1
|
Li R, Wang Z, Liu C, Qiao W, Tan J. Effects of Chemokine Ligand 2 on Budding of Bovine Foamy Virus. Viruses 2023; 15:1867. [PMID: 37766274 PMCID: PMC10536199 DOI: 10.3390/v15091867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is essential for the budding of retroviruses such as human immunodeficiency virus (HIV) and bovine foamy virus (BFV), which rely on their late domain to recruit ESCRT complexes to facilitate budding. However, the impact of intracellular host proteins on BFV budding remains poorly understood. In this study, we aimed to investigate the impact of CCL2 on BFV budding and interactions with key host proteins. Our results indicate that CCL2 promotes BFV budding in an ALG-2-interacting protein X (Alix)-dependent manner by enhancing the interaction between Alix and BFV Gag (BGag). Notably, we found a link between Alix, BGag and CCL2, with Alix mediating the interaction between the latter two. Furthermore, we observed that natural host bovine CCL2 also has a facilitating role in the budding process of BFV, similar to human CCL2. Taken together, these results demonstrate that CCL2 promotes BFV budding by enhancing the Alix-BGag association.
Collapse
Affiliation(s)
| | | | | | | | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (R.L.); (Z.W.); (C.L.); (W.Q.)
| |
Collapse
|
2
|
Materniak-Kornas M, Kubiś P, Sell B, Pougialis G, Löchelt M, Kuźmak J. An Outbred Calf Model for Determining Innate Immune Sensing and Evolutionary Trajectories of a Cell Culture-Adapted Bovine Foamy Virus Variant. Viruses 2023; 15:1772. [PMID: 37632114 PMCID: PMC10458543 DOI: 10.3390/v15081772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Bovine foamy virus (BFVbta) displays a very high degree of cell-associated replication which is unprecedented even among the other known foamy viruses. Interestingly, recent studies have shown that it can in fact adapt in vitro to high-titer (HT) cell-free transmission due to genetic changes acquired during repeated rounds of cell-free BFVbta passages in immortalized bovine MDBK cells. Molecular clones obtained from the HT BFVbta Riems cell-free variant (HT BFVbta Riems) have been thoroughly characterized in MDBK cell cultures However, during recent years, it has become increasingly clear that the source of the host cells used for virus growth and functional studies of virus replication and virus-cell interactions plays a paramount role. Established cell lines, mostly derived from tumors, but occasionally experimentally immortalized and transformed, frequently display aberrant features relating, for example. to growth, metabolism, and genetics. Even state-of-the-art organoid cultures of primary cells cannot replicate the conditions in an authentic host, especially those concerning cell diversity and the role of innate and adaptive immunity. Therefore, to determine the overall replication characteristics of the cloned wt and HT BFVbta Riems variant, we conducted a small-scale animal pilot study. The replication of the original wt BFVbta Riems isolate, as well as that of its HT variant, were analyzed. Both BFVbta variants established infection in calves, with proviruses in peripheral blood mononuclear cells and induced Gag-specific antibodies. In addition, a related pattern in the host innate immune reaction was detected in the peripheral blood leukocytes of the BFV-infected calves. Surprisingly, an analysis of the Gag sequence two weeks post-inoculation revealed that the HT BFVbta variant showed a very high level of genetic reversion to the wild type (parental BFVbta genotype).
Collapse
Affiliation(s)
- Magdalena Materniak-Kornas
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland; (P.K.); (J.K.)
| | - Piotr Kubiś
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland; (P.K.); (J.K.)
| | - Bartosz Sell
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| | - Georgios Pougialis
- Division of Viral Transformation Mechanisms, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; (G.P.); (M.L.)
| | - Martin Löchelt
- Division of Viral Transformation Mechanisms, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; (G.P.); (M.L.)
- Division of Virus-Associated Carcinogenesis, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland; (P.K.); (J.K.)
| |
Collapse
|
3
|
AbuEed L, Makundi I, Miyake A, Kawasaki J, Minoura C, Koshida Y, Nishigaki K. Feline Foamy Virus Transmission in Tsushima Leopard Cats (Prionailurus bengalensis euptilurus) on Tsushima Island, Japan. Viruses 2023; 15:v15040835. [PMID: 37112816 PMCID: PMC10146696 DOI: 10.3390/v15040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Tsushima leopard cats (TLC; Prionailurus bengalensis euptilurus) only inhabit Tsushima Island, Nagasaki, Japan and are critically endangered and threatened by infectious diseases. The feline foamy virus (FFV) is widely endemic in domestic cats. Therefore, its transmission from domestic cats to TLCs may threaten the TLC population. Thus, this study aimed to assess the possibility that domestic cats could transmit FFV to TLCs. Eighty-nine TLC samples were screened, and FFV was identified in seven (7.86%). To assess the FFV infection status of domestic cats, 199 domestic cats were screened; 14.07% were infected. The phylogenetic analysis revealed that the FFV partial sequence from domestic cats and TLC sequences clustered in one clade, suggesting that the two populations share the same strain. The statistical data minimally supported the association between increased infection rate and sex (p = 0.28), indicating that FFV transmission is not sex dependent. In domestic cats, a significant difference was observed in FFV detection in feline immunodeficiency virus (p = 0.002) and gammaherpesvirus1 infection statuses (p = 0.0001) but not in feline leukemia virus infection status (p = 0.21). Monitoring FFV infection in domestic cats and TLC populations is highly recommended as part of TLC surveillance and management strategies.
Collapse
|
4
|
Occurrence of Equine Foamy Virus Infection in Horses from Poland. Viruses 2022; 14:v14091973. [PMID: 36146781 PMCID: PMC9504846 DOI: 10.3390/v14091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Equine foamy virus (EFVeca) is a foamy virus of non-primate origin and among the least-studied members of this retroviral subfamily. By sequence comparison, EFVeca shows the highest similarity to bovine foamy virus. In contrast to simian, bovine or feline foamy viruses, knowledge about the epidemiology of EFVeca is still limited. Since preliminary studies suggested EFVeca infections among horses in Poland, we aimed to expand the diagnostics of EFVeca infections by developing specific diagnostic tools and apply them to investigate its prevalence. An ELISA test based on recombinant EFVeca Gag protein was developed for serological investigation, while semi-nested PCR for the detection of EFVeca DNA was established. 248 DNA and serum samples from purebred horses, livestock and saddle horses, Hucul horses and semi-feral Polish primitive horses were analyzed in this study. ELISA was standardized, and cut off value, sensitivity and specificity of the test were calculated using Receiver Operating Characteristic and Bayesian estimation. Based on the calculated cut off, 135 horses were seropositive to EFVeca Gag protein, while EFVeca proviral DNA was detected in 85 animals. The rate of infected individuals varied among the horse groups studied; this is the first report confirming the existence of EFVeca infections in horses from Poland using virus-specific tools.
Collapse
|
5
|
Evaluation of the stability and intratumoral delivery of foreign transgenes encoded by an oncolytic Foamy Virus vector. Cancer Gene Ther 2022; 29:1240-1251. [PMID: 35145270 PMCID: PMC9363555 DOI: 10.1038/s41417-022-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Foamy Viruses are cell cycle-dependent retroviruses capable of persisting unintegrated in quiescent cells until cell division occurs. This unique ability allows them to target slowly dividing human tumor cells which remains an unmet need in oncolytic virotherapy. We have previously reported the generation of oncolytic Foamy Virus (oFV) vector system and demonstrated its superiority over oncolytic Murine Leukemia Virus vectors in infecting slowly dividing cancer cells. In the present study we evaluated (i) the ability of oFV to carry foreign transgenes and (ii) the genetic stability of these vectors upon serial passage. The thymidine kinase (TK) and inducible caspase 9 (iCasp9) cDNAs could be detected in the oFV backbone for up to 3 in vitro passages. In vivo, GFP-, TK- and iCasp9- carrying oFV vectors propagated efficiently in subcutaneous xenograft glioblastoma tumors and drove transgene expression for up to 66 days. However, in vivo oFV vector spread eventually resulted in complete loss of the iCasp9 cDNA, minor loss of the TK cDNA and negligible loss of the GFP. Our results suggest that oFV is a promising gene delivery platform and that transgenes smaller than 1 kb might be most suitable for oFV arming.
