1
|
Chaowongdee S, Vannatim N, Malichan S, Kuncharoen N, Tongyoo P, Siriwan W. Comparative transcriptomics analysis reveals defense mechanisms of Manihot esculenta Crantz against Sri Lanka Cassava MosaicVirus. BMC Genomics 2024; 25:436. [PMID: 38698332 PMCID: PMC11067156 DOI: 10.1186/s12864-024-10315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Cassava mosaic disease (CMD), caused by Sri Lankan cassava mosaic virus (SLCMV) infection, has been identified as a major pernicious disease in Manihot esculenta Crantz (cassava) plantations. It is widespread in Southeast Asia, especially in Thailand, which is one of the main cassava supplier countries. With the aim of restricting the spread of SLCMV, we explored the gene expression of a tolerant cassava cultivar vs. a susceptible cassava cultivar from the perspective of transcriptional regulation and the mechanisms underlying plant immunity and adaptation. RESULTS Transcriptomic analysis of SLCMV-infected tolerant (Kasetsart 50 [KU 50]) and susceptible (Rayong 11 [R 11]) cultivars at three infection stages-that is, at 21 days post-inoculation (dpi) (early/asymptomatic), 32 dpi (middle/recovery), and 67 dpi (late infection/late recovery)-identified 55,699 expressed genes. Differentially expressed genes (DEGs) between SLCMV-infected KU 50 and R 11 cultivars at (i) 21 dpi to 32 dpi (the early to middle stage), and (ii) 32 dpi to 67 dpi (the middle stage to late stage) were then identified and validated by real-time quantitative PCR (RT-qPCR). DEGs among different infection stages represent genes that respond to and regulate the viral infection during specific stages. The transcriptomic comparison between the tolerant and susceptible cultivars highlighted the role of gene expression regulation in tolerant and susceptible phenotypes. CONCLUSIONS This study identified genes involved in epigenetic modification, transcription and transcription factor activities, plant defense and oxidative stress response, gene expression, hormone- and metabolite-related pathways, and translation and translational initiation activities, particularly in KU 50 which represented the tolerant cultivar in this study.
Collapse
Affiliation(s)
- Somruthai Chaowongdee
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
| | - Nattachai Vannatim
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Nattakorn Kuncharoen
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Pumipat Tongyoo
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
| | - Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Malavika M, Prakash V, Chakraborty S. Recovery from virus infection: plant's armory in action. PLANTA 2023; 257:103. [PMID: 37115475 DOI: 10.1007/s00425-023-04137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
MAIN CONCLUSION This review focuses on different factors involved in promoting symptom recovery in plants post-virus infection such as epigenetics, transcriptional reprogramming, phytohormones with an emphasis on RNA silencing as well as role of abiotic factors such as temperature on symptom recovery. Plants utilize several different strategies to defend themselves in the battle against invading viruses. Most of the viral proteins interact with plant proteins and interfere with molecular dynamics in a cell which eventually results in symptom development. This initial symptom development is countered by the plant utilizing various factors including the plant's adaptive immunity to develop a virus tolerant state. Infected plants can specifically target and impede the transcription of viral genes as well as degrade the viral transcripts to restrict their proliferation by the production of small-interfering RNA (siRNA) generated from the viral nucleic acid, known as virus-derived siRNA (vsiRNA). To further escalate the degradation of viral nucleic acid, secondary siRNAs are generated. The production of virus-activated siRNA (vasiRNA) from the host genome causes differential regulation of the host transcriptome which plays a major role in establishing a virus tolerant state within the infected plant. The systemic action of vsiRNAs, vasiRNA, and secondary siRNAs with the help of defense hormones like salicylic acid can curb viral proliferation, and thus the newly emerged leaves develop fewer symptoms, maintaining a state of tolerance.
