1
|
Qiu H, Sun M, Wang N, Zhang S, Deng Z, Xu H, Yang H, Gu H, Fang W, He F. Efficacy comparison in cap VLPs of PCV2 and PCV3 as swine vaccine vehicle. Int J Biol Macromol 2024; 278:134955. [PMID: 39173309 DOI: 10.1016/j.ijbiomac.2024.134955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
As one genotype of porcine circovirus (PCV) identified in 2016, PCV3 has brought huge hidden dangers to the global swine industry together with PCV2. Virus-like particles (VLPs) of capsid protein (Cap) of PCV2 serve as an alternative nano-antigen delivery strategy to efficiently induce antiviral immune response against PCV2 and/or other covalently displayed swine pathogens. However, the current understanding is limited on the capability of PCV3 as a nano-vaccine vehicle. Here we systematically compared the characteristics and the immunogenic efficacy of PCV3 Cap (Cap3) and PCV2 Cap (Cap2) in a VLP form. Cap3 VLPs presented higher internalization efficiency into cells and cytokines production compared to those of Cap2. Meanwhile, cross-reactive immunity between Cap3 VLPs and Cap2 VLPs was detected. Furthermore, to evaluate the function of Cap3 VLPs and Cap2 VLPs as vaccine vehicles carrying foreign proteins, the non-structural protein 6 of porcine reproductive and respiratory syndrome virus (PRRSV) was fused to C-terminus of Cap. Cap3-based chimeric particles induced a higher level of nsp6-specific immune response and PRRSV inhibition. Collectively, these self-assembling, Cap-based VLPs offer a compelling platform for enhancing the effectiveness of subunit vaccinations against newly emerging diseases and hold great promise for the development of Cap3-based chimeric subunit vaccines.
Collapse
Affiliation(s)
- He Qiu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meiqi Sun
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengkun Zhang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhuofan Deng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huiling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, China
| | - HaoTian Yang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihuan Fang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, China
| | - Fang He
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, China.
| |
Collapse
|
2
|
Wang Y, Xu F, Yuan C, Zhang Y, Ren J, Yue H, Ma T, Song Q. Comparison of immune effects of porcine circovirus type 2d (PCV2d) capsid protein expressed by Escherichia coli and baculovirus-insect cells. Vaccine 2024; 42:2848-2857. [PMID: 38514351 DOI: 10.1016/j.vaccine.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Porcine circovirus type 2 (PCV2) is an important pathogen harmful to global pig production, which causes immunosuppression and serious economic losses. PCV2 capsid (Cap) protein expressed by E. coli or baculovirus-insect cells are often used in preparation of PCV2 subunit vaccines, but the latter is expensive to produce. It is therefore crucial to comparison of the immune effects of Cap protein expressed by the above two expression systems for reducing the production cost and guaranteeing PCV2 vaccine quality. In this study, the PCV2d-Cap protein lacking nuclear localization signal (NLS), designated as E. coli-Cap and Bac-Cap, was expressed by E. coli and baculovirus-Spodoptera frugiperda Sf9 (Bac-Sf9) cells, respectively. The expressed Cap proteins could self-assemble into virus-like particles (VLPs), but the Bac-Cap-assembled VLPs were more regular. The two system-expressed Cap proteins induced similar specific IgG responses in mice, but the neutralizing antibody levels of Bac-Cap-immunized mice was higher than those of E. coli-Cap. After PCV2 challenge, IL-10 in Bac-Cap immunized mice decreased significantly than that in E. coli-Cap. The lesions and PCV2 antigen positive cells in tissues of mice immunized with E. coli-Cap and Bac-Cap were significantly reduced, and Bac-Cap appeared mild lesions and fewer PCV2 antigen-positive cells compared with E. coli-Cap immunized mice. The study indicated that Cap proteins expressed by E. coli and Bac-Sf9 cells could induce specific protective immunity, but the latter induced more effective immunity, which provides valuable information for the research and development of PCV2 vaccine.
