1
|
Chaudhary V, Kajla P, Lather D, Chaudhary N, Dangi P, Singh P, Pandiselvam R. Bacteriophages: a potential game changer in food processing industry. Crit Rev Biotechnol 2024; 44:1325-1349. [PMID: 38228500 DOI: 10.1080/07388551.2023.2299768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Priya Dangi
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Mathura, Uttar Pradesh, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
2
|
Kim S, Son B, Kim H, Shin H, Ryu S. Precision Phage Cocktail Targeting Surface Appendages for Biocontrol of Salmonella in Cold-Stored Foods. Antibiotics (Basel) 2024; 13:799. [PMID: 39334974 PMCID: PMC11428620 DOI: 10.3390/antibiotics13090799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Salmonella enterica is a major food-borne pathogen causing food poisoning. The use of bacteriophages as alternative biocontrol agents has gained renewed interest due to the rising issue of antibiotic-resistant bacteria. We isolated and characterized three phages targeting Salmonella: SPN3US, SPN3UB, and SPN10H. Morphological and genomic analyses revealed that they belong to the class Caudoviricetes. SPN3UB, SPN3US, and SPN10H specifically target bacterial surface molecules as receptors, including O-antigens of lipopolysaccharides, flagella, and BtuB, respectively. The phages exhibited a broad host range against Salmonella strains, highlighting their potential for use in a phage cocktail. Bacterial challenge assays demonstrated significant lytic activity of the phage cocktail consisting of the three phages against S. typhimurium UK1, effectively delaying the emergence of phage-resistant bacteria. The phage cocktail effectively reduced Salmonella contamination in foods, including milk and pork and chicken meats, during cold storage. These results indicate that a phage cocktail targeting different host receptors could serve as a promising antimicrobial strategy to control Salmonella.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea;
- Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Bokyung Son
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea;
| | - Hyeryen Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hakdong Shin
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea;
- Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Arista-Regalado AD, Viera-Segura O, de Oca SAM, Hernández-Hernández L, González-Aguilar DG, León JB. Characterization and efficacy of Salmonella phage cocktail PHA46 in the control of Salmonella Newport and Typhimurium internalized into cherry tomatoes. Int J Food Microbiol 2024; 419:110745. [PMID: 38795636 DOI: 10.1016/j.ijfoodmicro.2024.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/28/2024]
Abstract
Non-typhoid Salmonella enterica causes salmonellosis illness, and this bacterium can contaminate food throughout the production chain, including those that are consumed as raw products. Salmonella enterica can adhere to and internalize into fresh produce such as cherry tomatoes. It has been reported that lytic bacteriophages (phages) can be used as a biocontrol agent in the agricultural field, being an alternative for the control of Salmonella in red meat, fish, lettuce, and cabbage. The aim of this study was to characterize the two phages present in the PHA46 cocktail to determine their morphology, genome, host range, and resistance to different temperatures and pHs values; and later evaluate their lytic activity to reduce the adherence to and internalization of Salmonella enterica serovars Newport and Typhimurium into cherry tomatoes. In addition, in this work, we also explored the effect of the PHA46 cocktail on the virulence of S. Newport-45 and S. Typhimurium SL1344, recovered from the interior of cherry tomatoes, on the lifespan of the animal model Caenorhabditis elegans. The nematode C. elegans, recently has been used to test the virulence of Salmonella and it is easy to maintain and work with in the laboratory. The results revealed that the morphology obtained by Transmission Electron Microscopy of two phages from the PHA46 cocktail correspond to a myovirus, the analyses of their genomes sequences did not report virulence or antimicrobial resistance genes. The PHA46 sample is specific for 33 different serovars from different Salmonella strains and shows stability at 7 °C and pH 6. Also, the PHA46 cocktail was effective in reducing the adherence of S. Newport-45 and S. Typhimurium SL1344 to cherry tomatoes, at an average of 0.9 log10, respectively. Regarding internalized bacteria, the reduction was at an average of 1.2 log10, of the serovars mentioned above. The lifespan experiments in C. elegans showed by itself, that the PHA46 cocktail was harmless to the nematode, and the virulence from both Salmonella strains grown in vitro is diminished in the presence of the PHA46 cocktail. In conclusion, these results showed that the PHA46 cocktail could be a good candidate to be used as a biocontrol agent against Salmonella enterica.
Collapse
Affiliation(s)
- Aurora Dolores Arista-Regalado
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No.950, Col. Independencia, CP. 44340, Guadalajara, Jalisco, Mexico
| | - Oliver Viera-Segura
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No.950, Col. Independencia, CP. 44340, Guadalajara, Jalisco, Mexico
| | - Saúl Aguilar-Montes de Oca
- Area de Proyectos de Investigación, Universidad Autónoma del Estado de México, Instituto Literario No.100, Col. Centro, CP: 50000, Toluca de Lerdo, Estado de Mexico, Mexico
| | - Leonardo Hernández-Hernández
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No.950, Col. Independencia, CP. 44340, Guadalajara, Jalisco, Mexico
| | - Delia Guillermina González-Aguilar
- Departamento de Salud Pública, Centro de ciencias Biológico Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez No. 2100, Col. Las agujas, C.P., 45200, Zapopan, Jalisco, Mexico
| | - Jeannette Barba León
- Departamento de Salud Pública, Centro de ciencias Biológico Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez No. 2100, Col. Las agujas, C.P., 45200, Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Rodea M GE, González-Villalobos E, Espinoza-Mellado MDR, Hernández-Chiñas U, Eslava-Campos CA, Balcázar JL, Molina-López J. Genomic analysis of a novel phage vB_SenS_ST1UNAM with lytic activity against Salmonella enterica serotypes. Diagn Microbiol Infect Dis 2024; 109:116305. [PMID: 38643675 DOI: 10.1016/j.diagmicrobio.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
In this study, we present the complete annotated genome of a novel Salmonella phage, vB_SenS_ST1UNAM. This phage exhibits lytic activity against several Salmonella enterica serotypes, such as S. Typhi, S. Enteritidis, and S. Typhimurium strains, which are major causes of foodborne illness worldwide. Its genome consists of a linear, double-stranded DNA of 47,877 bp with an average G+C content of 46.6%. A total of 85 coding regions (CDS) were predicted, of which only 43 CDS were functionally assigned. Neither genes involved in the regulation of lysogeny, nor antibiotic resistance genes were identified. This phage harbors a lytic cassette that encodes a type II-holin and a Rz/Rz1-like spanin complex, along with a restriction-modification evasion system and a depolymerase that degrades Salmonella exopolysaccharide. Moreover, the comparative analysis with closely related phage genomes revealed that vB_SenS_ST1UNAM represents a novel genus, for which the genus "Gomezvirus" within the subfamily "ST1UNAM-like" is proposed.