Collapse
Affiliation(s)
- M Malavika
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ved Prakash
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Wang C, Jiang F, Zhu S. Complex Small RNA-mediated Regulatory Networks between Viruses/Viroids/Satellites and Host Plants. Virus Res 2022; 311:198704. [DOI: 10.1016/j.virusres.2022.198704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 12/26/2022]
|
4
|
Ramesh SV, Yogindran S, Gnanasekaran P, Chakraborty S, Winter S, Pappu HR. Virus and Viroid-Derived Small RNAs as Modulators of Host Gene Expression: Molecular Insights Into Pathogenesis. Front Microbiol 2021; 11:614231. [PMID: 33584579 PMCID: PMC7874048 DOI: 10.3389/fmicb.2020.614231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023] Open
Abstract
Virus-derived siRNAs (vsiRNAs) generated by the host RNA silencing mechanism are effectors of plant’s defense response and act by targeting the viral RNA and DNA in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) pathways, respectively. Contrarily, viral suppressors of RNA silencing (VSRs) compromise the host RNA silencing pathways and also cause disease-associated symptoms. In this backdrop, reports describing the modulation of plant gene(s) expression by vsiRNAs via sequence complementarity between viral small RNAs (sRNAs) and host mRNAs have emerged. In some cases, silencing of host mRNAs by vsiRNAs has been implicated to cause characteristic symptoms of the viral diseases. Similarly, viroid infection results in generation of sRNAs, originating from viroid genomic RNAs, that potentially target host mRNAs causing typical disease-associated symptoms. Pathogen-derived sRNAs have been demonstrated to have the propensity to target wide range of genes including host defense-related genes, genes involved in flowering and reproductive pathways. Recent evidence indicates that vsiRNAs inhibit host RNA silencing to promote viral infection by acting as decoy sRNAs. Nevertheless, it remains unclear if the silencing of host transcripts by viral genome-derived sRNAs are inadvertent effects due to fortuitous pairing between vsiRNA and host mRNA or the result of genuine counter-defense strategy employed by viruses to enhance its survival inside the plant cell. In this review, we analyze the instances of such cross reaction between pathogen-derived vsiRNAs and host mRNAs and discuss the molecular insights regarding the process of pathogenesis.
Collapse
Affiliation(s)
- S V Ramesh
- ICAR-Central Plantation Crops Research Institute, Kasaragod, India
| | - Sneha Yogindran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Prabu Gnanasekaran
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | - Stephan Winter
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Križnik M, Baebler Š, Gruden K. Roles of small RNAs in the establishment of tolerant interaction between plants and viruses. Curr Opin Virol 2020; 42:25-31. [PMID: 32480352 DOI: 10.1016/j.coviro.2020.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
In a tolerant plant-virus interaction, viral multiplication is sustained without substantial effects on plant growth or reproduction. Such interactions are, in natural environments, frequent and sometimes even beneficial for both interactors. Here we compiled evidence showing that small RNAs modulate plant immune responses and growth, hence adjusting its physiology to enable a tolerant interaction. Importantly, the role of small RNAs in tolerant interactions resembles that required for establishment of a mutualistic symbiosis. Tolerance can become a sustainable strategy for breeding for virus resistance as selection pressure for emergence of more aggressive strains is low. Understanding the processes underlying establishment of tolerance is, therefore, important for the development of future crops.
Collapse
Affiliation(s)
- Maja Križnik
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Kristina Gruden
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Prigigallo MI, Križnik M, De Paola D, Catalano D, Gruden K, Finetti-Sialer MM, Cillo F. Potato Virus Y Infection Alters Small RNA Metabolism and Immune Response in Tomato. Viruses 2019; 11:v11121100. [PMID: 31783643 PMCID: PMC6950276 DOI: 10.3390/v11121100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Potato virus Y (PVY) isolate PVYC-to induces growth reduction and foliar symptoms in tomato, but new vegetation displays symptom recovery at a later stage. In order to investigate the role of micro(mi)RNA and secondary small(s)RNA-regulated mechanisms in tomato defenses against PVY, we performed sRNA sequencing from healthy and PVYC-to infected tomato plants at 21 and 30 days post-inoculation (dpi). A total of 792 miRNA sequences were obtained, among which were 123 canonical miRNA sequences, many isomiR variants, and 30 novel miRNAs. MiRNAs were mostly overexpressed in infected vs. healthy plants, whereas only a few miRNAs were underexpressed. Increased accumulation of isomiRs was correlated with viral infection. Among miRNA targets, enriched functional categories included resistance (R) gene families, transcription and hormone factors, and RNA silencing genes. Several 22-nt miRNAs were shown to target R genes and trigger the production of 21-nt phased sRNAs (phasiRNAs). Next, 500 phasiRNA-generating loci were identified, and were shown to be mostly active in PVY-infected tissues and at 21 dpi. These data demonstrate that sRNA-regulated host responses, encompassing miRNA alteration, diversification within miRNA families, and phasiRNA accumulation, regulate R and disease-responsive genes. The dynamic regulation of miRNAs and secondary sRNAs over time suggests a functional role of sRNA-mediated defenses in the recovery phenotype.
