1
|
Zhao X, Zhao X, Di W, Wang C. Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers. Molecules 2024; 29:1235. [PMID: 38542872 PMCID: PMC10974348 DOI: 10.3390/molecules29061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Cyclophilin A, a widely prevalent cellular protein, exhibits peptidyl-prolyl cis-trans isomerase activity. This protein is predominantly located in the cytosol; additionally, it can be secreted by the cells in response to inflammatory stimuli. Cyclophilin A has been identified to be a key player in many of the biological events and is therefore involved in several diseases, including vascular and inflammatory diseases, immune disorders, aging, and cancers. It represents an attractive target for therapeutic intervention with small molecule inhibitors such as cyclosporin A. Recently, a number of novel inhibitors of cyclophilin A have emerged. However, it remains elusive whether and how many cyclophilin A inhibitors function in the inflammatory diseases and cancers. In this review, we discuss current available data about cyclophilin A inhibitors, including cyclosporin A and its derivatives, quinoxaline derivatives, and peptide analogues, and outline the most recent advances in clinical trials of these agents. Inhibitors of cyclophilin A are poised to enhance our comprehension of the molecular mechanisms that underpin inflammatory diseases and cancers associated with cyclophilin A. This advancement will aid in the development of innovative pharmaceutical treatments in the future.
Collapse
Affiliation(s)
- Xuemei Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Xin Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Weihua Di
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China
| |
Collapse
|
2
|
Silva AVBDA, Campanati JDEAG, Barcelos IDES, Santos ACL, Deus UPDE, Soares TDEJ, Amaral LSDEB. COVID-19 and Acute Kidney Injury - Direct and Indirect Pathophysiological Mechanisms Underlying Lesion Development. AN ACAD BRAS CIENC 2022; 94:e20211501. [PMID: 36477239 DOI: 10.1590/0001-3765202220211501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
COVID-19 is a pandemic disease caused by the SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) responsible for millions of deaths worldwide. Although the respiratory system is the main target of COVID-19, the disease can affect other organs, including the kidneys. Acute Kidney Injury (AKI), commonly seen in patients infected with COVID-19, has a multifactorial cause. Several studies associate this injury with the direct involvement of the virus in renal cells and the indirect damage stimulated by the infection. The direct cytopathic effects of SARS-CoV-2 are due to the entry and replication of the virus in renal cells, changing several regulatory pathways, especially the renin-angiotensin-aldosterone system (RAAS), with repercussions on the kallikrein-kinin system (KKS). Furthermore, the virus can deregulate the immune system, leading to an exaggerated response of inflammatory cells, characterizing the state of hypercytokinemia. The such exaggerated inflammatory response is commonly associated with hemodynamic changes, reduced renal perfusion, tissue hypoxia, generation of reactive oxygen species (ROS), endothelial damage, and coagulopathies, which can result in severe damage to the renal parenchyma. Thereby, understanding the molecular mechanisms and pathophysiology of kidney injuries induced by SARS-COV-2 is of fundamental importance to obtaining new therapeutic insights for the prevention and management of AKI.
Collapse
Affiliation(s)
- Antônio V B DA Silva
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - João DE A G Campanati
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Isadora DE S Barcelos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Alberto C L Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Uildson P DE Deus
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Telma DE J Soares
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Liliany S DE B Amaral
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| |
Collapse
|
3
|
Huang H, Jin K, Ouyang K, Jiang Z, Yang Z, Hu N, Dai Y, Zhang Y, Zhang Q, Han Y, Zhao J, Lin H, Wang C, Wang C, Sun X, Lu D, Zhu J, Li J. Cyclophilin A causes severe fever with thrombocytopenia syndrome virus-induced cytokine storm by regulating mitogen-activated protein kinase pathway. Front Microbiol 2022; 13:1046176. [PMID: 36569095 PMCID: PMC9768865 DOI: 10.3389/fmicb.2022.1046176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Severe fever with thrombocytopenia syndrome (SFTS) has become a global threat to public health since its first report in China in 2009. However, the pathogenesis of SFTS virus (SFTSV) in humans remains unclear. Also, there are no effective therapeutics for SFTS. Cyclophilin A (CyPA) regulates protein folding and trafficking involved in various viral infectious diseases, but its role in SFTSV infection has not been elucidated. Methods We detected plasma CyPA levels in 29 healthy subjects and 30 SFTS patients by ELISA. In THP-1 cells and normal human peripheral blood mononuclear cells (PBMCs), SFTSV-induced extracellular CyPA (eCyPA) was also detected by ELISA. In THP-1, the effects of CyPA on Mitogen-activated protein kinase (MAPK) pathway and NF-κB were determined by Western blot. We validated the interaction between CypA and CD147 by human recombinant CyPA (hrCyPA) and the CD147 inhibitor. Effects of CyPA inhibitor Cyclosporine A (CsA) on cytokines and SFTSV replication in THP-1 cells was also detected. 8-week-old Interferon-α/β Receptor (IFNAR) knockout (IFNAR-/-) C57BL/6 mice were divided into mock group, 106TCID50 SFTSV (Untreated) group and 106TCID50 SFTSV+CsA (CsA-treated) group. The changes of body weight, animal behavior and survival time of each group were recorded. Blood samples were collected from tail vein regularly. After death, the liver, spleen, lung, kidney and brain were collected for pathological HE staining and SFTSV-NP immunohistochemical staining. Results Compared to healthy subjects and SFTS patients in the febrile phase of the disease, plasma CyPA levels in SFTS patients at the multi-organ dysfunction (MOD) phase showed significantly elevated (P < 0.01). Extracellular CyPA activates the MAPK pathway by binding to CD147 in THP-1 infected with SFTSV. CsA inhibits the pro-inflammatory and promoting replication effects of CyPA after SFTSV infection in vitro. In vivo, CsA can prolong the survival time and delay the weight loss of SFTSV mice. CsA reduces multi-organ dysfunction in IFNAR-/- mice infected with SFTSV. Discussion Our results indicate that CyPA is associated with SFTSV-induced cytokine storm, which can be a potential target for SFTS therapy.