Collapse
Affiliation(s)
- Gerardo E Rodea M
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico; Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Edgar González-Villalobos
- Laboratorio de Epidemiología Molecular División de Investigación, departamento de Salud Pública, Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico
| | - María Del Rosario Espinoza-Mellado
- Central de Instrumentación de Microscopía, Depto. Investigación, Instituto Politécnico Nacional-Escuela Nacional de Ciencias Biológicas (IPN-ENCB), Prolongación de Carpio y Plan de Ayala, Mexico City 11340, México
| | - Ulises Hernández-Chiñas
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510. Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico
| | - Carlos Alberto Eslava-Campos
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510. Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA). 17003, Girona, Spain; University of Girona. 17004 Girona, Spain
| | - José Molina-López
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510. Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico.
| |
Collapse
|
5
|
Pourabadeh AH, Madani SA, Dorostkar R, Rezaeian M, Esmaeili H, Bolandian M, Salavati A, Hashemian SMM, Aghahasani A. Evaluation of the in vitro and in vivo efficiency of in-feed bacteriophage cocktail application to control Salmonella Typhimurium and Salmonella Enteritidis infection in broiler chicks. Avian Pathol 2024; 53:174-181. [PMID: 38206101 DOI: 10.1080/03079457.2024.2304628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
RESEARCH HIGHLIGHTS Bacteriophage (BP) cocktail was partially resistant to different temperatures and pH values.The BP cocktail showed lytic effects on different Salmonella isolates.The BP cocktail reduced Salmonella colonization in the internal organs of broilers.
Collapse
Affiliation(s)
- Amir Hossein Pourabadeh
- Department of Animal and Poultry Health and Nutrition, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Ahmad Madani
- Department of Animal and Poultry Health and Nutrition, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Rezaeian
- Department of Animal and Poultry Health and Nutrition, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Esmaeili
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoumeh Bolandian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Salavati
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Arezoo Aghahasani
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Pottker ES, Rodrigues LB, Borges KA, de Souza SO, Furian TQ, Pippi Salle CT, de Souza Moraes HL, do Nascimento VP. Bacteriophages as an alternative for biological control of biofilm-forming Salmonella enterica. FOOD SCI TECHNOL INT 2024; 30:197-206. [PMID: 36529875 DOI: 10.1177/10820132221144341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Salmonellosis is one of the most common foodborne diseases worldwide. Surface adherence and biofilm formation are among the main strategies evolved by Salmonella to survive under harsh conditions and are risk factors for its spread through the food chain. Owing to the increase in antimicrobial resistance, there is a growing need to develop other methods to control foodborne pathogens, and bacteriophages have been suggested as a potential alternative for this purpose. The aim of this study was to evaluate bacteriophages as a biological control of Salmonella enterica serotypes to inhibit and remove bacterial biofilms. A total of 12 S. enterica isolates were selected for this study, all of which were biofilm producers. Seven bacteriophages were tested, individually and in a cocktail, for their host range and efficiency of plating (EOP). The phage cocktail was evaluated for its antibiofilm effect against the Salmonella biofilms. Phages UPF_BP1, UPF_BP2, UPF_BP3, UPF_BP6, and 10:2 possessed a broad lytic spectrum and could infect all S. enterica strains. Phages 10:2, UPF_BP6, and UPF_BP3 had high EOP in 10, 9, and 9 out of the 12 S. enterica strains, respectively. The cocktail was able to infect all S. enterica strains and had a high EOP in 10 out of 12 S. enterica isolates, presenting a broader host range than any of the tested single phages. A wide variation of inhibition among strains was observed, ranging from 14.72% to 88.53%. Multidrug-resistant and strong biofilm producer strains showed high biofilm inhibition levels by phage cocktail. Our findings demonstrate the ability of the cocktail to prevent biofilm formation and remove formed biofilms of Salmonella. These results indicate that the phage cocktail is a promising candidate to be used as an alternative for the control of Salmonella biofilms through surface conditioning.
Collapse
Affiliation(s)
- Emanuele Serro Pottker
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Beatriz Rodrigues
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, RS, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Unverdi A, Erol HB, Kaskatepe B, Babacan O. Characterization of Salmonella phages isolated from poultry coops and its effect with nisin on food bio-control. Food Sci Nutr 2024; 12:2760-2771. [PMID: 38628171 PMCID: PMC11016409 DOI: 10.1002/fsn3.3956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 04/19/2024] Open
Abstract
Salmonella is a bacterium associated with food contaminated by various animals, primarily poultry. Interest and research on bacteriophages are increasing because they can be used as an alternative against increasing antibiotic resistance. In our study, eight Salmonella-specific lytic bacteriophages were isolated from chicken feces. Two of the isolated phages (AUFM_Sc1 and AUFM_Sc3) were chosen for their characterization due to their broader host range. Based on morphological and genomic analysis, AUFM_Sc1 was identified to be close to similar Enterobacteria spp. CC31 (Myoviridae) and AUFM_Sc3 was identified to be close to Salmonella phage vB_Sen_I1 (Demerecviridae (formerly Siphoviridae)). Although these phages have shown promise for use in phage therapy applications for chickens, further studies are needed on their suitability. When a cocktail of these phages (AUFM_Sc1 + AUFM_Sc3) and nisin combination was applied on chicken breast meat, it was determined that it was effective against Salmonella contamination and while a good inhibitory effect was observed on the food, especially during the first 48 h, the effect decreased later, but the bacterial concentration was still low compared to the control group. Therefore, it is considered that the combination of AUFM_Sc1 + AUFM_Sc3 + nisin can be used as a food preservative against Salmonella.