Collapse
Affiliation(s)
- Maria I. Prigigallo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, G. Via Amendola 122/D, 70126 Bari, Italy;
| | - Maja Križnik
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (M.K.); (K.G.)
| | - Domenico De Paola
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BioRisorse, Via G. Amendola 165/A, 70126 Bari, Italy;
| | - Domenico Catalano
- Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Biomediche, Via G. Amendola 122/D, 70126 Bari, Italy;
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (M.K.); (K.G.)
| | - Mariella M. Finetti-Sialer
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BioRisorse, Via G. Amendola 165/A, 70126 Bari, Italy;
- Correspondence: (M.M.F.-S.); (F.C.); Tel.: +39-080-55583400 (ext. 213) (M.M.F.-S.); +39-080-5443109 (F.C.)
| | - Fabrizio Cillo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, G. Via Amendola 122/D, 70126 Bari, Italy;
- Correspondence: (M.M.F.-S.); (F.C.); Tel.: +39-080-55583400 (ext. 213) (M.M.F.-S.); +39-080-5443109 (F.C.)
| |
Collapse
|
7
|
Prasad A, Sharma N, Muthamilarasan M, Rana S, Prasad M. Recent advances in small RNA mediated plant-virus interactions. Crit Rev Biotechnol 2019; 39:587-601. [PMID: 30947560 DOI: 10.1080/07388551.2019.1597830] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Small RNAs (sRNA) are reported to play pivotal roles in the epigenetic and post-transcriptional regulation of gene expression during growth, development, and stress response in plants. Recently, the involvement of two different classes of sRNAs namely, miRNAs (microRNAs), and siRNAs (small interfering RNAs) in biotic stress response has been underlined. Notably, during virus infection, these sRNAs deploy antiviral defense by regulating the gene expression of the modulators of host defense pathways. As a counter defense, viruses have evolved strategic pathways involving the production of suppressors that interfere with the host silencing machinery. This molecular arms race between the sophisticated gene regulatory mechanism of host plants fine-tuned by sRNAs and the defense response exhibited by the virus has gained much attention among the researchers. So far, several reports have been published showing the mechanistic insights on sRNA-regulated defense mechanism in response to virus infection in several crop plants. In this context, our review enumerates the molecular mechanisms underlying host immunity against viruses mediated by sRNAs, the counter defense strategies employed by viruses to surpass this immunogenic response and the advances made in our understanding of plant-virus interactions. Altogether, the report would be insightful for the researchers working to decode the sRNA-mediated defense response in crop plants challenged with virus infection.
Collapse
Affiliation(s)
- Ashish Prasad
- a National Institute of Plant Genome Research , New Delhi , India
| | - Namisha Sharma
- a National Institute of Plant Genome Research , New Delhi , India
| | - Mehanathan Muthamilarasan
- a National Institute of Plant Genome Research , New Delhi , India.,b ICAR-National Research Centre on Plant Biotechnology , New Delhi , India
| | - Sumi Rana
- a National Institute of Plant Genome Research , New Delhi , India.,b ICAR-National Research Centre on Plant Biotechnology , New Delhi , India
| | - Manoj Prasad
- a National Institute of Plant Genome Research , New Delhi , India
| |
Collapse
|
8
|
Naqvi RZ, Zaidi SSEA, Mukhtar MS, Amin I, Mishra B, Strickler S, Mueller LA, Asif M, Mansoor S. Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease. PLoS One 2019; 14:e0210011. [PMID: 30730891 PMCID: PMC6366760 DOI: 10.1371/journal.pone.0210011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022] Open
Abstract
Cotton is a commercial and economically important crop that generates billions of dollars in annual revenue worldwide. However, cotton yield is affected by a sap-sucking insect Bemisia tabaci (whitefly), and whitefly-borne cotton leaf curl disease (CLCuD). The causative agent of devastating CLCuD is led by the viruses belonging to the genus Begomovirus (family Geminiviridae), collectively called cotton leaf curl viruses. Unfortunately, the extensively cultivated cotton (Gossypium hirsutum) species are highly susceptible and vulnerable to CLCuD. Yet, the concomitant influence of whitefly and CLCuD on the susceptible G. hirsutum transcriptome has not been interpreted. In the present study we have employed an RNA Sequencing (RNA-Seq) transcriptomics approach to explore the differential gene expression in susceptible G. hirsutum variety upon infection with viruliferous whiteflies. Comparative RNA-Seq of control and CLCuD infected plants was done using Illumina HiSeq 2500. This