Collapse
Affiliation(s)
- Yawen Wang
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Fan Xu
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Chen Yuan
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Yanan Zhang
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Jing Ren
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Huaining Yue
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Tiantian Ma
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Qinye Song
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
3
|
Ling Z, Zhang H, Chen Y, Sun L, Zhao J. A Subunit Vaccine Based on the VP2 Protein of Porcine Parvovirus 1 Induces a Strong Protective Effect in Pregnant Gilts. Vaccines (Basel) 2023; 11:1692. [PMID: 38006024 PMCID: PMC10675385 DOI: 10.3390/vaccines11111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Porcine parvovirus 1 (PPV1) is one of the most prevalent pathogens that can cause reproductive disorder in sows. The VP2 protein of PPV1 is the most important immunogenic protein that induces neutralizing antibodies and protective immunity. Thus, VP2 is considered an ideal target antigen for the development of a genetically engineered PPV1 vaccine. In this study, the baculovirus transfer vector carrying the HR5-P10-VP2 expression cassette was successfully constructed with the aim of increasing the expression levels of the VP2 protein. The VP2 protein was confirmed using SDS‒PAGE and Western blot analyses. Electronic microscope analysis showed that the recombinant VP2 proteins were capable of self-assembling into VLPs with a diameter of approximately 25 nm. The immunogenicity of the VP2 subunit vaccine was evaluated in pigs. The results showed that VP2 protein emulsified with ISA 201VG adjuvant induced higher levels of HI antibodies and neutralizing antibodies than VP2 protein emulsified with IMS 1313VG adjuvant. Furthermore, the gilts immunized with the ISA 201VG 20 μg subunit vaccine acquired complete protection against PPV1 HN2019 infection. In contrast, the commercial inactivated vaccine provided incomplete protection in gilts. Therefore, the VP2 subunit vaccine is a promising genetically engineered vaccine for the prevention and control of PPV1.
Collapse
Affiliation(s)
- Zhanye Ling
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (H.Z.); (Y.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Xinxin Livestock Co., Ltd., Huang-Fan Qu, Zhoukou 466600, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (H.Z.); (Y.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjin Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (H.Z.); (Y.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Leqiang Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (H.Z.); (Y.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (H.Z.); (Y.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Liu ZH, Deng ZF, Lu Y, Fang WH, He F. A modular and self-adjuvanted multivalent vaccine platform based on porcine circovirus virus-like nanoparticles. J Nanobiotechnology 2022; 20:493. [PMID: 36424615 PMCID: PMC9685936 DOI: 10.1186/s12951-022-01710-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Virus-like particles (VLPs) are supramolecular structures composed of multiple protein subunits and resemble natural virus particles in structure and size, making them highly immunogenic materials for the development of next-generation subunit vaccines. The orderly and repetitive display of antigenic epitopes on particle surface allows efficient recognition and cross-link by B cell receptors (BCRs), thereby inducing higher levels of neutralizing antibodies and cellular immune responses than regular subunit vaccines. Here, we present a novel multiple antigen delivery system using SpyCatcher/Spytag strategy and self-assembled VLPs formed by porcine circovirus type 2 (PCV2) Cap, a widely used swine vaccine in solo. RESULTS Cap-SC, recombinant Cap with a truncated SpyCatcher polypeptide at its C-terminal, self-assembled into 26-nm VLPs. Based on isopeptide bonds formed between SpyCatcher and SpyTag, classical swine fever virus (CSFV) E2, the antigen of interest, was linked to SpyTag and readily surface-displayed on SpyCatcher decorated Cap-SC via in vitro covalent conjugation. E2-conjugated Cap VLPs (Cap-E2 NPs) could be preferentially captured by antigen presenting cells (APCs) and effectively stimulate APC maturation and cytokine production. In vivo studies confirmed that Cap-E2 NPs elicited an enhanced E2 specific IgG response, which was significantly higher than soluble E2, or the admixture of Cap VLPs and E2. Moreover, E2 displayed on the surface did not mask the immunodominant epitopes of Cap-SC VLPs, and Cap-E2 NPs induced Cap-specific antibody levels and neutralizing antibody levels comparable to native Cap VLPs. CONCLUSION These results demonstrate that this modularly assembled Cap-E2 NPs retains the immune potential of Cap VLP backbone, while the surface-displayed antigen significantly elevated E2-induced immune potency. This immune strategy provides distinctly improved efficacy than conventional vaccine combination. It can be further applied to the development of dual or multiple nanoparticle vaccines to prevent co-infection of PCV2 and other swine pathogens.