Collapse
|
6
|
Sumiyoshi A, Kitao K, Miyazawa T. Genetic and biological characterization of feline foamy virus isolated from a leopard cat (Prionailurus bengalensis) in Vietnam. J Vet Med Sci 2021; 84:157-165. [PMID: 34880191 PMCID: PMC8810315 DOI: 10.1292/jvms.21-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foamy viruses have been isolated from various mammals and show long-term co-speciation with their hosts. However, the frequent inter-species transmission of feline foamy viruses (FFVs) from
domestic cats to wild cats across genera has been reported. Because infectious molecular clones of FFVs derived from wild cats have not been available, whether there are specific
characteristics enabling FFVs to adapt to the new host species is still unknown. Here, we obtained the complete genome sequences of two FFV isolates (strains NV138 and SV201) from leopard
cats (Prionailurus bengalensis) in Vietnam and constructed an infectious molecular clone, named pLC960, from strain NV138. The growth kinetics of the virus derived from
pLC960 were comparable to those of other FFVs derived from domestic cats. Phylogenetic analysis revealed that these two FFVs from leopard cats are clustered in the same clade as FFVs from
domestic cats in Vietnam. Comparisons of the amino acid sequences of Env and Bet proteins showed more than 97% identity among samples and no specific amino acid substitutions between FFVs
from domestic cats and ones from leopard cats. These results indicate the absence of genetic constraint of FFVs for interspecies transmission from domestic cats to leopard cats.
Collapse
Affiliation(s)
- Aoi Sumiyoshi
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| |
Collapse
|
7
|
Seroprevalence of feline foamy virus in domestic cats in Poland. J Vet Res 2021; 65:407-413. [PMID: 35111993 PMCID: PMC8775732 DOI: 10.2478/jvetres-2021-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Feline foamy virus (FFVfca) is widespread and its prevalence in naturally infected domestic cats ranges between 30% and 80% worldwide. The infection is persistent, with a sustained antibody response in FFVfca-positive cats; however to date, no defined disease or clinical symptoms have been proved to be associated with it. The goal of the presented study was to determine the prevalence of FFVfca infection in domestic cats in Poland.
Material and Methods
A total of 223 serum samples collected from domestic cats were tested with a glutathione S-transferase capture ELISA test to detect antibodies specific to capsid (Gag), accessory (Bet) and envelope (Env) FFVfca antigens. A Western blot test was used to confirm the ELISA results.
Results
The cut-off value for the Gag antigen was established by calculation and evaluation with the immunoblotting assay. The cut-off values for Bet and Env were calculated from the reactivity of Gag-negative samples. The sera of 99 cats (44%) showed reactivity to Gag, those of 80 did so (35.9 %) to Bet, while only 56 samples (25%) were reactive to Env. Only 51 (22.9%) sera were positive for all antigens. The main diagnostic antigen was selected to be Gag. A statistically significant association was found between FFVfca status and the age of the cat.
Conclusions
This study proved the high seroprevalence of FFVfca in domestic cats in Poland for the first time and confirmed that adult cats are at higher FFVfca infection risk than preadult cats. Its results correspond to those reported from other countries.
Collapse
|
8
|
Yan J, Zheng Y, Yuan P, Wang S, Han S, Yin J, Peng B, Li Z, Sun Y, He X, Liu W. Novel Host Protein TBC1D16, a GTPase Activating Protein of Rab5C, Inhibits Prototype Foamy Virus Replication. Front Immunol 2021; 12:658660. [PMID: 34367131 PMCID: PMC8339588 DOI: 10.3389/fimmu.2021.658660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prototype foamy virus (PFV) is a member of the oldest family of retroviruses and maintains lifelong latent infection in the host. The lifelong latent infection of PFV may be maintained by the restriction factors of viral replication in the host. However, the mechanisms involved in PFV latent infection are poorly understood. Here, we found that TBC1D16, a TBC domain-containing protein, is significantly down-regulated after PFV infection. Tre2/Bub2/Cdc16 (TBC) domain-containing proteins function as Rab GTPase-activating proteins (GAPs) and are participates in the progression of some diseases and many signaling pathways. However, whether TBC proteins are involved in PFV replication has not been determined. Here, we found that TBC1D16 is a novel antiviral protein that targets Rab5C to suppress PFV replication. Overexpression TBC1D16 inhibited the transcription and expression of Tas and Gag, and silencing TBC1D16 enhanced the PFV replication. Moreover, the highly conserved amino acid residues R494 and Q531 in the TBC domain of TBC1D16 were essential for inhibiting PFV replication. We also found that TBC1D16 promoted the production of PFV-induced IFN-β and the transcription of downstream genes. These results suggest that TBC1D16 might be the first identified TBC proteins that inhibited PFV replication and the mechanism by which TBC1D16 inhibited PFV replication could provide new insights for PFV latency.
Collapse
Affiliation(s)
- Jun Yan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peipei Yuan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shanshan Wang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Li
- College of Life Sciences, Shanxi Normal University, Xi’an, China
| | - Yan Sun
- College of Life Sciences, Shanxi Normal University, Xi’an, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, China
| |
Collapse
|
9
|
Yedavalli VRK, Patil A, Parrish J, Kozak CA. A novel class III endogenous retrovirus with a class I envelope gene in African frogs with an intact genome and developmentally regulated transcripts in Xenopus tropicalis. Retrovirology 2021; 18:20. [PMID: 34261506 PMCID: PMC8278194 DOI: 10.1186/s12977-021-00564-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. RESULTS Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5' and 3' LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. CONCLUSIONS XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.
Collapse
Affiliation(s)
- Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Akash Patil
- Department of Biomedical Engineering, John Hopkins University, Baltimore, MD, 21205, USA
| | - Janay Parrish
- Internal Medicine, Northwell Health, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Nandi JS, Rathore SS, Mathur BR. Transmission of infectious viruses in the natural setting at human-animal interface. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2021; 2:100008. [PMID: 34250513 PMCID: PMC8256691 DOI: 10.1016/j.crviro.2021.100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
Most viral pathogens causing epidemics and pandemics are zoonotic, emerging from wildlife reservoirs like SARS CoV2 causing the global Covid-19 pandemic, although animal origin of this virus remains a mystery. Cross-species transmission of pathogens from animals to humans is known as zoonosis. However, pathogens are also transmitted from humans to animals in regions where there is a close interaction between animals and humans by 'reverse transmission' (anthroponosis). Molecular evidence for the transmission of two zoonotic RNA viruses at the human-monkey interface in Rajasthan forests is presented here: a) the apathogenic Simian Foamy Viruses (SFV), and b): Influenza A viruses (IAV)-like virus, etiologic agent for human flu infecting wild Indian rhesus monkeys inhabiting Rajasthan forests. The data provide critical information on ecology and evolution of viruses of Public Health relevance. During replication, viral genomes mutate along the transmission route to adapt to the new hosts, generating new variants that are likely to have properties different from the founder viruses. Wild Indian monkeys are under-sampled for monitoring infectious diseases mainly because of the difficulties with sample collection. Monkeys are perceived as religious icons by the Hindus in India. It is extremely difficult to obtain permission from the Forest and Wildlife Department government authorities to collect wild simian blood samples for surveillance of infectious diseases caused by viral pathogens. Reducing animal-human contact and affordable vaccination are two relevant anti-viral strategies to counteract the spread of infectious zoonotic pathogens. Genbank Accession numbers: Indian SFVmac: ADN94420, IAV like virus: MZ298601.
Collapse
Affiliation(s)
| | - Shravan Singh Rathore
- Senior Wildlife Veterinarian, Machiya Biological Park, Post Office Saran Nagar Jodhpur, 342015, India
| | - Bajrang Raj Mathur
- Veterinary Expert, Government Veterinary Services, 6, Kamla Nehru Nagar, 1B1, Jodhpur, 342001, Rajasthan, India
| |
Collapse
|
11
|
Oncolytic Foamy Virus - generation and properties of a nonpathogenic replicating retroviral vector system that targets chronically proliferating cancer cells. J Virol 2021; 95:JVI.00015-21. [PMID: 33692205 PMCID: PMC8139661 DOI: 10.1128/jvi.00015-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonpathogenic retroviruses of the Spumaretrovirinae subfamily can persist long-term in the cytoplasm of infected cells, completing their lifecycle only after the nuclear membrane dissolves at the time of cell division. Since the targeting of slowly dividing cancer cells remains an unmet need in oncolytic virotherapy we constructed a replication competent Foamy Virus vector (oFV) from the genomes of two chimpanzee Simian Foamy Viruses (PAN1 and PAN2) and inserted a GFP transgene in place of the bel-2 open reading frame. oFV-GFP infected and propagated with slow kinetics in multiple human tumor cell lines, inducing a syncytial cytopathic effect. Infection of growth arrested MRC5 cells was not productive, but oFV genomes persisted in the cytoplasm and the productive viral lifecycle resumed when cell division was later restored. In vivo, the virus propagated extensively in intraperitoneal ovarian cancer xenografts, slowing tumor growth, significantly prolonging survival of the treated mice and sustaining GFP transgene expression for at least 45 days. Our data indicate that oFV is a promising new replication-competent viral and gene delivery platform for efficient targeting of the most fundamental trait of cancer cells, their ability to sustain chronic proliferation.Significance:The infectivity of certain retroviruses is limited to dividing cells, which makes them attractive tools for targeting cancer cell proliferation. Previously developed replication-competent gammaretroviral vectors spread efficiently in rapidly dividing cancer cells, but not in cancer cells that divide more slowly. In contrast to rapidly proliferating transplantable mouse tumors, slow proliferation is a hallmark of human cancers and may have contributed to the clinical failure of the preclinically promising Murine Leukemia Virus vector Toca511 which failed to show efficacy in a phase 3 clinical trial in patients with glioblastoma. The studies presented in our manuscript show that oncolytic Foamy Virus (oFV) vectors are capable of persisting unintegrated in quiescent cells and resuming their life cycle once the cells start dividing again. This property of oFVs, together with their lack of pathogenicity and their ability to catalyze the fusion of infected cancer cells, makes them an attractive platform for further investigation.
