1
|
Jiang H, Xi H, Juhas M, Zhang Y. Biosensors for Point Mutation Detection. Front Bioeng Biotechnol 2021; 9:797831. [PMID: 34976987 PMCID: PMC8714947 DOI: 10.3389/fbioe.2021.797831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Hanlin Jiang
- College of Science, Harbin Institute of Technology, Shenzhen, China
| | - Hui Xi
- College of Science, Harbin Institute of Technology, Shenzhen, China
| | - Mario Juhas
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen, China
- *Correspondence: Yang Zhang,
| |
Collapse
|
2
|
|
3
|
Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M, Baradaran B, de la Guardia M. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt Chem 2017; 97:445-457. [PMID: 32287543 PMCID: PMC7126209 DOI: 10.1016/j.trac.2017.10.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Viruses are real menace to human safety that cause devastating viral disease. The high prevalence of these diseases is due to improper detecting tools. Therefore, there is a remarkable demand to identify viruses in a fast, selective and accurate way. Several biosensors have been designed and commercialized for detection of pathogenic viruses. However, they present many challenges. Nanotechnology overcomes these challenges and performs direct detection of molecular targets in real time. In this overview, studies concerning nanotechnology-based biosensors for pathogenic virus detection have been summarized, paying special attention to biosensors based on graphene oxide, silica, carbon nanotubes, gold, silver, zinc oxide and magnetic nanoparticles, which could pave the way to detect viral diseases and provide healthy life for infected patients.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Reza Eivazzadeh-Keihan
- Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Paria Pashazadeh
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Iran
| | | | - Nasrin Gharaatifar
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
4
|
Kokkinos C, Economou A. Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels – A review. Anal Chim Acta 2017; 961:12-32. [DOI: 10.1016/j.aca.2017.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
|
5
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical Biosensing for the Diagnosis of Viral Infections and Tropical Diseases. ChemElectroChem 2017. [DOI: 10.1002/celc.201600805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Susana Campuzano
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| | - Paloma Yáñez-Sedeño
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| | - José Manuel Pingarrón
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| |
Collapse
|
6
|
Moro L, Turemis M, Marini B, Ippodrino R, Giardi MT. Better together: Strategies based on magnetic particles and quantum dots for improved biosensing. Biotechnol Adv 2017; 35:51-63. [DOI: 10.1016/j.biotechadv.2016.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/29/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022]
|
7
|
Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem Rev 2016; 116:12234-12327. [DOI: 10.1021/acs.chemrev.6b00290] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gaixia Xu
- Key
Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong
Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Shuwen Zeng
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Butian Zhang
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Ken-Tye Yong
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | |
Collapse
|
8
|
Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1675-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Evaluation and application of a one-step duplex real-time reverse transcription polymerase chain reaction assay for the rapid detection of influenza A (H7N9) virus from poultry samples. Arch Virol 2015; 160:2471-7. [PMID: 26179621 DOI: 10.1007/s00705-015-2511-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
In China, a novel reassortant influenza A (H7N9) virus, which has caused 435 cases of human infection, has recently emerged. Most cases of human infections with the H7N9 virus are known to be associated with a poultry farm and live-poultry markets. In this study, a one-step duplex real-time reverse transcription polymerase chain reaction (RRT-PCR) assay was developed for the simultaneous detection of the hemagglutinin (HA) and neuraminidase (NA) genes of the H7N9 virus for effective surveillance and early diagnosis of cases from clinical samples collected from live-poultry markets or poultry farms. The detection limit of this assay was as low as 0.1 EID50 of H7N9 viruses, which is similar to the detection limit of the real-time RT-PCR assay released by the Word Health Organization. The coefficients of variation (CVs) of both inter-assay and intra-assay reproducibility were less than 1.55 %, showing good reproducibility. No cross-reactivity was observed with RNA of other subtypes of influenza virus or other avian respiratory viruses. The assay can effectively detect H7N9 influenza virus RNA from multiple sources, including chickens, pigeons, ducks, humans, and the environment. Furthermore, the RRT-PCR assay was evaluated with more than 700 clinical samples collected from live-poultry markets and 120 experimentally infected chicken samples. Together, these results indicate that the duplex RRT-PCR assay is a specific, sensitive, and efficient diagnostic method for the epidemiological surveillance and diagnosis of H7N9 virus from different sources, particularly poultry samples.