Collapse
Affiliation(s)
- Aysegul Unverdi
- Department of Pharmaceutical MicrobiologyAnkara University Faculty of PharmacyAnkaraTurkey
- Graduate School of Health ScienceAnkara UniversityAnkaraTurkey
| | - Hilal Basak Erol
- Department of Pharmaceutical MicrobiologyAnkara University Faculty of PharmacyAnkaraTurkey
| | - Banu Kaskatepe
- Department of Pharmaceutical MicrobiologyAnkara University Faculty of PharmacyAnkaraTurkey
| | - Orkun Babacan
- Department of Veterinary Science, Kepsut Vocational SchoolBalıkesir UniversityKepsut, BalıkesirTurkey
| |
Collapse
|
8
|
Zhang H, Hu X, Ma Z, Zhen X, Tong P, Zhai G, Zhang S, Zhang W. Isolation and characterization of a relatively broad-spectrum phage against Escherichia coli. Arch Microbiol 2024; 206:197. [PMID: 38555551 DOI: 10.1007/s00203-024-03923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Multiple pathogenic types or serotypes restrict treatment for colibacillosis. In addition, rising antibiotic resistance has heightened public awareness to prevent and control pathogenic Escherichia coli. The bacteriophage is a viable technique to treat colibacillosis as an alternative to antibiotics. In this study, PH444, a relatively broad-spectrum obligate lytic phage, was screened from 48 Shiga toxin-producing Escherichia coli (STEC) phages isolated from farm manure samples and sewage samples in order to conduct genome-wide analysis, biological characterization, and a bacterial challenge experiment in milk. The results demonstrated that PH444 was a T7-like phage with a double-stranded DNA of 115,111 bp that belongs to the Kuravirus and was stable at temperatures between 4 and 50 °C and a pH range of 3 to 11. After adding PH444, the bacterial load in milk could be reduced from 3 × 103 PFU/ mL to zero within 1 h. In consideration of the biological properties of phage PH444, it was, therefore, demonstrated that PH444 has the potential to be used in phage biocontrol.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China
| | - Xiapei Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhengxing Ma
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China
| | - Xiangkuan Zhen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Panpan Tong
- College of Animal Medical, Xinjiang Uygur Autonomous Region, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Guangxi Zhai
- Wuhu Qingshui White Meat Wholesale Market Co., LTD, Wuhu, 241000, China
| | - Shuang Zhang
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China.
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China.
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China.
| |
Collapse
|
9
|
Brenner T, Schultze DM, Mahoney D, Wang S. Reduction of Nontyphoidal Salmonella enterica in Broth and on Raw Chicken Breast by a Broad-spectrum Bacteriophage Cocktail. J Food Prot 2024; 87:100207. [PMID: 38142823 DOI: 10.1016/j.jfp.2023.100207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Globally, nontyphoidal Salmonella (NTS) causes approximately 150 million foodborne illnesses annually; many of which are linked to poultry products. Thus, improving food safety interventions in the poultry sector can reduce foodborne illness associated with prevalent NTS serotypes. Bacteriophages (phages) have shown promise as food-safe alternatives to current antimicrobial practices. However, challenges such as limited host range, bactericidal effectiveness in practical production settings, and the risk of developing host resistance remain as barriers for the widespread use of phages in commercial poultry operations. A broad-spectrum three-phage cocktail was evaluated against S. enterica subsp. enterica serotypes Enteritidis, Typhimurium, and Kentucky. The impact of multiplicity of infection (MOI) on NTS growth was assessed in broth at 22°C for 18 hours (h). Then, phage cocktail efficacy was evaluated on raw chicken breast samples inoculated with the NTS cocktail and stored at 10°C or 22°C for 0, 1, and 5 days or 0, 4, 8, and 16 h, respectively. Most probable number (MPN) calculations were performed for NTS counts on chicken after phage treatment and storage at 10°C to account for samples with NTS counts below the detection limit. In general, a higher MOI corresponded to reduced NTS growth; however, residual nutrition in growth media and initial NTS contamination level affected samples treated with the phage cocktail at identical MOIs. On chicken, phage cocktail treatment significantly reduced NTS counts at 10°C and 22°C. After storage at 10°C for 5 days, NTS counts were reduced by >3.2 log compared to the control. After storage at 22°C for 16 h, NTS counts were reduced by >1.7 log compared to the control. Overall, the phage cocktail was effective at reducing a diverse set of prominent NTS strains in broth and on raw chicken breast, highlighting its potential for commercialization and use alongside other hurdles in poultry production.
Collapse
Affiliation(s)
- Thomas Brenner
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Danielle Morgan Schultze
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - David Mahoney
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Choi D, Bedale W, Chetty S, Yu JH. Comprehensive review of clean-label antimicrobials used in dairy products. Compr Rev Food Sci Food Saf 2024; 23:e13263. [PMID: 38284580 DOI: 10.1111/1541-4337.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Consumers expect safe, healthy, natural, and sustainable food. Within the food industry, ingredient use is changing due to these consumer demands. While no single agreed-upon definition of clean label exists, a "clean label" in the context of food refers to a product that has a simplified and transparent ingredient list, with easily recognizable and commonly understood components to the general public. Clean-label products necessitate and foster a heightened level of transparency between companies and consumers. Dairy products are vulnerable to being contaminated by both pathogens and spoilage microorganisms. These microorganisms can be effectively controlled by replacing conventional antimicrobials with clean-label ingredients such as protective cultures or bacterial/fungal fermentates. This review summarizes the perspectives of consumers and the food industry regarding the definition of "clean label," and the current and potential future use of clean-label antimicrobials in dairy products. A key goal of this review is to make the concept of clean-label antimicrobial agents better understood by both manufacturers and researchers.