Collapse
|
12
|
Jaguva Vasudevan AA, Becker D, Luedde T, Gohlke H, Münk C. Foamy Viruses, Bet, and APOBEC3 Restriction. Viruses 2021; 13:504. [PMID: 33803830 PMCID: PMC8003144 DOI: 10.3390/v13030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
13
|
The Unique, the Known, and the Unknown of Spumaretrovirus Assembly. Viruses 2021; 13:v13010105. [PMID: 33451128 PMCID: PMC7828637 DOI: 10.3390/v13010105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022] Open
Abstract
Within the family of Retroviridae, foamy viruses (FVs) are unique and unconventional with respect to many aspects in their molecular biology, including assembly and release of enveloped viral particles. Both components of the minimal assembly and release machinery, Gag and Env, display significant differences in their molecular structures and functions compared to the other retroviruses. This led to the placement of FVs into a separate subfamily, the Spumaretrovirinae. Here, we describe the molecular differences in FV Gag and Env, as well as Pol, which is translated as a separate protein and not in an orthoretroviral manner as a Gag-Pol fusion protein. This feature further complicates FV assembly since a specialized Pol encapsidation strategy via a tripartite Gag-genome–Pol complex is used. We try to relate the different features and specific interaction patterns of the FV Gag, Pol, and Env proteins in order to develop a comprehensive and dynamic picture of particle assembly and release, but also other features that are indirectly affected. Since FVs are at the root of the retrovirus tree, we aim at dissecting the unique/specialized features from those shared among the Spuma- and Orthoretrovirinae. Such analyses may shed light on the evolution and characteristics of virus envelopment since related viruses within the Ortervirales, for instance LTR retrotransposons, are characterized by different levels of envelopment, thus affecting the capacity for intercellular transmission.
Collapse
|
14
|
Chai K, Wang Z, Xu Y, Zhang J, Tan J, Qiao W. Palmitoylation of the Bovine Foamy Virus Envelope Glycoprotein Is Required for Viral Replication. Viruses 2020; 13:v13010031. [PMID: 33375397 PMCID: PMC7824066 DOI: 10.3390/v13010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
Membrane proteins of enveloped viruses have been reported to undergo palmitoylation, a post-translational modification often having a critical role in the function of these viral proteins and hence viral replication. In this study, we report that the foamy virus (FV) envelope (Env) glycoprotein is palmitoylated. Specifically, we found that bovine foamy virus (BFV) Env (BEnv) is palmitoylated at amino acid positions C58 and C59 by BDHHC3 and BDHHC20 in a DHHC motif-dependent manner. In addition, mutations C58S and C58/59S significantly decrease cell surface expression of BEnv, subviral particle (SVP) egress, and its membrane fusion activity, thus ultimately inhibiting BFV replication. The C59S mutation exerts a minor effect in this regard. Taken together, these data demonstrate that the function of BEnv in the context of BFV replication is under the regulation of palmitoylation.
Collapse
Affiliation(s)
| | | | | | | | | | - Wentao Qiao
- Correspondence: ; Tel.: +86-22-2350-4547; Fax: +86-22-2350-0950
| |
Collapse
|
15
|
Functional Analyses of Bovine Foamy Virus-Encoded miRNAs Reveal the Importance of a Defined miRNA for Virus Replication and Host-Virus Interaction. Viruses 2020; 12:v12111250. [PMID: 33147813 PMCID: PMC7693620 DOI: 10.3390/v12111250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
In addition to regulatory or accessory proteins, some complex retroviruses gain a repertoire of micro-RNAs (miRNAs) to regulate and control virus–host interactions for efficient replication and spread. In particular, bovine and simian foamy viruses (BFV and SFV) have recently been shown to express a diverse set of RNA polymerase III-directed miRNAs, some with a unique primary miRNA double-hairpin, dumbbell-shaped structure not known in other viruses or organisms. While the mechanisms of expression and structural requirements have been studied, the functional importance of these miRNAs is still far from understood. Here, we describe the in silico identification of BFV miRNA targets and the subsequent experimental validation of bovine Ankyrin Repeat Domain 17 (ANKRD17) and Bax-interacting factor 1 (Bif1) target genes in vitro and, finally, the suppression of ANKRD17 downstream genes in the affected pathway. Deletion of the entire miRNA cassette in the non-coding part of the U3 region of the long terminal repeats attenuated replication of corresponding BFV mutants in bovine cells. This repression can be almost completely trans-complemented by the most abundant miRNA BF2-5p having the best scores for predicted and validated BFV miRNA target genes. Deletion of the miRNA cassette does not grossly affect particle release and overall particle composition.
Collapse
|
16
|
Kane M, Mele V, Liberatore RA, Bieniasz PD. Inhibition of spumavirus gene expression by PHF11. PLoS Pathog 2020; 16:e1008644. [PMID: 32678836 PMCID: PMC7390438 DOI: 10.1371/journal.ppat.1008644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/29/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
The foamy viruses (FV) or spumaviruses are an ancient subfamily of retroviruses that infect a variety of vertebrates. FVs are endemic, but apparently apathogenic, in modern non-human primates. Like other retroviruses, FV replication is inhibited by type-I interferon (IFN). In a previously described screen of IFN-stimulated genes (ISGs), we identified the macaque PHD finger domain protein-11 (PHF11) as an inhibitor of prototype foamy virus (PFV) replication. Here, we show that human and macaque PHF11 inhibit the replication of multiple spumaviruses, but are inactive against several orthoretroviruses. Analysis of other mammalian PHF11 proteins revealed that antiviral activity is host species dependent. Using multiple reporter viruses and cell lines, we determined that PHF11 specifically inhibits a step in the replication cycle that is unique to FVs, namely basal transcription from the FV internal promoter (IP). In so doing, PHF11 prevents expression of the viral transactivator Tas and subsequent activation of the viral LTR promoter. These studies reveal a previously unreported inhibitory mechanism in mammalian cells, that targets a family of ancient viruses and may promote viral latency.
Collapse
Affiliation(s)
- Melissa Kane
- Department of Pediatrics, Infectious Diseases Division, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Vincent Mele
- Department of Pediatrics, Infectious Diseases Division, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Rachel A. Liberatore
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
17
|
Infection with Foamy Virus in Wild Ruminants-Evidence for a New Virus Reservoir? Viruses 2020; 12:v12010058. [PMID: 31947727 PMCID: PMC7019589 DOI: 10.3390/v12010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Foamy viruses (FVs) are widely distributed and infect many animal species including non-human primates, horses, cattle, and cats. Several reports also suggest that other species can be FV hosts. Since most of such studies involved livestock or companion animals, we aimed to test blood samples from wild ruminants for the presence of FV-specific antibodies and, subsequently, genetic material. Out of 269 serum samples tested by ELISA with the bovine foamy virus (BFV) Gag and Bet antigens, 23 sera showed increased reactivity to at least one of them. High reactive sera represented 30% of bison samples and 7.5% of deer specimens. Eleven of the ELISA-positives were also strongly positive in immunoblot analyses. The peripheral blood DNA of seroreactive animals was tested by semi-nested PCR. The specific 275 bp fragment of the pol gene was amplified only in one sample collected from a red deer and the analysis of its sequence showed the highest homology for European BFV isolates. Such results may suggest the existence of a new FV reservoir in bison as well as in deer populations. Whether the origin of such infections stems from a new FV or is the result of BFV inter-species transmission remains to be clarified.