Collapse
Affiliation(s)
- Huaying Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Department of Respiratory Diseases, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Jin
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Ouyang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengyi Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhan Yang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Nannan Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqin Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Han
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Jie Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Lin
- Jiangsu Province Blood Center, Nanjing, China
| | - Chunhui Wang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Chunyan Wang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Xuewei Sun
- Basic Medical College, Binzhou Medical University, Yantai, China
| | - Dafeng Lu
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China,*Correspondence: Jin Zhu, ; Jun Li,
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Jin Zhu, ; Jun Li,
| |
Collapse
|
4
|
Schiene‐Fischer C, Fischer G, Braun M. Non-Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202201597. [PMID: 35290695 PMCID: PMC9804594 DOI: 10.1002/anie.202201597] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Cyclophilins, enzymes with peptidyl-prolyl cis/trans isomerase activity, are relevant to a large variety of biological processes. The most abundant member of this enzyme family, cyclophilin A, is the cellular receptor of the immunosuppressive drug cyclosporine A (CsA). As a consequence of the pathophysiological role of cyclophilins, particularly in viral infections, there is a broad interest in cyclophilin inhibition devoid of immunosuppressive activity. This Review first gives an introduction into the physiological and pathophysiological roles of cyclophilins. The presentation of non-immunosuppressive cyclophilin inhibitors will commence with drugs based on chemical modifications of CsA. The naturally occurring macrocyclic sanglifehrins have become other lead structures for cyclophilin-inhibiting drugs. Finally, de novo designed compounds, whose structures are not derived from or inspired by natural products, will be presented. Relevant synthetic concepts will be discussed, but the focus will also be on biochemical studies, structure-activity relationships, and clinical studies.
Collapse
Affiliation(s)
- Cordelia Schiene‐Fischer
- Institute of Biochemistry and BiotechnologyMartin-Luther-University Halle-Wittenberg06099Halle (Saale)Germany
| | - Gunter Fischer
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryHeinrich-Heine-University Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
5
|
Braun M, Schiene-Fischer C, Fischer G. Non‐Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manfred Braun
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Organic CHemistry Universitätsstr. 1 40225 Düsseldorf GERMANY
| | - Cordelia Schiene-Fischer
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Institute of Biochemistry and Biotechnology, GERMANY
| | - Gunter Fischer
- Max-Planck-Institut für Biophysikalische Chemie Abteilung Meiosis: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften Abteilung Meiosis Max Planck Institute for Biophysical Chemistry GERMANY
| |
Collapse
|
6
|
Cyclophilin A Inhibits Human Respiratory Syncytial Virus (RSV) Replication by Binding to RSV-N through Its PPIase Activity. J Virol 2021; 95:e0056321. [PMID: 34011546 PMCID: PMC8274602 DOI: 10.1128/jvi.00563-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is the most common pathogen which causes acute lower respiratory infection (ALRI) in infants. Recently, virus-host interaction has become a hot spot of virus-related research, and it needs to be further elaborated for RSV infection. In this study, we found that RSV infection significantly increased the expression of cyclophilin A (cypA) in clinical patients, mice, and epithelial cells. Therefore, we evaluated the function of cypA in RSV replication and demonstrated that virus proliferation was accelerated in cypA knockdown host cells but restrained in cypA-overexpressing host cells. Furthermore, we proved that cypA limited RSV replication depending on its PPIase activity. Moreover, we performed liquid chromatography-mass spectrometry, and the results showed that cypA could interact with several viral proteins, such as RSV-N, RSV-P, and RSV-M2-1. Finally, the interaction between cypA and RSV-N was certified by coimmunoprecipitation and immunofluorescence. Those results provided strong evidence that cypA may play an inhibitory role in RSV replication through interaction with RSV-N via its PPIase activity. IMPORTANCE RSV-N, packed in the viral genome to form the ribonucleoprotein (RNP) complex, which is recognized by the RSV RNA-dependent RNA polymerase (RdRp) complex to initiate viral replication and transcription, plays an indispensable role in the viral biosynthesis process. cypA, binding to RSV-N, may impair this function by weakening the interaction between RSV-N and RSV-P, thus leading to decreased viral production. Our research provides novel insight into cypA antiviral function, including binding to viral capsid protein to inhibit viral replication, which may be helpful for new antiviral drug exploration.