Collapse
Affiliation(s)
- Dasol Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wendy Bedale
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Suraj Chetty
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Romero-Calle DX, de Santana VP, Benevides RG, Aliaga MTA, Billington C, Góes-Neto A. Systematic review and meta-analysis: the efficiency of bacteriophages previously patented against pathogenic bacteria on food. Syst Rev 2023; 12:201. [PMID: 37898821 PMCID: PMC10612260 DOI: 10.1186/s13643-023-02352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/13/2023] [Indexed: 10/30/2023] Open
Abstract
Food-borne diseases are a global public health issue with 1 in 10 people falling ill after eating contaminated food every year. In response, the food industry has implemented several new pathogen control strategies, such as biotechnological tools using the direct application of bacteriophages for biological control. We have undertaken a systematic review and meta-analysis that evaluated the efficiency of patented phages as a biological control for food-borne pathogens and determined the physical-chemical characteristics of the antimicrobial effect. Included and excluded criteria was developed. Included criteria: Phage patent files with an application in biological control on food and scientific articles and book chapters that used phages patented for food biological control. Excluded criteria: Patent documents, scientific articles, and book chapters that included phage therapy in humans, animals, and biological control on plants but did not have an application on food were not considered in our study. The systematic analysis identified 77 documents, 46 scientific articles, and 31 documents of patents and 23 articles was included in the meta-analysis. Listeria monocytogenes and Salmonella sp. comprised most of the targets identified in the screening, so that we focused on these strains to do the meta-analysis. There are a total of 383 and 192 experiments for Listeria and Salmonella phages for quantitative data analysis.Indexing databases for the bibliographic search (Scopus, Web of Science (WoS) and PubMed (Medline) were addressed by an automated script written in Python 3 Python Core Team (2015) and deposited on GitHub ( https://github.com/glenjasper ).A random-effects meta-analysis revealed (i) significant antimicrobial effect of Listeria phages in apple, apple juice, pear, and pear juice, (ii) significant antimicrobial effect of Salmonella phages in eggs, apple, and ready-to-eat chicken, (iii) no heterogeneity was identified in either meta-analysis, (iv) publication bias was detected for Listeria phages but not for Salmonella phages. (v) ListShield and Felix01 phages showed the best result for Listeria and Salmonella biological control, respectively, (vi) concentration of phage and bacteria, time and food had significant effect in the biological control of Listeria, (vii) temperature and time had a significant effect on the antimicrobial activity of Salmonella phages. The systematic review and meta-analyses to determine the efficiency of bacteriophages previously patented against pathogenic bacteria on dairy products, meat, fruits and vegetables. Besides, the discovering of key factors for efficacy, so that future applications of phage biotechnology in foods can be optimally deployed.
Collapse
Affiliation(s)
- Danitza Xiomara Romero-Calle
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana, BA, 44036-900, Brazil.
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana, BA, 44036-900, Brazil.
- Biotechnology Area, Institute of Pharmaco-Biochemical Research, Faculty of Pharmaceutical and Biochemical Sciences, Higher San Andres University, P.O. Box 3239, La Paz, Bolivia.
| | - Vinicius Pereira de Santana
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana, BA, 44036-900, Brazil
| | - Raquel Guimarães Benevides
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana, BA, 44036-900, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana, BA, 44036-900, Brazil
| | - Maria Teresa Alvarez Aliaga
- Biotechnology Area, Institute of Pharmaco-Biochemical Research, Faculty of Pharmaceutical and Biochemical Sciences, Higher San Andres University, P.O. Box 3239, La Paz, Bolivia
| | - Craig Billington
- Health & Environment Group, Institute of Environmental Sciences and Research, PO Box 29-181, Christchurch, 8540, New Zealand
| | - Aristóteles Góes-Neto
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana, BA, 44036-900, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana, BA, 44036-900, Brazil
| |
Collapse
|
12
|
Zhao J, Lin Y, Wang C, Zayda M, Maung AT, Mohammadi TN, Duc HM, Yu P, Ma M, Gong D, Sato J, Masuda Y, Honjoh KI, Miyamoto T, Zeng Z. Biocontrol of Salmonella Typhimurium in milk, lettuce, raw pork meat and ready-to-eat steamed-chicken breast by using a novel bacteriophage with broad host range. Int J Food Microbiol 2023; 402:110295. [PMID: 37352774 DOI: 10.1016/j.ijfoodmicro.2023.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Salmonella spp., one of the most frequently reported bacteria, causes foodborne illness and economic losses. Due to the threat of increasing antibiotic resistant foodborne pathogens, application of bacteriophages as novel antibacterial agents in food matrices has become an emerging strategy. In this study, a novel Salmonella phage PS3-1 with high lytic activity against Salmonella Typhimurium was identified from previously isolated phages. PS3-1 belonged to the class Caudoviricetes with a broad host range, and had relatively short latent period (15 min), large burst size (92 PFU/cell), high pH stability (pH 3.0-11.0) and thermal tolerance (4-60 °C). Genome sequencing analysis showed that PS3-1 genome consisted of 107,110 bp DNA, without antibiotic resistance and virulence related genes. The results of growth curve and time-kill assay showed that PS3-1 not only inhibited the growth of S. Typhimurium, but also effectively decreased the viable cell counts (0.30-4.72 log) after 24-h incubation at 7, 25 and 37 °C (P < 0.05). Moreover, >1.28 log of established biofilm cells were effectively removed after 24-h treatment with PS3-1. Besides, PS3-1 significantly reduced the viability of S. Typhimurium in milk, lettuce, raw pork meat and ready-to-eat steamed-chicken breast at different temperatures (P < 0.05). These results demonstrated that PS3-1 may be an excellent antibacterial agent for controlling S. Typhimurium in food industry.
Collapse
Affiliation(s)
- Junxin Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mahmoud Zayda
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, 32897 Sadat City, Egypt
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tahir Noor Mohammadi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hoang Minh Duc
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ping Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jun Sato
- Safety Science Research, R&D, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Zheling Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
13
|
Gvaladze T, Lehnherr H, Große-Kleimann J, Hertwig S. A Bacteriophage Cocktail Reduces Five Relevant Salmonella Serotypes at Low Multiplicities of Infection and Low Temperatures. Microorganisms 2023; 11:2298. [PMID: 37764141 PMCID: PMC10535997 DOI: 10.3390/microorganisms11092298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Salmonella are important pathogenic bacteria and, following Campylobacter, they are the second most common cause of bacterial foodborne infections worldwide. To reduce the presence of bacteria along the food chain, the application of bacteriophages (phages) may be a promising tool. In this study, the lytic properties of six phages against five relevant Salmonella serotypes (S. Enteritidis, S. Typhimurium, S. Infantis, S. Paratyphi B and S. Indiana) were analyzed. Three phages were able to lyse all five serotypes. We determined the lytic potential of each phage on indicator strains in vitro at room temperature (RT) and at 37 °C using low multiplicities of infection (MOIs). Most phages reduced their host more efficiently at RT than at 37 °C, even at the lowest MOI of 0.001. Following this, the lytic activity of a cocktail comprising five phages (MOI = 0.1) was examined with each of the five serotypes and a mix of them at RT, 15, 12, 10, 8 and 6 °C. All cultures of single serotypes as well as the mixture of strains were significantly reduced at temperatures as low as 8 °C. For single serotypes, reductions of up to 5 log10 units and up to 2.3 log10 units were determined after 6 h (RT) and 40 h (8 °C), respectively. The mixture of strains was reduced by 1.7 log10 units at 8 °C. The data clearly suggest that these phages are suitable candidates for biocontrol of various Salmonella serotypes under food manufacturing conditions.