Collapse
|
18
|
Kraberger S, Fountain-Jones NM, Gagne RB, Malmberg J, Dannemiller NG, Logan K, Alldredge M, Varsani A, Crooks KR, Craft M, Carver S, VandeWoude S. Frequent cross-species transmissions of foamy virus between domestic and wild felids. Virus Evol 2020; 6:vez058. [PMID: 31942245 PMCID: PMC6955097 DOI: 10.1093/ve/vez058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Emerging viral outbreaks resulting from host switching is an area of continued scientific interest. Such events can result in disease epidemics or in some cases, clinically silent outcomes. These occurrences are likely relatively common and can serve as tools to better understand disease dynamics, and may result in changes in behavior, fecundity, and, ultimately survival of the host. Feline foamy virus (FFV) is a common retrovirus infecting domestic cats globally, which has also been documented in the North American puma (Puma concolor). The prevalent nature of FFV in domestic cats and its ability to infect wild felids, including puma, provides an ideal system to study cross-species transmission across trophic levels (positions in the food chain), and evolution of pathogens transmitted between individuals following direct contact. Here we present findings from an extensive molecular analysis of FFV in pumas, focused on two locations in Colorado, and in relation to FFV recovered from domestic cats in this and previous studies. Prevalence of FFV in puma was high across the two regions, ∼77 per cent (urban interface site) and ∼48 per cent (rural site). Comparison of FFV from pumas living across three states; Colorado, Florida, and California, indicates FFV is widely distributed across North America. FFV isolated from domestic cats and pumas was not distinguishable at the host level, with FFV sequences sharing >93 per cent nucleotide similarity. Phylogenetic, Bayesian, and recombination analyses of FFV across the two species supports frequent cross-species spillover from domestic cat to puma during the last century, as well as frequent puma-to-puma intraspecific transmission in Colorado, USA. Two FFV variants, distinguished by significant difference in the surface unit of the envelope protein, were commonly found in both hosts. This trait is also shared by simian foamy virus and may represent variation in cell tropism or a unique immune evasion mechanism. This study elucidates evolutionary and cross-species transmission dynamics of a highly prevalent multi-host adapted virus, a system which can further be applied to model spillover and transmission of pathogenic viruses resulting in widespread infection in the new host.
Collapse
Affiliation(s)
- Simona Kraberger
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Nicholas M Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Falcon Heights, St Paul, MN 55108, USA
| | - Roderick B Gagne
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nicholas G Dannemiller
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ken Logan
- Colorado Parks and Wildlife, 317 W Prospect Rd, Fort Collins, CO 80526, USA
| | - Mat Alldredge
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery Fort Collins, CO 80523, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery Fort Collins, CO 80523, USA
| | - Meggan Craft
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Falcon Heights, St Paul, MN 55108, USA
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
19
|
Bergez M, Weber J, Riess M, Erdbeer A, Seifried J, Stanke N, Munz C, Hornung V, König R, Lindemann D. Insights into Innate Sensing of Prototype Foamy Viruses in Myeloid Cells. Viruses 2019; 11:v11121095. [PMID: 31779173 PMCID: PMC6950106 DOI: 10.3390/v11121095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023] Open
Abstract
Foamy viruses (FVs) belong to the Spumaretrovirinae subfamily of retroviruses and are characterized by unique features in their replication strategy. This includes a reverse transcription (RTr) step of the packaged RNA genome late in replication, resulting in the release of particles with a fraction of them already containing an infectious viral DNA (vDNA) genome. Little is known about the immune responses against FVs in their hosts, which control infection and may be responsible for their apparent apathogenic nature. We studied the interaction of FVs with the innate immune system in myeloid cells, and characterized the viral pathogen-associated molecular patterns (PAMPs) and the cellular pattern recognition receptors and sensing pathways involved. Upon cytoplasmic access, full-length but not minimal vector genome containing FVs with active reverse transcriptase, induced an efficient innate immune response in various myeloid cells. It was dependent on cellular cGAS and STING and largely unaffected by RTr inhibition during viral entry. This suggests that RTr products, which are generated during FV morphogenesis in infected cells, and are therefore already present in FV particles taken up by immune cells, are the main PAMPs of FVs with full-length genomes sensed in a cGAS and STING-dependent manner by the innate immune system in host cells of the myeloid lineage.
Collapse
Affiliation(s)
- Maïwenn Bergez
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany; (M.B.); (M.R.); (J.S.)
| | - Jakob Weber
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; (J.W.); (A.E.); (N.S.); (C.M.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maximilian Riess
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany; (M.B.); (M.R.); (J.S.)
| | - Alexander Erdbeer
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; (J.W.); (A.E.); (N.S.); (C.M.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Janna Seifried
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany; (M.B.); (M.R.); (J.S.)
| | - Nicole Stanke
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; (J.W.); (A.E.); (N.S.); (C.M.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Clara Munz
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; (J.W.); (A.E.); (N.S.); (C.M.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany;
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany; (M.B.); (M.R.); (J.S.)
- German Center for Infection Research (DZIF), 63225 Langen, Germany
- Immunity and Pathogenesis Program, SBP Medical Discovery Institute, La Jolla, CA 92037, USA
- Correspondence: (R.K.); (D.L.); Tel.: +49-6103-77-4019 (R.K.); +49-351-458-6210 (D.L.)
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; (J.W.); (A.E.); (N.S.); (C.M.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence: (R.K.); (D.L.); Tel.: +49-6103-77-4019 (R.K.); +49-351-458-6210 (D.L.)
| |
Collapse
|
20
|
Materniak-Kornas M, Tan J, Heit-Mondrzyk A, Hotz-Wagenblatt A, Löchelt M. Bovine Foamy Virus: Shared and Unique Molecular Features In Vitro and In Vivo. Viruses 2019; 11:E1084. [PMID: 31766538 PMCID: PMC6950176 DOI: 10.3390/v11121084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
The retroviral subfamily of Spumaretrovirinae consists of five genera of foamy (spuma) viruses (FVs) that are endemic in some mammalian hosts [1]. Closely related species may be susceptible to the same or highly related FVs. FVs are not known to induce overt disease and thus do not pose medical problems to humans and livestock or companion animals. A robust lab animal model is not available or is a lab animal a natural host of a FV. Due to this, research is limited and often focused on the simian FVs with their well-established zoonotic potential. The authors of this review and their groups have conducted several studies on bovine FV (BFV) in the past with the intention of (i) exploring the risk of zoonotic infection via beef and raw cattle products, (ii) studying a co-factorial role of BFV in different cattle diseases with unclear etiology, (iii) exploring unique features of FV molecular biology and replication strategies in non-simian FVs, and (iv) conducting animal studies and functional virology in BFV-infected calves as a model for corresponding studies in primates or small lab animals. These studies gained new insights into FV-host interactions, mechanisms of gene expression, and transcriptional regulation, including miRNA biology, host-directed restriction of FV replication, spread and distribution in the infected animal, and at the population level. The current review attempts to summarize these findings in BFV and tries to connect them to findings from other FVs.
Collapse
Affiliation(s)
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Anke Heit-Mondrzyk
- German Cancer Research Center DKFZ, Core Facility Omics IT and Data Management, 69120 Heidelberg, Germany; (A.H.-M.); (A.H.-W.)
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center DKFZ, Core Facility Omics IT and Data Management, 69120 Heidelberg, Germany; (A.H.-M.); (A.H.-W.)
| | - Martin Löchelt
- German Cancer Research Center DKFZ, Program Infection, Inflammation and Cancer, Div. Viral Transformation Mechanisms, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Ledesma-Feliciano C, Troyer RM, Zheng X, Miller C, Cianciolo R, Bordicchia M, Dannemiller N, Gagne R, Beatty J, Quimby J, Löchelt M, VandeWoude S. Feline Foamy Virus Infection: Characterization of Experimental Infection and Prevalence of Natural Infection in Domestic Cats with and without Chronic Kidney Disease. Viruses 2019; 11:E662. [PMID: 31330990 PMCID: PMC6669521 DOI: 10.3390/v11070662] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022] Open
Abstract
Foamy viruses (FVs) are globally prevalent retroviruses that establish apparently apathogenic lifelong infections. Feline FV (FFV) has been isolated from domestic cats with concurrent diseases, including urinary syndromes. We experimentally infected five cats with FFV to study viral kinetics and tropism, peripheral blood mononuclear cell (PBMC) phenotype, urinary parameters, and histopathology. A persistent infection of primarily lymphoid tropism was detected with no evidence of immunological or hematologic perturbations. One cat with a significant negative correlation between lymphocytes and PBMC proviral load displayed an expanded FFV tissue tropism. Significantly increased blood urea nitrogen and ultrastructural kidney changes were noted in all experimentally infected cats, though chemistry parameters were not outside of normal ranges. Histopathological changes were observed in the brain, large intestine, and other tissues. In order to determine if there is an association of FFV with Chronic Kidney Disease, we additionally screened 125 Australian pet cats with and without CKD for FFV infection and found that FFV is highly prevalent in older cats, particularly in males with CKD, though this difference was not statistically significant compared to controls. Acute FFV infection was clinically silent, and while some measures indicated mild changes, there was no overt association of FFV infection with renal disease.