Collapse
|
7
|
Kalaiyarasu S, Bhatia S, Mishra N, Senthil Kumar D, Kumar M, Sood R, Rajukumar K, Ponnusamy B, Desai D, Singh VP. Elicitation of Highly Pathogenic Avian Influenza H5N1 M2e and HA2-Specific Humoral and Cell-Mediated Immune Response in Chicken Following Immunization With Recombinant M2e-HA2 Fusion Protein. Front Vet Sci 2021; 7:571999. [PMID: 33614753 PMCID: PMC7892607 DOI: 10.3389/fvets.2020.571999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
The study was aimed to evaluate the elicitation of highly pathogenic avian influenza (HPAI) virus (AIV) M2e and HA2-specific immunity in chicken to develop broad protective influenza vaccine against HPAI H5N1. Based on the analysis of Indian AIV H5N1 sequences, the conserved regions of extracellular domain of M2 protein (M2e) and HA2 were identified. Synthetic gene construct coding for M2e and two immunodominant HA2 conserved regions was designed and synthesized after codon optimization. The fusion recombinant protein (~38 kDa) was expressed in a prokaryotic system and characterized by Western blotting with anti-His antibody and anti-AIV polyclonal chicken serum. The M2e–HA2 fusion protein was found to be highly reactive with known AIV-positive and -negative chicken sera by ELISA. Two groups of specific pathogen-free (SPF) chickens were immunized (i/m) with M2e synthetic peptide and M2e–HA2 recombinant protein along with one control group with booster on the 14th day and 28th day with the same dose and route. Pre-immunization sera and whole blood were collected on day 0 followed by 3, 7, 14, 21, and 28 days and 2 weeks after the second booster (42 day). Lymphocyte proliferation assay by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method revealed that the stimulation index (SI) was increased gradually from days 0 to 14 in the immunized group (p < 0.05) than that in control chicken. Toll-like receptor (TLR) mRNA analysis by RT-qPCR showed maximum upregulation in the M2e–HA2-vaccinated group compared to M2e- and sham-vaccinated groups. M2e–HA2 recombinant protein-based indirect ELISA revealed that M2e–HA2 recombinant fusion protein has induced strong M2e and HA2-specific antibody responses from 7 days post-primary immunization, and then the titer gradually increased after booster dose. Similarly, M2e peptide ELISA revealed that M2e–HA2 recombinant fusion protein elicited M2e-specific antibody from day 14 onward. In contrast, no antibody response was detected in the chicken immunized with synthetic peptide M2e alone or control group. Findings of this study will be very useful in future development of broad protective H5N1 influenza vaccine targeting M2e and HA2.
Collapse
Affiliation(s)
- Semmannan Kalaiyarasu
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Sandeep Bhatia
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Niranjan Mishra
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Dhanapal Senthil Kumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Manoj Kumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Richa Sood
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Katherukamem Rajukumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Boopathi Ponnusamy
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Dhruv Desai
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Vijendra Pal Singh
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| |
Collapse
|
8
|
Zhao YL, Gou ZP, Shang JH, Li WY, Kuang Y, Li MY, Luo XD. Anti-microbial Effects In Vitro and In Vivo of Alstonia scholaris. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:127-135. [PMID: 33389714 PMCID: PMC7778864 DOI: 10.1007/s13659-020-00294-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
Alstonia scholaris could be used as a traditional medicinal plant in China for the treatment of acute respiratory, which might be caused by respiratory tract infections. The investigation tested the anti-infective effects of total alkaloids extract (TA) from leaves of A. scholaris, and as a result, TA inhibited herpes simplex virus type 1 (HSV-1), respiratory syncytial virus (RSV) and influenza A virus (H1N1) in vitro respectively. In addition, the survival days of mice were prolonged, and the lung weights and mortality of mice were decreased significantly, after oral administrated TA in H1N1 and beta-hemolytic streptococcus infectious models in vivo respectively. The finding supported partly the traditional usage of A. scholaris in the treatment of respiratory infections.