Collapse
Affiliation(s)
- Ze-Hui Liu
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Zhuo-Fan Deng
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Ying Lu
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Wei-Huan Fang
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China ,grid.13402.340000 0004 1759 700XLaboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 310058 Hangzhou, China
| | - Fang He
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China ,grid.13402.340000 0004 1759 700XLaboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
5
|
Lu Y, Liu Z, Li Y, Deng Z, Fang W, He F. The truncated form of flagellin (tFlic) provides the 2dCap subunit vaccine with better immunogenicity and protective effects in mice. ANIMAL DISEASES 2022; 2:11. [PMID: 35669451 PMCID: PMC9160859 DOI: 10.1186/s44149-022-00043-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is the main causative agent of porcine circovirus-associated diseases, and it causes substantial economic losses in the swine industry each year. It is crucial to develop an effective vaccine against the circulating strain PCV2d, which is prone to substantial degrees of mutation. In this study, a truncated form of flagellin (tFlic: 85-111 aa) was inserted into the C-terminal sequence of 2dCap, and Western blotting results showed that recombinant Cap-tFlic VLPs were successfully expressed. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) data indicated that purified recombinant Cap-tFlic fusion proteins existed in the form of polymers and that tFlic could not affect the formation and internalization of VLPs. Integrated Cap-tFlic VLPs induced the expression of antigen presentation-related factors (MHC-II and CD86) by bone marrow-derived dendritic cells (BM-DCs), and the expression of TLR5-related factors (TNF-α) was dramatically elevated. Mice intramuscularly immunized with Cap-tFlic VLPs exhibited significantly higher levels of Cap-specific antibodies and neutralizing antibodies than mice immunized with wild-type Cap VLPs. The data obtained in the current study indicate that Cap-tFlic may be a candidate for a subunit vaccine against PCV2 in the future.
Collapse
Affiliation(s)
- Ying Lu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058 China
| | - Zehui Liu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058 China
| | - Yingxiang Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058 China
| | - Zhuofan Deng
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058 China
| | - Weihuan Fang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058 China
| | - Fang He
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058 China
| |
Collapse
|
6
|
BAHA S, ZHANG M, BEHLOUL N, LIU Z, WEI W, MENG J. Efficient production and characterization of immunogenic HEV-PCV2 chimeric virus-like particles. Vet Microbiol 2022; 268:109410. [DOI: 10.1016/j.vetmic.2022.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
|
7
|
Polyacrylate-GnRH Peptide Conjugate as an Oral Contraceptive Vaccine Candidate. Pharmaceutics 2021; 13:pharmaceutics13071081. [PMID: 34371772 PMCID: PMC8308917 DOI: 10.3390/pharmaceutics13071081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/30/2023] Open
Abstract
Contraceptive vaccines are designed to elicit immune responses against major components of animal reproductive systems. These vaccines, which are most commonly administered via injection, typically target gonadotropin-releasing hormone (GnRH). However, the need to restrain animals for treatment limits the field applications of injectable vaccines. Oral administration would broaden vaccine applicability. We explored contraceptive vaccine candidates composed of GnRH peptide hormone, universal T helper PADRE (P), and a poly(methylacrylate) (PMA)-based delivery system. When self-assembled into nanoparticles, PMA-P-GnRH induced the production of high IgG titers after subcutaneous and oral administration in mice. PADRE was then replaced with pig T helper derived from the swine flu virus, and the vaccine was tested in pigs. High levels of systemic antibodies were produced in pigs after both injection and oral administration of the vaccine. In conclusion, we developed a simple peptide–polymer conjugate that shows promise as an effective, adjuvant-free, oral GnRH-based contraceptive vaccine.