Collapse
Affiliation(s)
- Carmen Ledesma-Feliciano
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA
| | - Ryan M Troyer
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond St., London, ON N6A 5C1, Canada
| | - Xin Zheng
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig Miller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74075, USA
| | - Rachel Cianciolo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Matteo Bordicchia
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Nicholas Dannemiller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Roderick Gagne
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Julia Beatty
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Jessica Quimby
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Veterinary Clinical Sciences, The Ohio State University Veterinary Medical Center, 601 Vernon Tharpe Street, Columbus, OH 43210, USA
| | - Martin Löchelt
- Department of Viral Transformation Mechanisms, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
22
|
Isolation of an Equine Foamy Virus and Sero-Epidemiology of the Viral Infection in Horses in Japan. Viruses 2019; 11:v11070613. [PMID: 31284407 PMCID: PMC6669534 DOI: 10.3390/v11070613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
An equine foamy virus (EFV) was isolated for the first time in Japan from peripheral blood mononuclear cells of a broodmare that showed wobbler syndrome after surgery for intestinal volvulus and the isolate was designated as EFVeca_LM. Complete nucleotide sequences of EFVeca_LM were determined. Nucleotide sequence analysis of the long terminal repeat (LTR) region, gag, pol, env, tas, and bel2 genes revealed that EFVeca_LM and the EFV reference strain had 97.2% to 99.1% identities. For a sero-epidemiological survey, indirect immunofluorescent antibody tests were carried out using EFVeca_LM-infected cells as an antigen against 166 sera of horses in five farms collected in 2001 to 2002 and 293 sera of horses in eight farms collected in 2014 to 2016 in Hokkaido, Japan. All of the farms had EFV antibody-positive horses, and average positive rates were 24.6% in sera obtained in 2001 to 2002 and 25.6% in sera obtained in 2014 to 2016 from broodmare farms. The positive rate in a stallion farm (Farm A) in 2002 was 10.7%, and the positive rates in two stallion farms, Farms A and B, in 2015 were 40.9% and 13.3%, respectively. The results suggested that EFV infection is maintained widely in horses in Japan.
Collapse
|
23
|
Shankar A, Sibley SD, Goldberg TL, Switzer WM. Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates pileatus (pileated gibbon) Reveals Ancient Co-Evolution with Lesser Apes. Viruses 2019; 11:E605. [PMID: 31277268 PMCID: PMC6669568 DOI: 10.3390/v11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). The complete sequence of the SFVhpi_SAM106 genome fills an important knowledge gap in SFV genetics and will facilitate future studies of FV infection, transmission, and evolutionary history.
Collapse
Affiliation(s)
- Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Samuel D Sibley
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
24
|
Twelfth International Foamy Virus Conference-Meeting Report. Viruses 2019; 11:v11020134. [PMID: 30717288 PMCID: PMC6409691 DOI: 10.3390/v11020134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
The 12th International Foamy Virus Conference took place on 30–31 August 2018 at the Technische Universität Dresden, Dresden, Germany. The meeting included presentations on current research on non-human primate and non-primate foamy viruses (FVs; also called spumaretroviruses) as well as keynote talks on related research areas in retroviruses. The taxonomy of foamy viruses was updated earlier this year to create five new genera in the subfamily, Spumaretrovirinae, based on their animal hosts. Research on viruses from different genera was presented on topics of potential relevance to human health, such as natural infections and cross-species transmission, replication, and viral-host interactions in particular with the immune system, dual retrovirus infections, virus structure and biology, and viral vectors for gene therapy. This article provides an overview of the current state-of-the-field, summarizes the meeting highlights, and presents some important questions that need to be addressed in the future.
Collapse
|
25
|
Wei G, Kehl T, Bao Q, Benner A, Lei J, Löchelt M. The chromatin binding domain, including the QPQRYG motif, of feline foamy virus Gag is required for viral DNA integration and nuclear accumulation of Gag and the viral genome. Virology 2018; 524:56-68. [PMID: 30145377 DOI: 10.1016/j.virol.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/15/2023]
Abstract
The retroviral Gag protein, the major component of released particles, plays different roles in particle assembly, maturation or infection of new host cells. Here, we characterize the Gag chromatin binding site including the highly conserved QPQRYG motif of feline foamy virus, a member of the Spumaretrovirinae. Mutagenesis of critical residues in the chromatin binding site/QPQRYG motif almost completely abrogates viral DNA integration and reduces nuclear accumulation of Gag and viral DNA. Genome packaging, reverse transcription, particle release and uptake into new target cells are not affected. The integrity of the QPQRYG motif appears to be important for processes after cytosolic entry, likely influencing incoming virus capsids or disassembly intermediates but not Gag synthesized de novo in progeny virus-producing cells. According to our data, chromatin binding is a shared feature among foamy viruses but further work is needed to understand the mechanisms involved.
Collapse
Affiliation(s)
- Guochao Wei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Timo Kehl
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Qiuying Bao
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Janet Lei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Martin Löchelt
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany.
| |
Collapse
|
26
|
Cao W, Heit A, Hotz-Wagenblatt A, Löchelt M. Functional characterization of the bovine foamy virus miRNA expression cassette and its dumbbell-shaped pri-miRNA. Virus Genes 2018; 54:550-560. [PMID: 29855776 DOI: 10.1007/s11262-018-1574-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
Foamy viruses are unconventional and complex retroviruses distinct from the other members of the Retroviridae family. Currently, no disease has been firmly linked to persistent foamy virus infection of their cognate host including simians, bovines, felines, and equines or upon zoonotic transmission of different simian foamy viruses to humans. Bovine and simian foamy viruses have been recently shown to encode a RNA polymerase-III-driven micro RNA cluster which likely modulates and regulates host-virus interactions at different levels. Using sub-genomic bovine foamy virus micro RNA expression plasmids and dual luciferase reporter assays as readout, the requirements for expression and processing of the bovine foamy virus micro RNAs have been analyzed. Here, we report that the minimal BFV micro RNA cassette is significantly weaker than a U6 promoter-based construct and strongly suppressed by flanking sequences. The primary micro RNA sequence can be manipulated and chimerized as long as the dumbbell-like folding of the primary micro RNA is maintained. Since more subtle changes are associated with reduced functionality, the overall structure and shape, but possibly individual elements and residues also, are important for the expression and processing of the bovine foamy virus micro RNAs.
Collapse
Affiliation(s)
- Wenhu Cao
- Division Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, Heidelberg, Germany
| | - Anke Heit
- Core Facility Omics IT and Data Management, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Martin Löchelt
- Division Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, Heidelberg, Germany.
| |
Collapse
|
27
|
Ledesma-Feliciano C, Hagen S, Troyer R, Zheng X, Musselman E, Slavkovic Lukic D, Franke AM, Maeda D, Zielonka J, Münk C, Wei G, VandeWoude S, Löchelt M. Replacement of feline foamy virus bet by feline immunodeficiency virus vif yields replicative virus with novel vaccine candidate potential. Retrovirology 2018; 15:38. [PMID: 29769087 PMCID: PMC5956581 DOI: 10.1186/s12977-018-0419-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/03/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hosts are able to restrict viral replication to contain virus spread before adaptive immunity is fully initiated. Many viruses have acquired genes directly counteracting intrinsic restriction mechanisms. This phenomenon has led to a co-evolutionary signature for both the virus and host which often provides a barrier against interspecies transmission events. Through different mechanisms of action, but with similar consequences, spumaviral feline foamy virus (FFV) Bet and lentiviral feline immunodeficiency virus (FIV) Vif counteract feline APOBEC3 (feA3) restriction factors that lead to hypermutation and degradation of retroviral DNA genomes. Here we examine the capacity of vif to substitute for bet function in a chimeric FFV to assess the transferability of anti-feA3 factors to allow viral replication. RESULTS We show that vif can replace bet to yield replication-competent chimeric foamy viruses. An in vitro selection screen revealed that an engineered Bet-Vif fusion protein yields suboptimal protection against feA3. After multiple passages through feA3-expressing cells, however, variants with optimized replication competence emerged. In these variants, Vif was expressed independently from an N-terminal Bet moiety and was stably maintained. Experimental infection of immunocompetent domestic cats with one of the functional chimeras resulted in seroconversion against the FFV backbone and the heterologous FIV Vif protein, but virus could not be detected unambiguously by PCR. Inoculation with chimeric virus followed by wild-type FFV revealed that repeated administration of FVs allowed superinfections with enhanced antiviral antibody production and detection of low level viral genomes, indicating that chimeric virus did not induce protective immunity against wild-type FFV. CONCLUSIONS Unrelated viral antagonists of feA3 cellular restriction factors can be exchanged in FFV, resulting in replication competence in vitro that was attenuated in vivo. Bet therefore may have additional functions other than A3 antagonism that are essential for successful in vivo replication. Immune reactivity was mounted against the heterologous Vif protein. We conclude that Vif-expressing FV vaccine vectors may be an attractive tool to prevent or modulate lentivirus infections with the potential option to induce immunity against additional lentivirus antigens.