study yielded 468 differentially expressed genes (DEGs). Among them, we identified 220 up and 248 downregulated DEGs involved in disease responses and pathogen defense. We selected ten genes for downstream RT-qPCR analyses on two cultivars, Karishma and MNH 786 that are susceptible to CLCuD. We observed a similar expression pattern of these genes in both susceptible cultivars that was also consistent with our transcriptome data further implying a wider application of our global transcription study on host susceptibility to CLCuD. We next performed weighted gene co-expression network analysis that revealed six modules. This analysis also identified highly co-expressed genes as well as 55 hub genes that co-express with ≥ 50 genes. Intriguingly, most of these hub genes are shown to be downregulated and enriched in cellular processes. Under-expression of such highly co-expressed genes suggests their roles in favoring the virus and enhancing plant susceptibility to CLCuD. We also discuss the potential mechanisms governing the establishment of disease susceptibility. Overall, our study provides a comprehensive differential gene expression analysis of G. hirsutum under whitefly-mediated CLCuD infection. This vital study will advance the understanding of simultaneous effect of whitefly and virus on their host and aid in identifying important G. hirsutum genes which intricate in its susceptibility to CLCuD.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Susan Strickler
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Lukas A. Mueller
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- * E-mail:
| |
Collapse
|
9
|
Rajabu CA, Kennedy GG, Ndunguru J, Ateka EM, Tairo F, Hanley-Bowdoin L, Ascencio-Ibáñez JT. Lanai: A small, fast growing tomato variety is an excellent model system for studying geminiviruses. J Virol Methods 2018. [PMID: 29530481 PMCID: PMC5904752 DOI: 10.1016/j.jviromet.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Florida Lanai is a tomato variety suitable for virus-host interaction studies. Florida-Lanai was infected by geminiviruses delivered by different methods. Florida-Lanai shows distinct measurable symptoms for different geminiviruses. Florida-Lanai has a small size, rapid growth and is easy to maintain. Florida-Lanai is an excellent choice for comparing geminivirus infections.
Geminiviruses are devastating single-stranded DNA viruses that infect a wide variety of crops in tropical and subtropical areas of the world. Tomato, which is a host for more than 100 geminiviruses, is one of the most affected crops. Developing plant models to study geminivirus-host interaction is important for the design of virus management strategies. In this study, “Florida Lanai” tomato was broadly characterized using three begomoviruses (Tomato yellow leaf curl virus, TYLCV; Tomato mottle virus, ToMoV; Tomato golden mosaic virus, TGMV) and a curtovirus (Beet curly top virus, BCTV). Infection rates of 100% were achieved by agroinoculation of TYLCV, ToMoV or BCTV. Mechanical inoculation of ToMoV or TGMV using a microsprayer as well as whitefly transmission of TYLCV or ToMoV also resulted in 100% infection frequencies. Symptoms appeared as early as four days post inoculation when agroinoculation or bombardment was used. Symptoms were distinct for each virus and a range of features, including plant height, flower number, fruit number, fruit weight and ploidy, was characterized. Due to its small size, rapid growth, ease of characterization and maintenance, and distinct responses to different geminiviruses, “Florida Lanai” is an excellent choice for comparing geminivirus infection in a common host.
Collapse
Affiliation(s)
- C A Rajabu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, 27695, USA; Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - G G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC, 27695, USA
| | - J Ndunguru
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - E M Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - F Tairo
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - L Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, 27695, USA
| | - J T Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Polk Hall 132, Box 7622, NCSU Campus, Raleigh NC, 27695, USA.
| |
Collapse
|
10
|
Liu SR, Zhou JJ, Hu CG, Wei CL, Zhang JZ. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense. Front Microbiol 2017; 8:1801. [PMID: 28979248 PMCID: PMC5611411 DOI: 10.3389/fmicb.2017.01801] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/05/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs of approximately 20–24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant–pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.