Collapse
Affiliation(s)
- Tamar Gvaladze
- Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| | | | - Julia Große-Kleimann
- Department for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Stefan Hertwig
- Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| |
Collapse
|
14
|
Kazantseva OA, Skorynina AV, Piligrimova EG, Ryabova NA, Shadrin AM. A Genomic Analysis of the Bacillus Bacteriophage Kirovirus kirovense Kirov and Its Ability to Preserve Milk. Int J Mol Sci 2023; 24:12584. [PMID: 37628765 PMCID: PMC10454425 DOI: 10.3390/ijms241612584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bacteriophages are widely recognized as alternatives to traditional antibiotics commonly used in the treatment of bacterial infection diseases and in the food industry, as phages offer a potential solution in combating multidrug-resistant bacterial pathogens. In this study, we describe a novel bacteriophage, Kirovirus kirovense Kirov, which infects members of the Bacillus cereus group. Kirovirus kirovense Kirov is a broad-host-range phage belonging to the Caudoviricetes class. Its chromosome is a linear 165,667 bp double-stranded DNA molecule that contains two short, direct terminal repeats, each 284 bp long. According to bioinformatics predictions, the genomic DNA contains 275 protein-coding genes and 5 tRNA genes. A comparative genomic analysis suggests that Kirovirus kirovense Kirov is a novel species within the Kirovirus genus, belonging to the Andregratiavirinae subfamily. Kirovirus kirovense Kirov demonstrates the ability to preserve and decontaminate B. cereus from cow milk when present in milk at a concentration of 104 PFU/mL. After 4 h of incubation with the phage, the bacterial titer drops from 105 to less than 102 CFU/mL.
Collapse
Affiliation(s)
- Olesya A. Kazantseva
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Anna V. Skorynina
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Emma G. Piligrimova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Natalya A. Ryabova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
- Institute of Protein Research RAS, Institutskaya St., 4, 142290 Pushchino, Russia
| | - Andrey M. Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| |
Collapse
|
15
|
Romero-Calle DX, Pedrosa-Silva F, Ribeiro Tomé LM, Fonseca V, Guimarães Benevides R, de Oliveira Santos LTS, de Oliveira T, da Costa MM, Alcantara LCJ, de Carvalho Azevedo VA, Brenig B, Venancio TM, Billington C, Góes-Neto A. Molecular Characterization of Salmonella Phage Wara Isolated from River Water in Brazil. Microorganisms 2023; 11:1837. [PMID: 37513009 PMCID: PMC10384808 DOI: 10.3390/microorganisms11071837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance is increasing despite new treatments being employed, so novel strategies are required to ensure that bacterial infections remain treatable. Bacteriophages (phages; bacteria viruses) have the potential to be used as natural antimicrobial methods to control bacterial pathogens such as Salmonella spp. A Salmonella phage, Wara, was isolated from environmental water samples at the Subaé River Basin, Salvador de Bahia, Brazil. The basin has environmental impacts in its main watercourses arising from the dumping of domestic and industrial effluents and agricultural and anthropological activities. The phage genome sequence was determined by Oxford Nanopore Technologies (ONT) MinION and Illumina HiSeq sequencing, and assembly was carried out by Racon (MinION) and Unicycler (Illumina, Illumina + MinION). The genome was annotated and compared to other Salmonella phages using various bioinformatics approaches. MinION DNA sequencing combined with Racon assembly gave the best complete genome sequence. Phylogenetic analysis revealed that Wara is a member of the Tequintavirus genus. A lack of lysogeny genes, antimicrobial resistance, and virulence genes indicated that Wara has therapeutic and biocontrol potential against Salmonella species in healthcare and agriculture.
Collapse
Affiliation(s)
- Danitza Xiomara Romero-Calle
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, Brazil
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vagner Fonseca
- General Coordination of Public Health Laboratories/Secretariat of Health Surveillance, Ministry of Health, Brasília 70800-400, Brazil
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Raquel Guimarães Benevides
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, Brazil
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mateus Matiuzzi da Costa
- Department of Biological Sciences, Federal University of the São Francisco Valley, Petrolina 56304-917, Brazil
| | - Luiz Carlos Junior Alcantara
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
- Flavivirus Laboratory, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil
| | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, 37073 Göttingen, Germany
| | - Thiago M Venancio
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, Brazil
| | - Craig Billington
- Health & Environment Group, Institute of Environmental Sciences and Research, Christchurch 8540, New Zealand
| | - Aristóteles Góes-Neto
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, Brazil
| |
Collapse
|
16
|
Imran A, Shehzadi U, Islam F, Afzaal M, Ali R, Ali YA, Chauhan A, Biswas S, Khurshid S, Usman I, Hussain G, Zahra SM, Shah MA, Rasool A. Bacteriophages and food safety: An updated overview. Food Sci Nutr 2023; 11:3621-3630. [PMID: 37457180 PMCID: PMC10345663 DOI: 10.1002/fsn3.3360] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 07/18/2023] Open
Abstract
Despite significant advances in pathogen survival and food cleaning measures, foodborne diseases continue to be the main reason for hospitalization or other fatality globally. Conventional antibacterial techniques including pasteurization, pressurized preparation, radioactivity, as well as synthetic antiseptics could indeed decrease bacterial activity in nutrition to variable levels, despite their serious downsides like an elevated upfront outlay, the possibility of accessing malfunctions due to one corrosiveness, as well as an adverse effect upon those the foodstuffs' organoleptic properties and maybe their nutritional significance. Greatest significantly, these cleansing methods eliminate all contaminants, including numerous (often beneficial) bacteria found naturally in food. A huge amount of scientific publication that discussed the application of virus bioremediation to treat a multitude of pathogenic bacteria in meals spanning between prepared raw food to fresh fruit and vegetables although since initial idea through using retroviruses on meals. Furthermore, the quantity of widely viable bacteriophage-containing medicines licensed for use in health and safety purposes has continuously expanded. Bacteriophage bio-control, a leafy and ordinary technique that employs lytic bacteriophages extracted from the atmosphere to selectively target pathogenic bacteria and remove meaningfully decrease their stages meals, is one potential remedy that solves some of these difficulties. It has been suggested that applying bacteriophages to food is a unique method for avoiding bacterial development in vegetables. Because of their selectivity, security, stability, and use, bacteriophages are desirable. Phages have been utilized in post-harvest activities, either alone or in combination with antimicrobial drugs, since they are effective, strain-specific, informal to split and manipulate. In this review to ensure food safety, it may be viable to use retroviruses as a spontaneous treatment in the thread pollution of fresh picked fruits and vegetables, dairy, and convenience foods.