Collapse
|
8
|
The Carboxyl Terminus of the Porcine Circovirus Type 2 Capsid Protein Is Critical to Virus-Like Particle Assembly, Cell Entry, and Propagation. J Virol 2020; 94:JVI.00042-20. [PMID: 32075927 DOI: 10.1128/jvi.00042-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
The capsid protein (Cap) is the sole structural protein and the main antigen of porcine circovirus type 2 (PCV2). Structural loops of the Cap play crucial roles in viral genome packaging, capsid assembly, and virus-host interactions. Although the molecular mechanisms are yet unknown, the carboxyl terminus (CT) of the PCV2 Cap is known to play critical roles in the evolution, pathogenesis, and proliferation of this virus. In this study, we investigated functions of CT. Removal of this loop leads to abrogation of the in vitro Cap self-assembly into virus-like particles (VLPs). Likewise, the mutated virus resists rescue from PK15 cell culture. A conserved PXXP motif in the CT is dispensable for VLP assembly and subsequent cell entry. However, its removal leads to the subsequent failure of virus rescued from PK15 cells. Furthermore, substituting either the PCV1 counterpart or an AXXA for the PXXP motif still supports virus rescue from cell culture but results in a dramatic decrease in viral titers compared with wild type. In particular, a strictly conserved residue (227K) in the CT is essential for VLP entry into PK15 cells, and its mutation to alanine greatly attenuates cell entry of the VLPs, supporting a mechanism for the failure to rescue a mutated PCV2 infectious DNA clone (K227A) from PK15 cell culture. These results suggest the CT of the PCV2 Cap plays critical roles in virus assembly, viral-host cell interaction(s), and virus propagation in vitro IMPORTANCE The carboxyl terminus (CT) of porcine circovirus type 2 (PCV2) capsid protein (Cap) was previously reported to be associated with immunorecognition, alterations of viral titer in swine sera, and pathogenicity. However, the molecular mechanisms underlying these effects remain unknown. In this study, roles of the critical residues and motifs of the CT are investigated with respect to virus-like particle (VLP) assembly, cell entry, and viral proliferation. The results revealed that the positively charged 227K of the CT is essential for both cell entry of PCV2 VLPs and virus proliferation. Our findings, therefore, suggest that the CT should be considered one of the key epitopes, recognized by neutralizing antibodies, for vaccine design and a target for drug development to prevent PCV2-associated diseases (PCVADs). Furthermore, it is important to respect the function of 227K for its role in cell entry if using either PCV2 VLPs for nanoscale DNA/drug cell delivery or using PCV2 VLPs to display a variety of foreign epitopes for immunization.
Collapse
|
9
|
Lei X, Cai X, Yang Y. Genetic engineering strategies for construction of multivalent chimeric VLPs vaccines. Expert Rev Vaccines 2020; 19:235-246. [PMID: 32133886 DOI: 10.1080/14760584.2020.1738227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Over the past two decades, virus-like particles (VLPs) have been developed as a new generation of vaccines against viral infections. Based on VLPs, chimeric VLPs (chi-VLPs) have been generated through genetic modifications or chemical couplings. For construction of multivalent chi-VLPs vaccines, multiple genetic engineering strategies are continuously being developed. Thus, it is important to provide a summary as reference for researchers in this field.Areas covered: The representative studies on the genetic engineered multivalent chi-VLPs are summarized and mainly focused on chimeric capsid VLPs and chimeric enveloped VLPs. The advantages and limitations of each strategy are also discussed at last, as well as opinions on platform choice and future directions of eVLPs vaccines.Expert opinion: The design of multivalent chi-VLPs vaccines needs to meet the following specifications: 1) the incorporated antigens are suggested to display on the exposed surface of chi-VLPs and do not have excessive adverse effects on the stability of chi-VLPs; 2) the chi-VLPs should elicit protective antibodies against the incorporated antigen as well as the source virus of VLPs. However, there is no requirement of retaining the antigenicity of VLPs when using VLPs solely as carriers for antigens display or drug delivery.