Collapse
Affiliation(s)
- Yun-Li Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Zhong-Ping Gou
- Institute of Drug Clinical Trials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian-Hua Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Wan-Yi Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yu Kuang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ming-Yuan Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
9
|
Xue Q, Liu H, Sun M, Zhao W, Chen Y, Chen J, Wei C, Cai X, Xue Q. Peste des petits ruminants virus hemagglutinin (H) induces lysosomal degradation of host cyclophilin A to facilitate viral replication. Virus Res 2019; 277:197844. [PMID: 31866422 DOI: 10.1016/j.virusres.2019.197844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
Peste des petits ruminants virus (PPRV) is a highly contagious disease that affects sheep and goats. To better understand PPRV replication and virulence, cyclophilin A (CypA), a multifunctional goat host protein, was selected for further studies. CypA has been reported to inhibit or facilitate viral replication. However, the precise roles of CypA during PPRV infection remain unclear. Our data show for the first time that CypA suppressed PPRV replication by its PPIase activity, and PPRV infection decreased CypA protein levels. Detailed analysis revealed that PPRV H protein was responsible for the reduction of CypA, which was dependent on the lysosome pathway. No interaction was identified between H and CypA. Furthermore, the 35-58 region of H was essential for the reduction of CypA. In conclusion, our findings identify the antiviral role of CypA against PPRV and provide key insights into how PPRV H protein antagonizes host antiviral response.
Collapse
Affiliation(s)
- Qiao Xue
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Huaidong Liu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Miao Sun
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Wei Zhao
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yanfei Chen
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Jian Chen
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Chunxia Wei
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xuepeng Cai
- China Institute of Veterinary Drug Control, Beijing, 100081, China.
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, 100081, China.
| |
Collapse
|
10
|
Asim M, Sarath Babu V, Qin Z, Zhao L, Su J, Li J, Tu J, Kou H, Lin L. Inhibition of Cyclophilin A on the replication of red spotted grouper nervous necrosis virus associates with multiple pro-inflammatory factors. FISH & SHELLFISH IMMUNOLOGY 2019; 92:172-180. [PMID: 31176008 PMCID: PMC7111709 DOI: 10.1016/j.fsi.2019.05.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Cyclophilin A (CypA) is a ubiquitously expressed cellular protein and involves in diverse pathological conditions, including infection and inflammation. CypA acts as a key factor in the replication of several viruses. However, little is known about the role of CypA in the replication of the red-spotted grouper nervous necrosis virus (RGNNV). In the present report, grouper CypA (GF-CypA) was cloned from the grouper fin cell line (GF-1) derived from orange-spotted grouper (Epinephelus coioides). Sequence analysis found that GF-CypA open reading frame (ORF) of 495 bp encodes a polypeptide of 164 amino acids residues with a molecular weight of 17.4 kDa. The deduced amino acid sequence shared highly conserved regions with CypA of other animal species, showing that GF-CypA is a new member of Cyclophilin A family. We observed that GF-CypA was up-regulated in the GF-1 cells infected with RGNNV. Additionally, overexpression of CypA could significantly inhibit the replication of RGNNV in GF-1 cells. By contrast, when the GF-CypA was knock-downed by siRNA in GF-1 cells, the replication of RGNNV was enhanced. Furthermore, the expressions of pro-inflammatory factors, such as TNF-2, TNF-α, IL-1b, and ISG-15, were increased in GF-CypA transfected GF-1 cells challenged with RGNNV, indicating that GF-CypA might be involved in the regulation of the host pro-inflammatory factors. Altogether, we conclude that GF-CypA plays a vital role in the inhibitory effect of RGNNV replication that might be modulating the cytokines secretion in GF-1 cells during RGNNV infection. These results will shed new light on the function of CypA in the replication of RGNNV and will pave a new way for the prevention of the infection of RGNNV in fish.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - V Sarath Babu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
11
|
Hwang J, Kim K, Lee Y, Choi B. NMR Analysis of the Interaction between Cyclophilin A and RIG‐I. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jihyun Hwang
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 South Korea
| | - Ki‐Hun Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 South Korea
| | - Younghoon Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 South Korea
| | - Byong‐Seok Choi
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 South Korea
| |
Collapse
|
12
|
de Wilde AH, Pham U, Posthuma CC, Snijder EJ. Cyclophilins and cyclophilin inhibitors in nidovirus replication. Virology 2018; 522:46-55. [PMID: 30014857 PMCID: PMC7112023 DOI: 10.1016/j.virol.2018.06.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Cyclophilins (Cyps) belong to the family of peptidyl-prolyl isomerases (PPIases). The PPIase activity of most Cyps is inhibited by the immunosuppressive drug cyclosporin A and several of its non-immunosuppressive analogs, which can also block the replication of nidoviruses (arteriviruses and coronaviruses). Cyclophilins have been reported to play an essential role in the replication of several other RNA viruses, including human immunodeficiency virus-1, hepatitis C virus, and influenza A virus. Likewise, the replication of various nidoviruses was reported to depend on Cyps or other PPIases. This review summarizes our current understanding of this class of nidovirus-host interactions, including the potential function of in particular CypA and the inhibitory effect of Cyp inhibitors. Also the involvement of the FK-506-binding proteins and parvulins is discussed. The nidovirus data are placed in a broader perspective by summarizing the most relevant data on Cyp interactions and Cyp inhibitors for other RNA viruses. Nidovirus replication is inhibited by cyclophilin inhibitors. Arterivirus replication depends on cyclophilin A. Cyclosporin A blocks arterivirus RNA synthesis. Using cyclophilin inhibitors against nidoviruses in vivo needs more investigation.