Collapse
|
10
|
Carinelli S, Martí M, Alegret S, Pividori MI. Biomarker detection of global infectious diseases based on magnetic particles. N Biotechnol 2015; 32:521-32. [PMID: 25917978 DOI: 10.1016/j.nbt.2015.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
Infectious diseases affect the daily lives of millions of people all around the world, and are responsible for hundreds of thousands of deaths, mostly in the developing world. Although most of these major infectious diseases are treatable, the early identification of individuals requiring treatment remains a major issue. The incidence of these diseases would be reduced if rapid diagnostic tests were widely available at the community and primary care level in low-resource settings. Strong research efforts are thus being focused on replacing standard clinical diagnostic methods, such as the invasive detection techniques (biopsy or endoscopy) or expensive diagnostic and monitoring methods, by affordable and sensitive tests based on novel biomarkers. The development of new methods that are needed includes solid-phase separation techniques. In this context, the integration of magnetic particles within bioassays and biosensing devices is very promising since they greatly improve the performance of a biological reaction. The diagnosis of clinical samples with magnetic particles can be easily achieved without pre-enrichment, purification or pretreatment steps often required for standard methods, simplifying the analytical procedures. The biomarkers can be specifically isolated and preconcentrated from complex biological matrixes by magnetic actuation, increasing specificity and the sensitivity of the assay. This review addresses these promising features of the magnetic particles for the detection of biomarkers in emerging technologies related with infectious diseases affecting global health, such as malaria, influenza, dengue, tuberculosis or HIV.
Collapse
Affiliation(s)
- Soledad Carinelli
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Martí
- Laboratory of Cellular Immunology, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Alegret
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Isabel Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
11
|
|
12
|
HEGER ZBYNEK, GUMULEC JAROMIR, CERNEI NATALIA, TMEJOVA KATERINA, KOPEL PAVEL, BALVAN JAN, MASARIK MICHAL, ZITKA ONDREJ, BEKLOVA MIROSLAVA, ADAM VOJTECH, KIZEK RENE. 17β-estradiol-containing liposomes as a novel delivery system for the antisense therapy of ER-positive breast cancer: An in vitro study on the MCF-7 cell line. Oncol Rep 2014; 33:921-9. [DOI: 10.3892/or.2014.3627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/11/2014] [Indexed: 11/06/2022] Open
|
13
|
Krejcova L, Nguyen HV, Hynek D, Guran R, Adam V, Kizek R. Paramagnetic Particles and PNA Probe for Automated Separation and Electrochemical Detection of Influenza. Chromatographia 2014. [DOI: 10.1007/s10337-014-2737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Ye WW, Tsang MK, Liu X, Yang M, Hao J. Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2390-7. [PMID: 24599581 DOI: 10.1002/smll.201303766] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/09/2014] [Indexed: 05/20/2023]
Abstract
Avian influenza viruses (AIV) with good adaptation and various mutations have threatened both human and animals' health. The H7 subtypes have the potential to cause pandemic threats to human health due to the highly pathogenic characteristics. Therefore, it is quite urgent to develop a novel biosensor for rapid and sensitive detection of H7 subtypes. In this work, a biosensor based on luminescence resonance energy transfer (LRET) from BaGdF5:Yb/Er upconversion nanoparticles (UCNPs) to gold nanoparticles (AuNPs) has been developed for rapid and sensitive H7 subtypes detection. The amino modified capture oligonucleotide probes are covalently linked to poly(ethylenimine) (PEI) modified BaGdF5:Yb/Er UCNPs. The thiol modified oligonucleotides with H7 hemagglutinin gene sequence are conjugated to surfaces of AuNPs. The hybridization process between complementary strands of H7 Hemagglutinin gene and its probe brings the energy donor and acceptor into close proximity, leading to the quenching of fluorescence of UCNPs. A linear response is obtained ranging from 10 pm to 10 nm and the limit of detection (LOD) is around 7 pm with detection time around 2 hours. This biosensor is expected to be a valuable diagnostic tool for rapid and sensitive detection of AIV.
Collapse
MESH Headings
- Animals
- Biosensing Techniques/instrumentation
- Biosensing Techniques/methods
- Birds
- Fluorescence Resonance Energy Transfer/instrumentation
- Fluorescence Resonance Energy Transfer/methods
- Gold
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Influenza A Virus, H7N1 Subtype/genetics
- Influenza A Virus, H7N1 Subtype/isolation & purification
- Influenza A Virus, H7N2 Subtype/genetics
- Influenza A Virus, H7N2 Subtype/isolation & purification
- Influenza A Virus, H7N3 Subtype/genetics
- Influenza A Virus, H7N3 Subtype/isolation & purification
- Influenza A Virus, H7N7 Subtype/genetics
- Influenza A Virus, H7N7 Subtype/isolation & purification
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/isolation & purification
- Influenza A virus/classification
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza in Birds/diagnosis
- Influenza in Birds/virology
- Influenza, Human/diagnosis
- Influenza, Human/genetics
- Limit of Detection
- Luminescence
- Metal Nanoparticles/chemistry
- Sensitivity and Specificity
- Time Factors
Collapse
Affiliation(s)
- Wei Wei Ye
- Interdisciplinary Division of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | | | | | | | | |
Collapse
|