Collapse
Affiliation(s)
- Xinnuo Lei
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), Hunan Agricultural University, Changsha, Hunan, China.,Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yi Yang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), Hunan Agricultural University, Changsha, Hunan, China.,Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
10
|
Short communication: a modified Vaccinia virus Ankara-based Porcine circovirus 2 vaccine elicits strong antibody response upon prime-boost homologous immunization in a preclinical model. Braz J Microbiol 2020; 51:1439-1445. [PMID: 32144692 DOI: 10.1007/s42770-020-00247-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022] Open
Abstract
Porcine circovirus 2 (PCV2) infections are related to a number of syndromes and clinical manifestations, generally known as Porcine circovirus-associated diseases, which are related to losses in the swine industry. There are commercially available vaccines and new vaccines being tested, however, persistency of the PCV2 as an important pig pathogen, and the growing number of affected farms in different countries have suggested that there is room for vaccine improvement. In this study, we describe the construction and testing of a recombinant live vaccine based on a modified Vaccinia virus Ankara (MVA) vector expressing the PCV2b capsid protein (CAP). Using a two-dose homologous vaccination regimen, in mice, we demonstrated that the vaccine induced high titers of anti-PCV2 antibodies. The vaccine is stable upon lyophilization, and, together with the good immunogenicity potential observed, the results support further evaluation of the MVA-CAP vaccine in the target species.
Collapse
|
11
|
Incorporation of a truncated form of flagellin (TFlg) into porcine circovirus type 2 virus-like particles enhances immune responses in mice. BMC Vet Res 2020; 16:45. [PMID: 32028949 PMCID: PMC7006081 DOI: 10.1186/s12917-020-2253-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is an economically important pathogen in the swine industry worldwide. Vaccination remains the principal tool to control PCV2-associated diseases (PCVADs). Current vaccines do not eliminate viral shedding in the environment. To enhance the efficacy of PCV2 vaccines, recombinant virus-like particles (VLPs) of PCV2 were generated by fusing a truncated form of flagellin FliC (TFlg: 85-111aa) with the PCV2 capsid protein (Cap). Results The recombinant proteins were expressed in Escherichia coli and detected using Western blotting. The abilities of the recombinant proteins to assemble into VLPs were observed under transmission electron microscopy (TEM). The protective immune responses of recombinant VLPs were further evaluated by immunization of mice. The results showed that insertion of TFlg into C terminal of the Cap protein did not affect the formation of VLPs and boosted both humoral and cellular immune responses in mice. After a challenge with PCV2, in the Cap-TFlg vaccinated group, viremia was milder and viral loads were lower as compared with those in the Cap vaccinated group. Conclusion These results suggest that recombinant VLPs of PCV2 containing a TFlg adjuvant can be used as a promising PCV2 vaccine candidate.
Collapse
|
12
|
Khayat R, Wen K, Alimova A, Gavrilov B, Katz A, Galarza JM, Gottlieb P. Structural characterization of the PCV2d virus-like particle at 3.3 Å resolution reveals differences to PCV2a and PCV2b capsids, a tetranucleotide, and an N-terminus near the icosahedral 3-fold axes. Virology 2019; 537:186-197. [PMID: 31505320 PMCID: PMC6958667 DOI: 10.1016/j.virol.2019.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
Abstract
Porcine circovirus 2 (PCV2) has a major impact on the swine industry. Eight PCV2 genotypes (a-h) have been identified using capsid sequence analysis. PCV2d has been designated as the emerging genotype. The cryo-electron microscopy molecular envelope of PCV2d virus-like particles identifies differences between PCV2a, b and d genotypes that accompany the emergence of PCV2b from PCV2a, and PCV2d from PCV2b. These differences indicate that sequence analysis of genotypes is insufficient, and that it is important to determine the PCV2 capsid structure as the virus evolves. Structure-based sequence comparison demonstrate that each genotype possesses a unique combination of amino acids located on the surface of the capsid that undergo substitution. We also demonstrate that the capsid N-terminus moves in response to increasing amount of nucleic acid packaged into the capsid. Furthermore, we model a tetranucleotide between the 5- and 2-fold axes of symmetry that appears to be responsible for capsid stability.