Collapse
Affiliation(s)
- Adriaan H de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Uyen Pham
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
13
|
Liu H, Xue Q, Cao W, Yang F, Ma L, Liu W, Zhang K, Liu X, Zhu Z, Zheng H. Foot-and-mouth disease virus nonstructural protein 2B interacts with cyclophilin A, modulating virus replication. FASEB J 2018; 32:fj201701351. [PMID: 29906248 DOI: 10.1096/fj.201701351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious virus that affects cloven-hoofed animals. To understand better the role of nonstructural protein 2B of the causative agent FMD virus (FMDV) in the process of virus replication, we identified a porcine host protein, cyclophilin A (CypA), which interacts with FMDV 2B. The 2B-CypA interaction was confirmed by coimmunoprecipitation and GST pull-down assays. CypA showed antiviral functions during FMDV infection. Overexpression of CypA decreased FMDV leader protein (Lpro) and 3A at protein levels. CypA-induced reduction of Lpro enhanced the synthesis of host proteins and increased the integrality of host eukaryotic translation initiation factor (eIF)-4γ (eIF4G). The reduction of Lpro and 3A was dependent on the proteasome pathway. No interaction was identified between CypA and Lpro or 3A. However, CypA-induced reduction of Lpro and 3A was suppressed by 2B, and disruption of 2B-CypA interaction impaired this inhibitive effect induced by 2B. In summary, our findings identify the antiviral role of CypA against FMDV and provide key insights into how FMDV antagonizes host antiviral response by 2B protein.-Liu, H., Xue, Q., Cao, W., Yang, F., Ma, L., Liu, W., Zhang, K., Liu, X., Zhu, Z., Zheng, H. Foot-and-mouth disease virus nonstructural protein 2B interacts with cyclophilin A, modulating virus replication.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Linna Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenjie Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
14
|
Villalón-Letelier F, Brooks AG, Saunders PM, Londrigan SL, Reading PC. Host Cell Restriction Factors that Limit Influenza A Infection. Viruses 2017; 9:v9120376. [PMID: 29215570 PMCID: PMC5744151 DOI: 10.3390/v9120376] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Viral infection of different cell types induces a unique spectrum of host defence genes, including interferon-stimulated genes (ISGs) and genes encoding other proteins with antiviral potential. Although hundreds of ISGs have been described, the vast majority have not been functionally characterised. Cellular proteins with putative antiviral activity (hereafter referred to as “restriction factors”) can target various steps in the virus life-cycle. In the context of influenza virus infection, restriction factors have been described that target virus entry, genomic replication, translation and virus release. Genome wide analyses, in combination with ectopic overexpression and/or gene silencing studies, have accelerated the identification of restriction factors that are active against influenza and other viruses, as well as providing important insights regarding mechanisms of antiviral activity. Herein, we review current knowledge regarding restriction factors that mediate anti-influenza virus activity and consider the viral countermeasures that are known to limit their impact. Moreover, we consider the strengths and limitations of experimental approaches to study restriction factors, discrepancies between in vitro and in vivo studies, and the potential to exploit restriction factors to limit disease caused by influenza and other respiratory viruses.