Collapse
Affiliation(s)
- Ali Imran
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Umber Shehzadi
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Fakhar Islam
- Department of Food Sciences Government College University Faisalabad Pakistan
- Department of Clinical Nutrition NUR International University Lahore Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Rehman Ali
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Yuosra Amer Ali
- Department of Food Sciences, College of Agriculture and Forestry University of Mosul Mosul Iraq
| | - Anamika Chauhan
- Department of Home Science Chaman Lal Mahavidyalaya Landhora Haridwar India
- Sri Dev Suman University Tehri India
| | - Sunanda Biswas
- Department of Food & Nutrition Acharya Prafulla Chandra College Kolkata India
| | - Sadaf Khurshid
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ifrah Usman
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Syeda Mahvish Zahra
- Department of Environmental Design, Health and Nutritional Sciences Allama Iqbal Open University Islamabad Pakistan
- Institute of Food Science and Nutrition University of Sargodha Sargodha Pakistan
| | - Mohd Asif Shah
- Adjunct Faculty University Center for Research & Development, Chandigarh University Mohali India
| | - Adil Rasool
- Department of Management Bakhtar University Kabul Afghanistan
| |
Collapse
|
17
|
Duc HM, Zhang Y, Hoang SM, Masuda Y, Honjoh KI, Miyamoto T. The Use of Phage Cocktail and Various Antibacterial Agents in Combination to Prevent the Emergence of Phage Resistance. Antibiotics (Basel) 2023; 12:1077. [PMID: 37370397 DOI: 10.3390/antibiotics12061077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial food poisoning cases due to Salmonella and E. coli O157:H7 have been linked with the consumption of a variety of food products, threatening public health around the world. This study describes the combined effects of a phage cocktail (STG2, SEG5, and PS5), EDTA, nisin, and polylysine against the bacterial cocktail consisting of S. typhimurium, S. enteritidis, and E. coli O157:H7. Overall, phage cocktail (alone or in combination with nisin or/and polylysine) not only showed great antibacterial effects against bacterial cocktail at different temperatures (4 °C, 24 °C, and 37 °C), but also totally inhibited the emergence of phage resistance during the incubation period. These results suggest that the combination of phages with nisin or/and polylysine has great potential to simultaneously control S. typhimurium, S. enteritidis, and E. coli O157:H7.
Collapse
Affiliation(s)
- Hoang Minh Duc
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
| | - Yu Zhang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Son Minh Hoang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Histology and Embryo, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Wójcicki M, Świder O, Średnicka P, Shymialevich D, Ilczuk T, Koperski Ł, Cieślak H, Sokołowska B, Juszczuk-Kubiak E. Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food. Int J Mol Sci 2023; 24:10134. [PMCID: PMC10299301 DOI: 10.3390/ijms241210134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Due to irrational antibiotic stewardship, an increase in the incidence of multidrug resistance of bacteria has been observed recently. Therefore, the search for new therapeutic methods for pathogen infection treatment seems to be necessary. One of the possibilities is the utilization of bacteriophages (phages)—the natural enemies of bacteria. Thus, this study is aimed at the genomic and functional characterization of two newly isolated phages targeting MDR Salmonella enterica strains and their efficacy in salmonellosis biocontrol in raw carrot–apple juice. The Salmonella phage vB_Sen-IAFB3829 (Salmonella phage strain KKP 3829) and Salmonella phage vB_Sen-IAFB3830 (Salmonella phage strain KKP 3830) were isolated against S. I (6,8:l,-:1,7) strain KKP 1762 and S. Typhimurium strain KKP 3080 host strains, respectively. Based on the transmission electron microscopy (TEM) and whole-genome sequencing (WGS) analyses, the viruses were identified as members of tailed bacteriophages from the Caudoviricetes class. Genome sequencing revealed that these phages have linear double-stranded DNA and sizes of 58,992 bp (vB_Sen-IAFB3829) and 50,514 bp (vB_Sen-IAFB3830). Phages retained their activity in a wide range of temperatures (from −20 °C to 60 °C) and active acidity values (pH from 3 to 11). The exposure of phages to UV radiation significantly decreased their activity in proportion to the exposure time. The application of phages to the food matrices significantly reduced the level of Salmonella contamination compared to the control. Genome analysis showed that both phages do not encode virulence or toxin genes and can be classified as virulent bacteriophages. Virulent characteristics and no possible pathogen factors make examined phages feasible to be potential candidates for food biocontrol.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Tomasz Ilczuk
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7 Str., 02-106 Warsaw, Poland; (T.I.); (Ł.K.)
| | - Łukasz Koperski
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7 Str., 02-106 Warsaw, Poland; (T.I.); (Ł.K.)
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| |
Collapse
|
19
|
Costa MJ, Pastrana LM, Teixeira JA, Sillankorva SM, Cerqueira MA. Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses 2023; 15:1271. [PMID: 37376571 DOI: 10.3390/v15061271] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, one-third of all food produced worldwide is wasted or lost, and bacterial contamination is one of the main reasons. Moreover, foodborne diseases are a severe problem, causing more than 420,000 deaths and nearly 600 million illnesses yearly, demanding more attention to food safety. Thus, new solutions need to be explored to tackle these problems. A possible solution for bacterial contamination is using bacteriophages (phages), which are harmless to humans; these natural viruses can be used to prevent or reduce food contamination by foodborne pathogens. In this regard, several studies showed the effectiveness of phages against bacteria. However, when used in their free form, phages can lose infectivity, decreasing the application in foods. To overcome this problem, new delivery systems are being studied to incorporate phages and ensure prolonged activity and controlled release in food systems. This review focuses on the existent and new phage delivery systems applied in the food industry to promote food safety. Initially, an overview of phages, their main advantages, and challenges is presented, followed by the different delivery systems, focused in methodologies, and biomaterials that can be used. In the end, examples of phage applications in foods are disclosed and future perspectives are approached.
Collapse
Affiliation(s)
- Maria J Costa
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Sanna M Sillankorva
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
20
|
Baskaran V, Karthik L. Phages for treatment of Salmonella spp infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:241-273. [PMID: 37739557 DOI: 10.1016/bs.pmbts.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Salmonella, is one of the bacterial genera having more than 2500 serogroups is one of the most prominent food borne pathogen that is capable of causing disease out breaks among humans and animals. Recent reports clearly shows that this pathogen is evolved and it developed drug resistant towards most of the commercially available antibiotics. In order to overcome this emerging resistance, Bacteriophage therapy is one of the alternative solutions. It is more pathogen specific, high potency, and thereby highly safe for consumption. This chapter discuss about Rapid screening and Detection Methods Associated with Bacteriophage for Salmonella, commercially available phage products and regulatory status, Salmonella endolysins and future prospects of phage therapy.