Collapse
Affiliation(s)
- Carmen Ledesma-Feliciano
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah Hagen
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Ryan Troyer
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Xin Zheng
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Esther Musselman
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dragana Slavkovic Lukic
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Internal Medicine II, Division of Hematology, University Hospital of Würzburg, Würzburg, Germany
| | - Ann-Mareen Franke
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Roche Pharma AG, Grenzach-Wyhlen, Germany
| | - Daniel Maeda
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jörg Zielonka
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Roche Glycart AG, Schlieren, 8952, Switzerland
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Division of Infectious Disease, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Pinto-Santini DM, Stenbak CR, Linial ML. Foamy virus zoonotic infections. Retrovirology 2017; 14:55. [PMID: 29197389 PMCID: PMC5712078 DOI: 10.1186/s12977-017-0379-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FV) are ancient complex retroviruses that differ from orthoretroviruses such as human immunodeficiency virus (HIV) and murine leukemia virus (MLV) and comprise a distinct subfamily of retroviruses, the Spumaretrovirinae. FV are ubiquitous in their natural hosts, which include cows, cats, and nonhuman primates (NHP). FV are transmitted mainly through saliva and appear nonpathogenic by themselves, but they may increase morbidity of other pathogens in coinfections. CONCLUSIONS This review summarizes and discusses what is known about FV infection of natural hosts. It also emphasizes what is known about FV zoonotic infections A large number of studies have revealed that the FV of NHP, simian foamy viruses (SFV), are transmitted to humans who interact with infected NHP. SFV from a variety of NHP establish persistent infection in humans, while bovine foamy virus and feline foamy virus rarely or never do. The possibility of FV recombination and mutation leading to pathogenesis is considered. Since humans can be infected by SFV, a seemingly nonpathogenic virus, there is interest in using SFV vectors for human gene therapy. In this regard, detailed understanding of zoonotic SFV infection is highly relevant.
Collapse
Affiliation(s)
| | | | - Maxine L. Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., A3-205, Seattle, WA 98109 USA
| |
Collapse
|
29
|
Muniz CP, Zheng H, Jia H, Cavalcante LTF, Augusto AM, Fedullo LP, Pissinatti A, Soares MA, Switzer WM, Santos AF. A non-invasive specimen collection method and a novel simian foamy virus (SFV) DNA quantification assay in New World primates reveal aspects of tissue tropism and improved SFV detection. PLoS One 2017; 12:e0184251. [PMID: 28863180 PMCID: PMC5581185 DOI: 10.1371/journal.pone.0184251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/21/2017] [Indexed: 11/23/2022] Open
Abstract
Simian foamy viruses (SFVs) co-evolved with a wide range of Old World and New World primates (OWPs and NWPs, respectively) and occasionally transmit to humans. Previous studies of OWPs showed that the predominant site of SFV replication is the oral mucosa. However, very little is known about SFV viral loads (VLs) in the oral mucosa or blood of NWPs. NWPs have smaller body sizes, limiting collection of sufficient whole blood volumes to molecularly detect and quantify SFV. Our study evaluated the use of noninvasively collected buccal swabs to detect NWP SFV compared with detection in blood using a new NWP SFV quantitative PCR (qPCR) assay. Buccal and blood samples were collected from 107 captive NWPs in Brazil comprising eleven distinct genera at the Primate Center of Rio de Janeiro (n = 58) and at Fundação Jardim Zoológico da Cidade do Rio Janeiro (n = 49). NWP SFV western blot (WB) testing was performed on a subset of animals for comparison with PCR results. The qPCR assay was validated using distinct SFV polymerase sequences from seven NWP genera (Callithrix, Sapajus, Saimiri, Ateles, Alouatta, Cacajao and Pithecia). Assay sensitivity was 20 copies/106 cells, detectable in 90% of replicates. SFV DNA VLs were higher in buccal swabs (5 log copies/106 cells) compared to peripheral blood mononuclear cells (PBMCs) (3 log copies/106 cells). The qPCR assay was also more sensitive than nested PCR for detection of NWP SFV infection and identified an additional 27 SFV-infected monkeys of which 18 (90%) were WB-positive and three that were WB-negative. We show the utility of using both blood and buccal swabs and our new qPCR assay for detection and quantification of diverse NWP SFV, which will assist a better understanding of the epidemiology of SFV in NWPs and any potential zoonotic infection risk for humans exposed to NWPs.
Collapse
Affiliation(s)
- Cláudia P. Muniz
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - HaoQiang Zheng
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hongwei Jia
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Anderson M. Augusto
- Fundação Jardim Zoológico da Cidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz P. Fedullo
- Fundação Jardim Zoológico da Cidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Instituto Estadual de Ambiente, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - William M. Switzer
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - André F. Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
30
|
Buseyne F, Gessain A, Soares MA, Santos AF, Materniak-Kornas M, Lesage P, Zamborlini A, Löchelt M, Qiao W, Lindemann D, Wöhrl BM, Stoye JP, Taylor IA, Khan AS. Eleventh International Foamy Virus Conference-Meeting Report. Viruses 2016; 8:v8110318. [PMID: 27886074 PMCID: PMC5127032 DOI: 10.3390/v8110318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022] Open
Abstract
The Eleventh International Foamy Virus Conference took place on 9–10 June 2016 at the Institut Pasteur, Paris, France. The meeting reviewed progress on foamy virus (FV) research, as well as related current topics in retrovirology. FVs are complex retroviruses that are widespread in several animal species. Several research topics on these viruses are relevant to human health: cross-species transmission and viral emergence, vectors for gene therapy, development of antiretroviral drugs, retroviral evolution and its influence on the human genome. In this article, we review the conference presentations on these viruses and highlight the major questions to be answered.
Collapse
Affiliation(s)
- Florence Buseyne
- Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), UMR3569, 75015 Paris, France.
| | - Antoine Gessain
- Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), UMR3569, 75015 Paris, France.
| | - Marcelo A Soares
- Department of Genetics, Universidade Federal do Rio de Janeiro, 21949-570 Rio de Janeiro, Brazil.
- Oncovirology Program, Instituto Nacional de Câncer, 20231-050 Rio de Janeiro, Brazil.
| | - André F Santos
- Department of Genetics, Universidade Federal do Rio de Janeiro, 21949-570 Rio de Janeiro, Brazil.
| | | | - Pascale Lesage
- Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, 75010 Paris, France.
| | - Alessia Zamborlini
- Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, 75010 Paris, France.
- Conservatoire National des Arts et Métiers, Laboratoire de Pathologie et Virologie Moléculaire, 75003 Paris, France.
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, 69120 Heidelberg, Germany.
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, 01307 Dresden, Germany.
| | - Birgitta M Wöhrl
- University of Bayreuth, Department of Biopolymers, 95447 Bayreuth, Germany.
| | | | | | - Arifa S Khan
- Laboratory of Retroviruses, Division of Viral Products, OVRR, CBER, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
31
|
Liu Y, Betts MJ, Lei J, Wei G, Bao Q, Kehl T, Russell RB, Löchelt M. Mutagenesis of N-terminal residues of feline foamy virus Gag reveals entirely distinct functions during capsid formation, particle assembly, Gag processing and budding. Retrovirology 2016; 13:57. [PMID: 27549192 PMCID: PMC4994201 DOI: 10.1186/s12977-016-0291-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) of the Spumaretrovirinae subfamily are distinct retroviruses, with many features of their molecular biology and replication strategy clearly different from those of the Orthoretroviruses, such as human immunodeficiency, murine leukemia, and human T cell lymphotropic viruses. The FV Gag N-terminal region is responsible for capsid formation and particle budding via interaction with Env. However, the critical residues or motifs in this region and their functional interaction are currently ill-defined, especially in non-primate FVs. RESULTS Mutagenesis of N-terminal Gag residues of feline FV (FFV) reveals key residues essential for either capsid assembly and/or viral budding via interaction with the FFV Env leader protein (Elp). In an in vitro Gag-Elp interaction screen, Gag mutations abolishing particle assembly also interfered with Elp binding, indicating that Gag assembly is a prerequisite for this highly specific interaction. Gradient sedimentation analyses of cytosolic proteins indicate that wild-type Gag is mostly assembled into virus capsids. Moreover, proteolytic processing of Gag correlates with capsid assembly and is mostly, if not completely, independent from particle budding. In addition, Gag processing correlates with the presence of packaging-competent FFV genomic RNA suggesting that Pol encapsidation via genomic RNA is a prerequisite for Gag processing. Though an appended heterogeneous myristoylation signal rescues Gag particle budding of mutants unable to form capsids or defective in interacting with Elp, it fails to generate infectious particles that co-package Pol, as evidenced by a lack of Gag processing. CONCLUSIONS Changes in proteolytic Gag processing, intracellular capsid assembly, particle budding and infectivity of defined N-terminal Gag mutants highlight their essential, distinct and only partially overlapping roles during viral assembly and budding. Discussion of these findings will be based on a recent model developed for Gag-Elp interactions in prototype FV.