Collapse
Affiliation(s)
- Fernando Villalón-Letelier
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
15
|
Valent D, Arroyo L, Peña R, Yu K, Carreras R, Mainau E, Velarde A, Bassols A. Effects on pig immunophysiology, PBMC proteome and brain neurotransmitters caused by group mixing stress and human-animal relationship. PLoS One 2017; 12:e0176928. [PMID: 28475627 PMCID: PMC5419571 DOI: 10.1371/journal.pone.0176928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMC) are an interesting sample for searching for biomarkers with proteomic techniques because they are easy to obtain and do not contain highly abundant, potentially masking proteins. Two groups of pigs (n = 56) were subjected to mixing under farm conditions and afterwards subjected to different management treatments: negative handling (NH) and positive handling (PH). Serum and PBMC samples were collected at the beginning of the experiment one week after mixing (t0) and after two months of different handling (t2). Brain areas were collected after slaughter and neurotransmitters quantified by HPLC. Hair cortisol and serum acute phase proteins decreased and serum glutathione peroxidase increased at t2, indicating a lower degree of stress at t2 after adaptation to the farm. Differential gel electrophoresis (DIGE) was applied to study the effects of time and treatment on the PBMC proteome. A total of 54 differentially expressed proteins were identified, which were involved in immune system modulation, cell adhesion and motility, gene expression, splicing and translation, protein degradation and folding, oxidative stress and metabolism. Thirty-seven protein spots were up-regulated at t2 versus t0 whereas 27 were down-regulated. Many of the identified proteins share the characteristic of being potentially up or down-regulated by cortisol, indicating that changes in protein abundance between t0 and t2 are, at least in part, consequence of lower stress upon adaptation to the farm conditions after group mixing. Only slight changes in brain neurotransmitters and PBMC oxidative stress markers were observed. In conclusion, the variation in hair cortisol and serum APPs as well as the careful analysis of the identified proteins indicate that changes in protein composition in PBMC throughout time is mainly due to a decrease in the stress status of the individuals, following accommodation to the farm and the new group.
Collapse
Affiliation(s)
- Daniel Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raquel Peña
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Kuai Yu
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Eva Mainau
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail:
| |
Collapse
|
16
|
Cyclophilin A protects mice against infection by influenza A virus. Sci Rep 2016; 6:28978. [PMID: 27354005 PMCID: PMC4926061 DOI: 10.1038/srep28978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/13/2016] [Indexed: 02/01/2023] Open
Abstract
Our previous studies indicate that Cyclophilin A (CypA) impairs the replication of influenza A virus in vitro. To further evaluate the antiviral functions of CypA and explore its mechanism, transgenic mice with overexpression of CypA by two specific promoters with SPC (CypA-SPC) or CMV (CypA-CMV) were developed. After challenge with the A/WSN/33(H1N1) influenza virus, CypA-SPC and CypA-CMV transgenic mice displayed nearly 2.5- and 3.8-fold stronger disease resistance to virus infection, respectively, compared to wild-type animals. Virus replication, pathological lesions and inflammatory cytokines were substantially reduced in both lines of transgenic mice. In addition, after infection there was an upregulation of genes associated with cell migration, immune function, and organ development; and a downregulation of genes associated with the positive regulation of immune cells and apoptosis in the peritoneal macrophages of CypA-overexpressing transgenic mice (CypA+). These results indicate that CypA is a key modulator of influenza virus resistance in mice, and that CypA+ mice constitutes an important model to study the roles of CypA in the regulation of immune responses and infections.
Collapse
|
17
|
Haghani A, Mehrbod P, Safi N, Aminuddin NA, Bahadoran A, Omar AR, Ideris A. In vitro and in vivo mechanism of immunomodulatory and antiviral activity of Edible Bird's Nest (EBN) against influenza A virus (IAV) infection. JOURNAL OF ETHNOPHARMACOLOGY 2016; 185:327-340. [PMID: 26976767 DOI: 10.1016/j.jep.2016.03.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/20/2015] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For centuries, Edible Bird Nest (EBN) has been used in treatment of variety of respiratory diseases such as flu and cough as a Chinese natural medicine. AIM OF THE STUDY This natural remedy showed the potential to inhibit influenza A virus (IAV). However, little is known about the mechanism of this process and also the evaluation of this product in an animal model. Hence, the current study was designed to elucidate the antiviral and immunomodulatory effects of EBN against IAV strain A/Puerto Rico/8/1934 (H1N1). MATERIALS AND METHODS First, influenza infected MDCK cells treated with EBNs from two locations of Malaysia (Teluk Intan and Gua Madai) that prepared with different enzymatic preparations were analyzed by RT-qPCR and ELISA for detection of viral and cytokines genes. The sialic acid composition of these EBNs was evaluated by H-NMR. Subsequently, after toxicity evaluation of EBN from Teluk Intan, antiviral and immunomodulatory effects of this natural product was evaluated in BALB/c mice by analysis of the viral NA gene and cytokine expressions in the first week of the infection. RESULTS EBN showed high neuraminidase inhibitory properties in both in vitro and in vivo, which was as effective as Oseltamivir phosphate. In addition, EBN decreased NS1 copy number (p<0.05) of the virus along with high immunomodulatory effects against IAV. Some of the immune changes during treatment of IAV with EBN included significant increase in IFNγ, TNFα, NFκB, IL2, some proinflammatory cytokines like IL1β, IL6, and cytokines with regulatory properties like IL10, IL27, IL12, CCL2 and IL4 depends on the stage of the infection. EBNs from two locations contained different composition of sialic acid and thymol derivatives, which gave them different antiviral properties. EBN from Gua Madai that contained more acetylated sialic acid (Neu2,4,7,8,9 Ac6) showed higher antiviral activity. CONCLUSION The findings of this study support the antiviral activity of EBN against influenza virus and validate the traditional usage of this natural remedy by elucidation of toxicity and the molecular mechanism of action.