Collapse
Affiliation(s)
- V Baskaran
- R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India
| | - L Karthik
- R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India.
| |
Collapse
|
21
|
Al-Hindi RR, Alharbi MG, Alotibi I, Azhari SA, Algothmi KM, Esmael A. Application of a novel lytic Jerseyvirus phage LPSent1 for the biological control of the multidrug-resistant Salmonella Enteritidis in foods. Front Microbiol 2023; 14:1135806. [PMID: 37089535 PMCID: PMC10113451 DOI: 10.3389/fmicb.2023.1135806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Non-typhoidal Salmonella is the tremendously predominant source of acquired foodborne infection in humans, causing salmonellosis which is a global threat to the healthcare system. This threat is even worse when it is combined with the incidence of multidrug-resistant Salmonella strains. Bacteriophage therapy has been proposed as a promising potential candidate to control a diversity of foodborne infective bacteria. The objective of this study designed to isolate and characterize lytic phages infecting zoonotic multi-drug resistant and strong biofilm producer Salmonella enterica serovar Enteritidis EG.SmE1 and then apply the isolated phage/s as a biocontrol agent against infections in ready-to-eat food articles including milk, water, apple juice, and chicken breasts. One lytic phage (LPSent1) was selected based on its robust and stable lytic activity. Phage LPSent1 belonged to the genus Jerseyvirus within the Jerseyvirinae subfamily. The lysis time of phage LPSent1 was 60 min with a latent period of 30 min and each infected cell burst about 112 plaque-forming units. Phage LPSent1 showed a narrow host range. Furthermore, the LPSent1 genome did not encode any virulence or lysogenic genes. In addition, phage LPSent1 had wide pH tolerance, prolonged thermal stability, and was stable in food articles lacking its susceptible host for 48 h. In vitro applications of phage LPSent1 inhibited free planktonic cells and biofilms of Salmonella Enteritidis EG.SmE1 with a lower occurrence to form phage-resistant bacterial mutants which suggests promising applications on food articles. Application of phage LPSent1 at multiplicities of infections of 100 or 1000 showed significant inhibition in the bacterial count of Salmonella Enteritidis EG.SmE1 by 5 log10/sample in milk, water, apple juice, and chicken breasts at either 4°C or 25°C. Accordingly, taken together these findings establish phage LPSent1 as an effective, promising candidate for the biocontrol of MDR Salmonella Enteritidis in ready-to-eat food.
Collapse
Affiliation(s)
- Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khloud M. Algothmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Banha, Egypt
- Nebraska Center for Virology, University of Nebraska–Lincoln, Lincoln, NE, United States
| |
Collapse
|
22
|
Shahdadi M, Safarirad M, Berizi E, Mazloomi SM, Hosseinzadeh S, Zare M, Derakhshan Z, Rajabi S. A systematic review and modeling of the effect of bacteriophages on Salmonella spp. Reduction in chicken meat. Heliyon 2023; 9:e14870. [PMID: 37025894 PMCID: PMC10070888 DOI: 10.1016/j.heliyon.2023.e14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023] Open
Abstract
Prevention and control of foodborne pathogens are of vital public health importance, and poultry meat is recognized as a major source of Salmonella infection in humans. Therefore, it is necessary to reduce the presence of salmonella in poultry meat. This article provided a systematic review and modeling to assess the effect of various factors on bacteriophages' function on Salmonella spp. Reduction in poultry meat. Twenty-two studies were included based on the inclusion and exclusion criteria mentioned in the methodology. The results showed that each unit increase in bacterial dose, phage dose, and temperature increases the Salmonella reduction by about 7%, 20%, and 1%, respectively. In addition, wild-type phages were more efficient than commercial-type phages, and this result was statistically significant (β = 1.124; p-value <0.001). This multivariate analysis is a helpful tool to predict the role of various factors in the role of phage in reducing Salmonella in poultry meat.
Collapse
Affiliation(s)
- Mohsen Shahdadi
- Research Committee, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Safarirad
- Research Committee, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Enayat Berizi
- Research Committee, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Corresponding author.
| | - Seyed Mohammad Mazloomi
- Research Committee, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Morteza Zare
- Research Committee, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Derakhshan
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Rajabi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Azari R, Yousefi MH, Taghipour Z, Wagemans J, Lavigne R, Hosseinzadeh S, Mazloomi SM, Vallino M, Khalatbari-Limaki S, Berizi E. Application of the lytic bacteriophage Rostam to control Salmonella enteritidis in eggs. Int J Food Microbiol 2023; 389:110097. [PMID: 36731200 DOI: 10.1016/j.ijfoodmicro.2023.110097] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/16/2023]
Abstract
Foodborne Salmonella enteritidis infections place human health at risk, driven by regular outbreaks and individual cases by different contaminated food materials. This study was conducted to characterize and employ a single bacteriophage as a potential biocontrol agent. Phage Rostam was isolated, characterized and then applied as biocontrol agent against S. enteritidis in liquid whole eggs and eggshell. Rostam is a novel myovirus belonging to the Rosemountvirus genus and active against Escherichia coli and Salmonella spp. Rostam is stable in a pH range from 4 to 10, a salt concentration of 1-9 %, whereas UV radiation gradually reduces phage stability, and its 53 kb genome sequence indicates this phage does not contain known toxins or lysogeny-associated genes. Its latent period is short with a burst size of 151 PFU/cell, under standard growth conditions. Killing curves indicate that at higher multiplicities of infection (MOI), the reduction in S. enteritidis count is more pronounced. Phage Rostam (MOI 10,000) reduces S. enteritidis growth to below the detection limit at 4 °C in both liquid whole eggs and on the eggshell within 24 h. Due to its high lytic activity and stability in relevant conditions, Rostam has the potential to be an efficient biopreservative for egg and egg products.