Collapse
Affiliation(s)
- Yang Liu
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matthew J Betts
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Janet Lei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Oncology, University of Oxford, Oxford, UK
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Qiuying Bao
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Biology Department, East China Normal University, Shanghai, China
| | - Timo Kehl
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Robert B Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Abstract
Recent discoveries indicate that the foamy virus (FV) (Spumavirus) ancestor may have been among the first retroviruses to appear during the evolution of vertebrates, demonstrated by foamy endogenous retroviruses present within deeply divergent hosts including mammals, coelacanth, and ray-finned fish. If they indeed existed in ancient marine environments hundreds of millions of years ago, significant undiscovered diversity of foamy-like endogenous retroviruses might be present in fish genomes. By screening published genomes and by applying PCR-based assays of preserved tissues, we discovered 23 novel foamy-like elements in teleost hosts. These viruses form a robust, reciprocally monophyletic sister clade with sarcopterygian host FV, with class III mammal endogenous retroviruses being the sister group to both clades. Some of these foamy-like retroviruses have larger genomes than any known retrovirus, exogenous or endogenous, due to unusually long gag-like genes and numerous accessory genes. The presence of genetic features conserved between mammalian FV and these novel retroviruses attests to a foamy-like replication biology conserved for hundreds of millions of years. We estimate that some of these viruses integrated recently into host genomes; exogenous forms of these viruses may still circulate.
Collapse
Affiliation(s)
- Ryan Ruboyianes
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St., Tucson, AZ 85721, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St., Tucson, AZ 85721, USA
| |
Collapse
|
33
|
Bing T, Zhang S, Liu X, Liang Z, Shao P, Zhang S, Qiao W, Tan J. Important role of N108 residue in binding of bovine foamy virus transactivator Tas to viral promoters. Virol J 2016; 13:117. [PMID: 27363487 PMCID: PMC4929722 DOI: 10.1186/s12985-016-0579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine foamy virus (BFV) encodes the transactivator BTas, which enhances viral gene transcription by binding to the long terminal repeat promoter and the internal promoter. In this study, we investigated the different replication capacities of two similar BFV full-length DNA clones, pBS-BFV-Y and pBS-BFV-B. RESULTS Here, functional analysis of several chimeric clones revealed a major role for the C-terminal region of the viral genome in causing this difference. Furthermore, BTas-B, which is located in this C-terminal region, exhibited a 20-fold higher transactivation activity than BTas-Y. Sequence alignment showed that these two sequences differ only at amino acid 108, with BTas-B containing N108 and BTas-Y containing D108 at this position. Results of mutagenesis studies demonstrated that residue N108 is important for BTas binding to viral promoters. In addition, the N108D mutation in pBS-BFV-B reduced the viral replication capacity by about 1.5-fold. CONCLUSIONS Our results suggest that residue N108 is important for BTas binding to BFV promoters and has a major role in BFV replication. These findings not only advances our understanding of the transactivation mechanism of BTas, but they also highlight the importance of certain sequence polymorphisms in modulating the replication capacity of isolated BFV clones.
Collapse
Affiliation(s)
- Tiejun Bing
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Suzhen Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaojuan Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhibin Liang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Peng Shao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Song Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
34
|
Lambert C, Rua R, Gessain A, Buseyne F. A new sensitive indicator cell line reveals cross-transactivation of the viral LTR by gorilla and chimpanzee simian foamy viruses. Virology 2016; 496:219-226. [PMID: 27348053 DOI: 10.1016/j.virol.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022]
Abstract
The majority of currently identified simian foamy virus (SFV)-infected Cameroonian and Gabonese individuals harbor SFV from the gorilla lineage. We constructed an indicator cell line for the quantification of gorilla SFVs, in which the U3 sequence of a gorilla SFV directs the expression of the β-galactosidase protein. The gorilla foamy virus activated β-galactosidase (GFAB) cells efficiently quantified two zoonotic primary gorilla isolates and SFVs from three chimpanzee subspecies. Primary gorilla SFVs replicated more slowly and at lower levels than primary chimpanzee SFVs. Analysis of previously described motifs of Tas proteins and U3 LTRs involved in viral gene synthesis revealed conservation of such motifs in Tas proteins from gorilla and chimpanzee SFVs, but little sequence homology in the LTR regions previously shown to interact with viral and cellular factors.
Collapse
Affiliation(s)
- Caroline Lambert
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France; UMR CNRS 3569, Institut Pasteur, Paris 75015, France; Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Institut Pasteur, 75015 Paris, France
| | - Réjane Rua
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Antoine Gessain
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France; UMR CNRS 3569, Institut Pasteur, Paris 75015, France
| | - Florence Buseyne
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France; UMR CNRS 3569, Institut Pasteur, Paris 75015, France.
| |
Collapse
|
35
|
Effectiveness of hydrogen peroxide and electron-beam irradiation treatment for removal and inactivation of viruses in equine-derived xenografts. J Virol Methods 2016; 232:39-46. [DOI: 10.1016/j.jviromet.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/26/2022]
|
36
|
Bähr A, Singer A, Hain A, Vasudevan AAJ, Schilling M, Reh J, Riess M, Panitz S, Serrano V, Schweizer M, König R, Chanda S, Häussinger D, Kochs G, Lindemann D, Münk C. Interferon but not MxB inhibits foamy retroviruses. Virology 2016; 488:51-60. [DOI: 10.1016/j.virol.2015.10.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/11/2015] [Accepted: 10/31/2015] [Indexed: 11/26/2022]
|
37
|
Bao Q, Hipp M, Hugo A, Lei J, Liu Y, Kehl T, Hechler T, Löchelt M. In Vitro Evolution of Bovine Foamy Virus Variants with Enhanced Cell-Free Virus Titers and Transmission. Viruses 2015; 7:5855-74. [PMID: 26569290 PMCID: PMC4664980 DOI: 10.3390/v7112907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
Virus transmission is essential for spreading viral infections and is a highly coordinated process which occurs by cell-free transmission or cell-cell contact. The transmission of Bovine Foamy Virus (BFV) is highly cell-associated, with undetectable cell-free transmission. However, BFV particle budding can be induced by overexpression of wild-type (wt) BFV Gag and Env or artificial retargeting of Gag to the plasma membrane via myristoylation membrane targeting signals, closely resembling observations in other foamy viruses. Thus, the particle release machinery of wt BFV appears to be an excellent model system to study viral adaption to cell-free transmission by in vitro selection and evolution. Using selection for BFV variants with high cell-free infectivity in bovine and non-bovine cells, infectivity dramatically increased from almost no infectious units to about 105-106 FFU (fluorescent focus forming units)/mL in both cell types. Importantly, the selected BFV variants with high titer (HT) cell-free infectivity could still transmit via cell-cell contacts and were neutralized by serum from naturally infected cows. These selected HT-BFV variants will shed light into virus transmission and potential routes of intervention in the spread of viral infections. It will also allow the improvement or development of new promising approaches for antiretroviral therapies.