Collapse
Affiliation(s)
- Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, 10031, USA; Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Ke Wen
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY, 10523, USA
| | | | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, Sofia, 1113, Bulgaria
| | - Al Katz
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Jose M Galarza
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY, 10523, USA
| | - Paul Gottlieb
- CUNY School of Medicine, City College of New York, NY, 10031, USA
| |
Collapse
|
13
|
Ding P, Jin Q, Chen X, Yang S, Guo J, Xing G, Deng R, Wang A, Zhang G. Nanovaccine Confers Dual Protection Against Influenza A Virus And Porcine Circovirus Type 2. Int J Nanomedicine 2019; 14:7533-7548. [PMID: 31571862 PMCID: PMC6754344 DOI: 10.2147/ijn.s218057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The influenza A virus (IAV) is known for its high variability and poses a huge threat to the health of humans and animals. Pigs play a central role in the cross-species reassortment of IAV. Ectodomain of matrix protein 2 (M2e) is the most conserved protective antigen in IAV and can be used to develop nanovaccines through nanoparticles displaying to increase its immunogenicity. However, the high immunogenicity of nanoparticles can cause the risk of off-target immune response, and excess unwanted antibodies may interfere with the protective efficacy of M2e-specific antibodies. Therefore, it is necessary to select reasonable nanoparticles to make full use of antibodies against nanoparticles while increasing the level of M2e-specific antibodies. Porcine circovirus type 2 (PCV2) is the most susceptible virus in pigs and can promote IAV infection. It is meaningful to develop a vaccine that can simultaneously control swine influenza virus (SIV) and PCV2. METHODS In the present study, M2e of different copy numbers were inserted into the capsid (Cap) protein of PCV2 and expressed in Escherichia coli to form self-assembled chimeric virus-like particles (VLPs) nanovaccine. BALB/c mice and pigs were immunized with these nanovaccines to explore optimal anti-IAV and anti-PCV2 immunity. RESULTS Cap is capable of carrying at least 81 amino acid residues (three copies of M2e) at its C-terminal without impairing VLPs formation. Cap-3M2e VLPs induced the highest levels of M2e-specific immune responses, conferring protection against lethal challenge of IAVs from different species and induced specific immune responses consistent with PCV2 commercial vaccines in mice. In addition, Cap-3M2e VLPs induced high levels of M2e-specific antibodies and PCV2-specific neutralizing antibodies in pigs. CONCLUSION Cap-3M2e VLP is an economical and promising bivalent nanovaccine, which provides dual protection against IAV and PCV2.
Collapse
Affiliation(s)
- Peiyang Ding
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou450002, People’s Republic of China
| | - Qianyue Jin
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, People’s Republic of China
- School of Life Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Xinxin Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, People’s Republic of China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, People’s Republic of China
| | - Junqing Guo
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, People’s Republic of China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, People’s Republic of China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, People’s Republic of China
| | - Aiping Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou225009, People’s Republic of China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou450002, People’s Republic of China
- School of Life Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou225009, People’s Republic of China
| |
Collapse
|
14
|
Rybicki EP. Plant molecular farming of virus‐like nanoparticles as vaccines and reagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1587. [DOI: 10.1002/wnan.1587] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular & Cell Biology University of Cape Town Cape Town South Africa
| |
Collapse
|
15
|
Syomin BV, Ilyin YV. Virus-Like Particles as an Instrument of Vaccine Production. Mol Biol 2019; 53:323-334. [PMID: 32214478 PMCID: PMC7088979 DOI: 10.1134/s0026893319030154] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022]
Abstract
The paper discusses the techniques which are currently implemented for vaccine production based on virus-like particles (VLPs). The factors which determine the characteristics of VLP monomers assembly are provided in detail. Analysis of the literature demonstrates that the development of the techniques of VLP production and immobilization of target antigens on their surface have led to the development of universal platforms which make it possible for virtually any known antigen to be exposed on the particle surface in a highly concentrated form. As a result, the focus of attention has shifted from the approaches to VLP production to the development of a precise interface between the organism's immune system and the peptides inducing a strong immune response to pathogens or the organism's own pathological cells. Immunome-specified methods for vaccine design and the prospects of immunoprophylaxis are discussed. Certain examples of vaccines against viral diseases and cancers are considered.