Collapse
Affiliation(s)
- Amin Haghani
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Parvaneh Mehrbod
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Nikoo Safi
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Nur Ain Aminuddin
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Azadeh Bahadoran
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Aini Ideris
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
18
|
Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 2015; 78:544-71. [PMID: 25184565 DOI: 10.1128/mmbr.00015-14] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted.
Collapse
|
19
|
Ünal CM, Steinert M. FKBPs in bacterial infections. Biochim Biophys Acta Gen Subj 2014; 1850:2096-102. [PMID: 25529296 DOI: 10.1016/j.bbagen.2014.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND FK506-binding proteins (FKBPs) contain a domain with peptidyl-prolyl-cis/trans-isomerase (PPIase) activity and bind the immunosuppressive drugs FK506 and rapamycin. FKBPs belong to the immunophilin family and are found in eukaryotes and bacteria. SCOPE OF REVIEW In this review we describe two major groups of bacterial virulence-associated FKBPs, the trigger factor and Mip-like PPIases. Moreover, we discuss the contribution of host FKBPs in bacterial infection processes. MAJOR CONCLUSIONS Since PPIases are regarded as alternative antiinfective drug targets we highlight current research strategies utilizing pipecolinic acid and cycloheximide derivatives as well as substrate based inhibitors. GENERAL SIGNIFICANCE The current research strategies suggest a beneficial synergism of drug development and basic research. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Can M Ünal
- Türk-Alman Üniversitesi, Fen Fakültesi, Istanbul, Turkey; Technische Universität Braunschweig, Institut für Mikrobiologie, Braunschweig, Germany
| | - Michael Steinert
- Technische Universität Braunschweig, Institut für Mikrobiologie, Braunschweig, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
20
|
Enabling the 'host jump': structural determinants of receptor-binding specificity in influenza A viruses. Nat Rev Microbiol 2014; 12:822-31. [PMID: 25383601 DOI: 10.1038/nrmicro3362] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent emergence of the H7N9 avian influenza A virus and its ability to infect humans emphasize the epidemic and pandemic potential of these viruses. Interspecies transmission is the result of many factors, which ultimately lead to a change in the host tropism of the virus. One of the key factors involved is a shift in the receptor-binding specificity of the virus, which is mostly determined by mutations in the viral haemagglutinin (HA). In this Review, we discuss recent crystallographic studies that provide molecular insights into HA-host receptor interactions that have enabled several influenza A virus subtypes to 'jump' from avian to human hosts.
Collapse
|
21
|
Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol 2014; 22:183-91. [PMID: 24582528 PMCID: PMC7127364 DOI: 10.1016/j.tim.2014.01.010] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 11/24/2022]
Abstract
Bat-derived influenza-like virus hemagglutinin and neuraminidase lack canonical functions and structures. Putative functional modules/domains in other bat-derived influenza-like proteins are conserved. Potential genomic reassortments with canonical influenza virus cannot be ruled out and should be assessed.
Shorebirds and waterfowls are believed to be the reservoir hosts for influenza viruses, whereas swine putatively act as mixing vessels. The recent identification of two influenza-like virus genomes (designated H17N10 and H18N11) from bats has challenged this notion. A crucial question concerns the role bats might play in influenza virus ecology. Structural and functional studies of the two major surface envelope proteins, hemagglutinin (HA) and neuraminidase (NA), demonstrate that neither has canonical HA or NA functions found in influenza viruses. However, putative functional modules and domains in other encoded proteins are conserved, and the N-terminal domain of the H17N10 polymerase subunit PA has a classical structure and function. Therefore, potential genomic reassortments of such influenza-like viruses with canonical influenza viruses cannot be excluded at this point and should be assessed.