Collapse
Affiliation(s)
- Qiuying Bao
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
| | - Michaela Hipp
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
| | - Annette Hugo
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
| | - Janet Lei
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Yang Liu
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
- Department Viral Recombination, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | - Timo Kehl
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
| | - Torsten Hechler
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
- Heidelberg Pharma GmbH, 68526 Ladenburg, Germany.
| | - Martin Löchelt
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
| |
Collapse
|
38
|
Ghersi BM, Jia H, Aiewsakun P, Katzourakis A, Mendoza P, Bausch DG, Kasper MR, Montgomery JM, Switzer WM. Wide distribution and ancient evolutionary history of simian foamy viruses in New World primates. Retrovirology 2015; 12:89. [PMID: 26514626 PMCID: PMC4627628 DOI: 10.1186/s12977-015-0214-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although simian foamy viruses (SFV) are the only exogenous retroviruses to infect New World monkeys (NWMs), little is known about their evolutionary history and epidemiology. Previous reports show distinct SFVs among NWMs but were limited to small numbers of captive or wild monkeys from five (Cebus, Saimiri, Ateles, Alouatta, and Callithrix) of the 15 NWM genera. Other studies also used only PCR testing or serological assays with limited validation and may have missed infection in some species. We developed and validated new serological and PCR assays to determine the prevalence of SFV in blood specimens from a large number of captive NWMs in the US (n = 274) and in captive and wild-caught NWMs (n = 236) in Peruvian zoos, rescue centers, and illegal trade markets. Phylogenetic and co-speciation reconciliation analyses of new SFV polymerase (pol) and host mitochondrial cytochrome B sequences, were performed to infer SFV and host co-evolutionary histories. RESULTS 124/274 (45.2 %) of NWMs captive in the US and 59/157 (37.5 %) of captive and wild-caught NWMs in Peru were SFV WB-positive representing 11 different genera (Alouatta, Aotus, Ateles, Cacajao, Callithrix, Cebus, Lagothrix, Leontopithecus, Pithecia, Saguinus and Saimiri). Seroprevalences were lower at rescue centers (10/53, 18.9 %) compared to zoos (46/97, 47.4 %) and illegal trade markets (3/7, 8/19, 42.9 %) in Peru. Analyses showed that the trees of NWM hosts and SFVs have remarkably similar topologies at the level of species and sub-populations suggestive of co-speciation. Phylogenetic reconciliation confirmed 12 co-speciation events (p < 0.002) which was further supported by obtaining highly similar divergence dates for SFV and host genera and correlated SFV-host branch times. However, four ancient cross-genus transmission events were also inferred for Pitheciinae to Atelidae, Cacajao to ancestral Callithrix or Cebus monkeys, between Callithrix and Cebus monkeys, and Lagothrix to Alouatta. CONCLUSIONS We demonstrate a broad distribution and stable co-speciation history of SFV in NWMs at the species level. Additional studies are necessary to further explore the epidemiology and natural history of SFV infection of NWMs and to determine the zoonotic potential for persons exposed to infected monkeys in captivity and in the wild.
Collapse
Affiliation(s)
| | - Hongwei Jia
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G-45, Atlanta, GA, 30329, USA.
| | - Pakorn Aiewsakun
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | | | - Daniel G Bausch
- U.S. Naval Medical Research Unit No. 6, Lima, Peru. .,Tulane School of Public Health and Tropical Hygiene, New Orleans, LA, USA.
| | | | - Joel M Montgomery
- U.S. Naval Medical Research Unit No. 6, Lima, Peru. .,Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G-45, Atlanta, GA, 30329, USA.
| |
Collapse
|
39
|
Lei J, Osen W, Gardyan A, Hotz-Wagenblatt A, Wei G, Gissmann L, Eichmüller S, Löchelt M. Replication-Competent Foamy Virus Vaccine Vectors as Novel Epitope Scaffolds for Immunotherapy. PLoS One 2015; 10:e0138458. [PMID: 26397953 PMCID: PMC4580568 DOI: 10.1371/journal.pone.0138458] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
The use of whole viruses as antigen scaffolds is a recent development in vaccination that improves immunogenicity without the need for additional adjuvants. Previous studies highlighted the potential of foamy viruses (FVs) in prophylactic vaccination and gene therapy. Replication-competent FVs can trigger immune signaling and integrate into the host genome, resulting in persistent antigen expression and a robust immune response. Here, we explored feline foamy virus (FFV) proteins as scaffolds for therapeutic B and T cell epitope delivery in vitro. Infection- and cancer-related B and T cell epitopes were grafted into FFV Gag, Env, or Bet by residue replacement, either at sites of high local sequence homology between the epitope and the host protein or in regions known to tolerate sequence alterations. Modified proviruses were evaluated in vitro for protein steady state levels, particle release, and virus titer in permissive cells. Modification of Gag and Env was mostly detrimental to their function. As anticipated, modification of Bet had no impact on virion release and affected virus titers of only some recombinants. Further evaluation of Bet as an epitope carrier was performed using T cell epitopes from the model antigen chicken ovalbumin (OVA), human tyrosinase-related protein 2 (TRP-2), and oncoprotein E7 of human papillomavirus type 16 (HPV16E7). Transfection of murine cells with constructs encoding Bet-epitope chimeric proteins led to efficient MHC-I-restricted epitope presentation as confirmed by interferon-gamma enzyme-linked immunospot assays using epitope-specific cytotoxic T lymphocyte (CTL) lines. FFV infection-mediated transduction of cells with epitope-carrying Bet also induced T-cell responses, albeit with reduced efficacy, in a process independent from the presence of free peptides. We show that primate FV Bet is also a promising T cell epitope carrier for clinical translation. The data demonstrate the utility of replication-competent and -attenuated FVs as antigen carriers in immunotherapy.
Collapse
Affiliation(s)
- Janet Lei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfram Osen
- Division of Translational Immunology, Research Program Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adriane Gardyan
- Division of Translational Immunology, Research Program Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guochao Wei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lutz Gissmann
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Eichmüller
- Division of Translational Immunology, Research Program Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Löchelt
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
40
|
Rogers DL, McClure GB, Ruiz JC, Abee CR, Vanchiere JA. Endemic Viruses of Squirrel Monkeys (Saimiri spp.). Comp Med 2015; 65:232-240. [PMID: 26141448 PMCID: PMC4485632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Nonhuman primates are the experimental animals of choice for the study of many human diseases. As such, it is important to understand that endemic viruses of primates can potentially affect the design, methods, and results of biomedical studies designed to model human disease. Here we review the viruses known to be endemic in squirrel monkeys (Saimiri spp.). The pathogenic potential of these viruses in squirrel monkeys that undergo experimental manipulation remains largely unexplored but may have implications regarding the use of squirrel monkeys in biomedical research.
Collapse
Affiliation(s)
- Donna L Rogers
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Gloria B McClure
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Julio C Ruiz
- Keeling Center for Comparative Medicine, Department of Veterinary Sciences, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Christian R Abee
- Keeling Center for Comparative Medicine, Department of Veterinary Sciences, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - John A Vanchiere
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.
| |
Collapse
|
41
|
Characterization of a full-length infectious clone of bovine foamy virus 3026. Virol Sin 2014; 29:94-102. [PMID: 24643936 DOI: 10.1007/s12250-014-3382-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/14/2014] [Indexed: 11/30/2022] Open
Abstract
The biological features of most foamy viruses (FVs) are poorly understood, including bovine foamy virus (BFV). BFV strain 3026 (BFV3026) was isolated from the peripheral blood mononuclear cells of an infected cow in Zhangjiakou, China. A full-length genomic clone of BFV3026 was obtained from BFV3026-infected cells, and it exhibited more than 99% amino acid (AA) homology to another BFV strain isolated in the USA. Upon transfection into fetal canine thymus cells, the full-length BFV3026 clone produced viral structural and auxiliary proteins, typical cytopathic effects, and virus particles. These results demonstrate that the full-length BFV3026 clone is fully infectious and can be used in further BFV3026 research.
Collapse
|
42
|
Identification of novel, highly expressed retroviral microRNAs in cells infected by bovine foamy virus. J Virol 2014; 88:4679-86. [PMID: 24522910 DOI: 10.1128/jvi.03587-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼ 122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼ 70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. IMPORTANCE Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼ 122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo.
Collapse
|
43
|
Rola-Łuszczak M, Materniak M, Pluta A, Hulst M, Kuźmak J. Transcriptomic microarray analysis of BoMac cells after infection with bovine foamy virus. Arch Virol 2014; 159:1515-9. [PMID: 24380972 DOI: 10.1007/s00705-013-1959-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/18/2013] [Indexed: 12/22/2022]
Abstract
Bovine foamy virus (BFV) infections are highly prevalent among cattle worldwide. However, relatively little is known about the impact of this virus on the host immune system. In our study, we focused on a bovine macrophage cell line (BoMac) and examined changes in the BoMac transcriptome after in vitro infection with BFV using bovine BLOPlus oligo microarrays. One hundred twenty-four genes showed significant changes in expression level. The biological process categories found to be enriched include metabolic processes, cell communication, transport, immune system processes, and response to extracellular stimuli. RT-qPCR was applied to confirm the results obtained for representative genes.
Collapse
Affiliation(s)
- Marzena Rola-Łuszczak
- Department of Biochemistry, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland,
| | | | | | | | | |
Collapse
|