Collapse
Affiliation(s)
- B. V. Syomin
- Institute for Statistical Studies and Economics of Knowledge (ISSEK),
National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Y. V. Ilyin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
16
|
Virus-like particles of recombinant PCV2b carrying FMDV-VP1 epitopes induce both anti-PCV and anti-FMDV antibody responses. Appl Microbiol Biotechnol 2018; 102:10541-10550. [PMID: 30338355 DOI: 10.1007/s00253-018-9361-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/19/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
Mixed infection of porcine circovirus type 2 (PCV2) and foot-and-mouth disease virus (FMDV) is devastating to swine populations. To develop an effective vaccine that can protect the pigs from the infection of PCV2 and FMDV, we used the neutralizing B cell epitope region (aa 135-160) of FMDV to replace the regions aa 123-151 and aa 169-194 of the PCV2b Cap protein to generate a recombinant protein designated as Capfb. The Capfb protein was expressed in Escherichia coli system and the purified Capfb protein assembled into virus-like particles (VLPs) through dialysis. The ability of the Capfb protein to induce effective immune response against FMDV and PCV2b was tested in mice and guinea pigs. The results showed that the Capfb-VLPs could elicit anti-PCV2b and anti-FMDV antibody response in mice and guinea pigs without inducing antibodies against decoy epitope. Moreover, the Capfb-VLPs could enhance the percentage and activation of B cells in lymph nodes when the mice were stimulated with inactivated FMDV or PCV2b. These data suggested that the Capfb-VLPs could be an efficacious candidate antigen for developing a novel PCV2b-FMDV bivalent vaccine.
Collapse
|
17
|
Wang D, Zhang S, Zou Y, Yu W, Jiang Y, Zhan Y, Wang N, Dong Y, Yang Y. Structure-Based Design of Porcine Circovirus Type 2 Chimeric VLPs (cVLPs) Displays Foreign Peptides on the Capsid Surface. Front Cell Infect Microbiol 2018; 8:232. [PMID: 30038901 PMCID: PMC6046401 DOI: 10.3389/fcimb.2018.00232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/19/2018] [Indexed: 11/13/2022] Open
Abstract
Although porcine circovirus-like particles can function as a vector to carry foreign peptides into host cells, displaying foreign peptides on the surface of virus-like particles (VLPs) remains challenging. In this study, a plateau, consisting of the middle portion of Loop CD (MP-Lcd) from two neighboring subunits of PCV2 capsid protein (Cap), was identified as an ideal site to insert various foreign peptides or epitopes and display them on the surface of PCV2 VLPs. One of the goals of this work is to determine if the surface pattern of this plateau can be altered without compromising the neutralizing activity against PCV2 infections. Therefore, biological roles of MP-Lcd regarding VLPs assembly, cell entry, and antigenicity were investigated to determine whether this was a universal site for insertion of foreign functional peptides. Three-dimensional (3D) structure simulations and mutation assays revealed MP-Lcd was dispensable for PCV2 Cap assembly into VLPs and their entry into host cells. Notably, substitution of MP-Lcd with a foreign peptide, caused surface pattern changes around two-fold axes of PCV2 VLPs based on 3D structure simulation, but was not detrimental to VLPs assembly and cell entry. Moreover, this substitution had no adverse effect on eliciting neutralizing antibodies (NAbs) against PCV2 infection in pigs. In conclusion, MP-Lcd of the PCV2 Cap was a promising site to accommodate and display foreign epitopes or functional peptides on the surface of PCV2 VLPs. Furthermore, chimeric VLPs (cVLPs) would have potential as bivalent or multivalent vaccines and carriers to deliver functional peptides to target cells.
Collapse
Affiliation(s)
- Dongliang Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Sujiao Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yawen Zou
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wanting Yu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yifan Jiang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yang Zhan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yanpeng Dong
- Jiangsu Nannong Hi-Tech Co., Ltd, Jiangyin, China
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
18
|
Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus. Viruses 2017; 9:v9080195. [PMID: 28757575 PMCID: PMC5580452 DOI: 10.3390/v9080195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022] Open
Abstract
The Chinese giant salamander iridovirus (CGSIV), belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP) was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographacalifornica nucleopolyhedrosis virus (AcNPV), expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 10⁸ plaque forming units/mL (PFU/mL) and confirmed by Western blot and indirect immunofluorescence (IIF) assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9) cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.