Collapse
Affiliation(s)
- Sheng-Rui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefei, China
| | - Jing-Jing Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefei, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
11
|
Bengyella L, Waikhom SD, Allie F, Rey C. Virus tolerance and recovery from viral induced-symptoms in plants are associated with transcriptome reprograming. PLANT MOLECULAR BIOLOGY 2015; 89:243-52. [PMID: 26358043 DOI: 10.1007/s11103-015-0362-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/08/2015] [Indexed: 05/07/2023]
Abstract
Plant recovery from viral infection is characterized by initial severe systemic symptoms which progressively decrease, leading to reduced symptoms or symptomless leaves at the apices. A key feature to plant recovery from invading nucleic acids such as viruses is the degree of the host's initial basal immunity response. We review current links between RNA silencing, recovery and tolerance, and present a model in which, in addition to regulation of resistance (R) and other defence-related genes by RNA silencing, viral infections incite perturbations of the host physiological state that trigger reprogramming of host responses to by-pass severe symptom development, leading to partial or complete recovery. Recovery, in particular in perennial hosts, may trigger tolerance or virus accommodation. We discuss evidence suggesting that plant viruses can avoid total clearance but persistently replicate at low levels, thereby modulating the host transcriptome response which minimizes fitness cost and triggers recovery from viral-symptoms. In some cases a susceptible host may fail to recover from initial viral systemic symptoms, yet, accommodates the persistent virus throughout the life span, a phenomenon herein referred to as non-recovery accommodation, which differs from tolerance in that there is no distinct recovery phase, and differs from susceptibility in that the host is not killed. Recent advances in plant recovery from virus-induced symptoms involving host transcriptome reprogramming are discussed.
Collapse
Affiliation(s)
- Louis Bengyella
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts 6, Ave, Johannesburg, Braamfontein, 2000, South Africa
| | - Sayanika D Waikhom
- Centre of Advanced Study in Life Sciences, Manipur University, Imphal, Manipur, 795003, India
- School of Basic and Biomedical Science, University of Health and Allied Sciences, PMB 31, Ho, Volta Region, Ghana
| | - Farhahna Allie
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts 6, Ave, Johannesburg, Braamfontein, 2000, South Africa
| | - Chrissie Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts 6, Ave, Johannesburg, Braamfontein, 2000, South Africa.
| |
Collapse
|
12
|
Resistance gene analogs involved in tolerant cassava--geminivirus interaction that shows a recovery phenotype. Virus Genes 2015; 51:393-407. [PMID: 26370397 DOI: 10.1007/s11262-015-1246-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
The current literature describes recovery from virus-induced symptoms as a RNA silencing defense, but immunity-related genes, including the structurally specific resistance gene analogs (RGAs) that may play a key role in tolerance and recovery is not yet reported. In this study, the transcriptome data of tolerant cassava TME3 (which exhibits a recovery phenotype) and susceptible cassava T200 infected with South African cassava mosaic virus were explored for RGAs. Putative resistance protein analogs (RPAs) with amide-like indole-3-acetic acid-Ile-Leu-Arg (IAA-ILR) and leucine-rich repeat (LRR)-kinase conserved domains were unique to TME3. Common responsive RPAs in TME3 and T200 were the dirigent-like protein, coil-coil nucleotide-binding site (NBS) and toll-interleukin-resistance, disease resistance zinc finger chromosome condensation-like protein (DZC), and NBS-apoptosis repressor with caspase recruitment (ARC)-LRR domains. Mutations in RPAs in the MHD motif of the NBS-ARC2 subdomain associated with the recovery phase in TME3 were observed. Additionally, a cohort of 25 RGAs mined solely during the recovery process in TME3 was identified. Phylogenetic and expression analyses support that diverse RGAs are differentially expressed during tolerance and recovery. This study reveals that in cassava, a perennial crop, RGAs participate in tolerance and differentially accumulate during recovery as a complementary defense mechanism to natural occurring RNA silencing to impair viral replication.
Collapse
|