 IgG ODs were not correlated with surrogate neutralizing antibody levels in vaccine recipients. ACE2 IgG levels peaked at day 56 post-first dose and declined within 12 months to baseline levels in vaccine recipients. Presence of ACE2 antibodies was not associated with adverse events following immunization including myopericarditis. One convalescent patient with ACE2 IgG developed Guillain-Barre syndrome, but causality was not established. ACE2 autoantibodies are observed in COVID-19 vaccine recipients and convalescent patients, but are likely innocuous.
Collapse
Affiliation(s)
- James Yiu Hung Tsoi
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jianpiao Cai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jianwen Situ
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Winston Jim Lam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Estie Hon Kiu Shun
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, The University of Hong Kong, Hong Kong, China
| | - Joy Ka Yi Leung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lin Lei Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Brian Pui Chun Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Man Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xin Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok Hung Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Joshua Sung Chih Wong
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Mike Yat Wah Kwan
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Kelvin Kai Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
2
|
Esposito F, Cannalire R. Special Issue "Advances in Antiviral Agents against SARS-CoV-2 and Its Variants". Viruses 2023; 15:1905. [PMID: 37766311 PMCID: PMC10534516 DOI: 10.3390/v15091905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with 770 million reported cases and around 7 million deaths, represents the worst pandemic in the last 100 years [...].
Collapse
Affiliation(s)
- Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
3
|
Ren Z, Shen C, Peng J. Status and Developing Strategies for Neutralizing Monoclonal Antibody Therapy in the Omicron Era of COVID-19. Viruses 2023; 15:1297. [PMID: 37376597 DOI: 10.3390/v15061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The monoclonal antibody (mAb)-based treatment is a highly valued therapy against COVID-19, especially for individuals who may not have strong immune responses to the vaccine. However, with the arrival of the Omicron variant and its evolving subvariants, along with the occurrence of remarkable resistance of these SARS-CoV-2 variants to the neutralizing antibodies, mAbs are facing tough challenges. Future strategies for developing mAbs with improved resistance to viral evasion will involve optimizing the targeting epitopes on SARS-CoV-2, enhancing the affinity and potency of mAbs, exploring the use of non-neutralizing antibodies that bind to conserved epitopes on the S protein, as well as optimizing immunization regimens. These approaches can improve the viability of mAb therapy in the fight against the evolving threat of the coronavirus.
Collapse
Affiliation(s)
- Zuning Ren
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Lu Y, Shen F, He W, Li A, Li M, Feng X, Zheng Y, Pang W. HR121 targeting HR2 domain in S2 subunit of spike protein can serve as a broad-spectrum SARS-CoV-2 inhibitor via intranasal administration. Acta Pharm Sin B 2023:S2211-3835(23)00192-2. [PMID: 37360013 PMCID: PMC10219671 DOI: 10.1016/j.apsb.2023.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
The continuously emerging SARS-CoV-2 variants pose a great challenge to the efficacy of current drugs, this necessitates the development of broad-spectrum antiviral drugs. In the previous study, we designed a recombinant protein, heptad repeat (HR) 121, as a variant-proof vaccine. Here, we found it can act as a fusion inhibitor and demonstrated broadly neutralizing activities against SARS-CoV-2 and its main variants. Structure analysis suggested that HR121 targets the HR2 domain in SARS-CoV-2 spike (S) 2 subunit to block virus-cell fusion. Functional experiments demonstrated that HR121 can bind HR2 at serological-pH and endosomal-pH, highlighting its inhibition capacity when SARS-CoV-2 enters via either cellular membrane fusion or endosomal route. Importantly, HR121 can effectively inhibit SARS-CoV-2 and Omicron variant pseudoviruses entering the cells, as well as block authentic SARS-CoV-2 and Omicron BA.2 replications in human pulmonary alveolar epithelial cells. After intranasal administration to Syrian golden hamsters, it can protect hamsters from SARS-CoV-2 and Omicron BA.2 infection. Together, our results suggest that HR121 is a potent drug candidate with broadly neutralizing activities against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anqi Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Li
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Xiaoli Feng
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|