Collapse
|
19
|
Hu G, Wang N, Yu W, Wang Z, Zou Y, Zhang Y, Wang A, Deng Z, Yang Y. Generation and immunogenicity of porcine circovirus type 2 chimeric virus-like particles displaying porcine reproductive and respiratory syndrome virus GP5 epitope B. Vaccine 2016; 34:1896-903. [DOI: 10.1016/j.vaccine.2016.02.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
20
|
Tang ZM, Tang M, Zhao M, Wen GP, Yang F, Cai W, Wang SL, Zheng ZZ, Xia NS. A novel linear neutralizing epitope of hepatitis E virus. Vaccine 2015; 33:3504-11. [PMID: 26051517 DOI: 10.1016/j.vaccine.2015.05.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/14/2015] [Accepted: 05/23/2015] [Indexed: 01/21/2023]
Abstract
Hepatitis E virus (HEV) is a serious public health problem that causes acute hepatitis in humans and is primarily transmitted through fecal and oral routes. The major anti-HEV antibody responses are against conformational epitopes located in a.a. 459-606 of HEV pORF2. All reported neutralization epitopes are present on the dimer domain constructed by this peptide. While looking for a neutralizing monoclonal antibody (MAb)-recognized linear epitope, we found a novel neutralizing linear epitope (L2) located in a.a. 423-437 of pORF2. Moreover, epitope L2 is proved non-immunodominant in the HEV-infection process. Using the hepatitis B virus core protein (HBc) as a carrier to display this novel linear epitope, we show herein that this epitope could induce a neutralizing antibody response against HEV in mice and could protect rhesus monkeys from HEV infection. Collectively, our results showed a novel non-immunodominant linear neutralizing epitope of hepatitis E virus, which provided additional insight of HEV vaccine.
Collapse
Affiliation(s)
- Zi-Min Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ming Tang
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Min Zhao
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Gui-Ping Wen
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Fan Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Wei Cai
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Si-Ling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
21
|
Zhang H, Qian P, Peng B, Shi L, Chen H, Li X. A novel subunit vaccine co-expressing GM-CSF and PCV2b Cap protein enhances protective immunity against porcine circovirus type 2 in piglets. Vaccine 2015; 33:2449-56. [PMID: 25863115 DOI: 10.1016/j.vaccine.2015.03.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated disease. Capsid (Cap) protein of PCV2 is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. GM-CSF is an immune adjuvant that enhances responses to vaccines. In this study, recombinant baculoviruses Ac-Cap and Ac-Cap-GM-CSF expressing the Cap protein alone and co-expressing the Cap protein and porcine GM-CSF, respectively, were constructed successfully. The target proteins were analyzed by western blotting and IFA. Further, these proteins were confirmed by electron microscopy, which showed that Cap proteins could self-assemble into virus-like particles having diameters of 17-25nm. Animal experiments showed that pigs immunized with Cap-GM-CSF subunit vaccine showed significantly higher levels of PCV2-specific antibodies and neutralizing antibodies than pigs immunized with the Cap subunit vaccine and a commercial vaccine (Ingelvac CircoFLEX; P<0.05). After PCV2 wild strain challenged, Pigs receiving the Cap-GM-CSF subunit vaccine showed significantly higher average daily weight gain after wild-type PCV2 challenge than pigs receiving the other three vaccines (P<0.05). None of PCV2 DNA was detected in all immunized animals, except control animals immunized with phosphate-buffered saline. These results indicated that GM-CSF was a powerful immunoadjuvant for PCV2 subunit vaccines because it enhanced humoral immune response and improved immune protection against PCV2 infection in pigs. Thus, the novel Cap-GM-CSF subunit vaccine has the potential to be used as an effective and safe vaccine candidate against PCV2 infection.
Collapse
Affiliation(s)
- Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Bo Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lin Shi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|