Collapse
|
22
|
Choi HS, Kim H, Lee C, Kim Y, Lee Y. Protein-Protein Interaction between Poly(A) Polymerase and Cyclophilin A in Chemotactic Cells. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.1.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Lou Z, Sun Y, Rao Z. Current progress in antiviral strategies. Trends Pharmacol Sci 2014; 35:86-102. [PMID: 24439476 PMCID: PMC7112804 DOI: 10.1016/j.tips.2013.11.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/23/2013] [Accepted: 11/26/2013] [Indexed: 02/07/2023]
Abstract
Antiviral agents function as either viral targets or host factors. Virus-targeting antivirals (VTAs) function through a direct (DVTAs) or an indirect (InDVTAs) method in the viral life cycle. Host-targeting antivirals (HTAs) include reagents that target the host proteins that are involved in the viral life cycle.
The prevalence of chronic viral infectious diseases, such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus; the emergence and re-emergence of new viral infections, such as picornaviruses and coronaviruses; and, particularly, resistance to currently used antiviral drugs have led to increased demand for new antiviral strategies and reagents. Increased understanding of the molecular mechanisms of viral infection has provided great potential for the discovery of new antiviral agents that target viral proteins or host factors. Virus-targeting antivirals can function directly or indirectly to inhibit the biological functions of viral proteins, mostly enzymatic activities, or to block viral replication machinery. Host-targeting antivirals target the host proteins that are involved in the viral life cycle, regulating the function of the immune system or other cellular processes in host cells. Here we review key targets and considerations for the development of both antiviral strategies.
Collapse
Affiliation(s)
- Zhiyong Lou
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
| | - Zihe Rao
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, 100084, China; National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China.
| |
Collapse
|
24
|
Petrareanu C, Macovei A, Sokolowska I, Woods AG, Lazar C, Radu GL, Darie CC, Branza-Nichita N. Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte- and biliary-like cells. PLoS One 2013; 8:e71859. [PMID: 23977166 PMCID: PMC3748114 DOI: 10.1371/journal.pone.0071859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/04/2013] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a human pathogen causing severe liver disease and eventually death. Despite important progress in deciphering HBV internalization, the early virus-cell interactions leading to infection are not known. HepaRG is a human bipotent liver cell line bearing the unique ability to differentiate towards a mixture of hepatocyte- and biliary-like cells. In addition to expressing metabolic functions normally found in liver, differentiated HepaRG cells support HBV infection in vitro, thus resembling cultured primary hepatocytes more than other hepatoma cells. Therefore, extensive characterization of the plasma membrane proteome from HepaRG cells would allow the identification of new cellular factors potentially involved in infection. Here we analyzed the plasma membranes of non-differentiated and differentiated HepaRG cells using nanoliquid chromatography-tandem mass spectrometry to identify the differences between the proteomes and the changes that lead to differentiation of these cells. We followed up on differentially-regulated proteins in hepatocytes- and biliary-like cells, focusing on Cathepsins D and K, Cyclophilin A, Annexin 1/A1, PDI and PDI A4/ERp72. Major differences between the two proteomes were found, including differentially regulated proteins, protein-protein interactions and intracellular localizations following differentiation. The results advance our current understanding of HepaRG differentiation and the unique properties of these cells.
Collapse
Affiliation(s)
- Catalina Petrareanu
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- Department of Analytical Chemistry and Enviromental Engineering, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest, Romania
| | - Alina Macovei
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Izabela Sokolowska
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, United States of America
| | - Alisa G. Woods
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, United States of America
| | - Catalin Lazar
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Gabriel L. Radu
- Department of Analytical Chemistry and Enviromental Engineering, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest, Romania
| | - Costel C. Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, United States of America
| | - Norica Branza-Nichita
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- * E-mail:
| |
Collapse
|
25
|
Cyclophilins as modulators of viral replication. Viruses 2013; 5:1684-701. [PMID: 23852270 PMCID: PMC3738956 DOI: 10.3390/v5071684] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 01/11/2023] Open
Abstract
Cyclophilins are peptidyl‐prolyl cis/trans isomerases important in the proper folding of certain proteins. Mounting evidence supports varied roles of cyclophilins, either positive or negative, in the life cycles of diverse viruses, but the nature and mechanisms of these roles are yet to be defined. The potential for cyclophilins to serve as a drug target for antiviral therapy is evidenced by the success of non-immunosuppressive cyclophilin inhibitors (CPIs), including Alisporivir, in clinical trials targeting hepatitis C virus infection. In addition, as cyclophilins are implicated in the predisposition to, or severity of, various diseases, the ability to specifically and effectively modulate their function will prove increasingly useful for disease intervention. In this review, we will summarize the evidence of cyclophilins as key mediators of viral infection and prospective drug targets.
Collapse
|