Collapse
Affiliation(s)
- Rahim Azari
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zohreh Taghipour
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Rob Lavigne
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, 10135 Turin, Italy
| | - Sepideh Khalatbari-Limaki
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
24
|
Kim S, Kim BS, Bai J, Chang Y. Antibacterial κ-carrageenan/konjac glucomannan-based edible hydrogel film containing Salmonella phage PBSE191 and its application in chicken meat. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
25
|
Mutusamy P, Banga Singh KK, Su Yin L, Petersen B, Sicheritz-Ponten T, Clokie MRJ, Loke S, Millard A, Parimannan S, Rajandas H. Phenotypic Characterization and Comparative Genomic Analysis of Novel Salmonella Bacteriophages Isolated from a Tropical Rainforest. Int J Mol Sci 2023; 24:3678. [PMID: 36835084 PMCID: PMC9963771 DOI: 10.3390/ijms24043678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Salmonella infections across the globe are becoming more challenging to control due to the emergence of multidrug-resistant (MDR) strains. Lytic phages may be suitable alternatives for treating these multidrug-resistant Salmonella infections. Most Salmonella phages to date were collected from human-impacted environments. To further explore the Salmonella phage space, and to potentially identify phages with novel characteristics, we characterized Salmonella-specific phages isolated from the Penang National Park, a conserved rainforest. Four phages with a broad lytic spectrum (kills >5 Salmonella serovars) were further characterized; they have isometric heads and cone-shaped tails, and genomes of ~39,900 bp, encoding 49 CDSs. As the genomes share a <95% sequence similarity to known genomes, the phages were classified as a new species within the genus Kayfunavirus. Interestingly, the phages displayed obvious differences in their lytic spectrum and pH stability, despite having a high sequence similarity (~99% ANI). Subsequent analysis revealed that the phages differed in the nucleotide sequence in the tail spike proteins, tail tubular proteins, and portal proteins, suggesting that the SNPs were responsible for their differing phenotypes. Our findings highlight the diversity of novel Salmonella bacteriophages from rainforest regions, which can be explored as an antimicrobial agent against MDR-Salmonella strains.
Collapse
Affiliation(s)
- Prasanna Mutusamy
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong 08100, Kedah, Malaysia
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Lee Su Yin
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong 08100, Kedah, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling 08100, Kedah, Malaysia
| | - Bent Petersen
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong 08100, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Thomas Sicheritz-Ponten
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong 08100, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Stella Loke
- Charles River Laboratories Australia Pty Ltd., Melbourne, VIC 3137, Australia
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Waurn Ponds Campus, Deakin University, Geelong, VIC 3216, Australia
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Sivachandran Parimannan
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong 08100, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Heera Rajandas
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong 08100, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| |
Collapse
|
26
|
Natural Killers: Opportunities and Challenges for the Use of Bacteriophages in Microbial Food Safety from the One Health Perspective. Foods 2023; 12:foods12030552. [PMID: 36766081 PMCID: PMC9914193 DOI: 10.3390/foods12030552] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Ingestion of food or water contaminated with pathogenic bacteria may cause serious diseases. The One Health approach may help to ensure food safety by anticipating, preventing, detecting, and controlling diseases that spread between animals, humans, and the environment. This concept pays special attention to the increasing spread and dissemination of antibiotic-resistant bacteria, which are considered one of the most important environment-related human and animal health hazards. In this context, the development of innovative, versatile, and effective alternatives to control bacterial infections in order to assure comprehensive food microbial safety is becoming an urgent issue. Bacteriophages (phages), viruses of bacteria, have gained significance in the last years due to the request for new effective antimicrobials for the treatment of bacterial diseases, along with many other applications, including biotechnology and food safety. This manuscript reviews the application of phages in order to prevent food- and water-borne diseases from a One Health perspective. Regarding the necessary decrease in the use of antibiotics, results taken from the literature indicate that phages are also promising tools to help to address this issue. To assist future phage-based real applications, the pending issues and main challenges to be addressed shortly by future studies are also taken into account.
Collapse
|
27
|
Genomic characterization and application of a novel bacteriophage STG2 capable of reducing planktonic and biofilm cells of Salmonella. Int J Food Microbiol 2023; 385:109999. [DOI: 10.1016/j.ijfoodmicro.2022.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
28
|
Kim S, Chang Y. Anti-Salmonella polyvinyl alcohol coating containing a virulent phage PBSE191 and its application on chicken eggshell. Food Res Int 2022; 162:111971. [DOI: 10.1016/j.foodres.2022.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
|
29
|
Cao Y, Ma R, Li Z, Mao X, Li Y, Wu Y, Wang L, Han K, Li L, Ma D, Zhou Y, Li X, Wang X. Broad-Spectrum Salmonella Phages PSE-D1 and PST-H1 Controls Salmonella in Foods. Viruses 2022; 14:v14122647. [PMID: 36560651 PMCID: PMC9784834 DOI: 10.3390/v14122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Food contamination by Salmonella can lead to serious foodborne diseases that constantly threaten public health. Innovative and effective strategies are needed to control foodborne pathogenic contamination since the incidence of foodborne diseases has increased gradually. In the present study, two broad-spectrum phages named Salmonella phage PSE-D1 and Salmonella phage PST-H1 were isolated from sewage in China. Phages PSE-D1 and PST-H1 were obtained by enrichment with Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) CVCC1806 and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) CVCC3384, respectively. They were able to lyse Salmonella, E. coli and K. pneumoniae and exhibited broad host range. Further study demonstrated that PSE-D1 and PST-H1 showed high pH and thermal tolerances. Phage PSE-D1 belongs to the Jiaodavirus genus, Tevenvirinae subfamily, while phage PST-H1 belongs to the Jerseyvirus genus, Guernseyvirinae subfamily according to morphology and phylogeny. The results of genome analysis showed that PSE-D1 and PST-H1 lack virulence and drug-resistance genes. The effects of PSE-D1 and PST-H1 on controlling S. Enteritidis CVCC1806 and S. Typhimurium CVCC3384 contamination in three kinds of foods (eggshells, sausages and milk) were further investigated, respectively. Our results showed that, compared to phage-free groups, PSE-D1 and PST-H1 inhibited the growth of their host strain significantly. A significant reduction of host bacteria titers (1.5 and 1.9 log10 CFU/sample, p < 0.001) on eggshells was observed under PSE-D1 and PST-H1 treatments, respectively. Furthermore, administration of PSE-D1 and PST-H1 decreased the counts of bacteria by 1.1 and 1.2 log10 CFU/cm2 (p < 0.001) in sausages as well as 1.5 and 1.8 log10 CFU/mL (p < 0.001) in milk, respectively. Interesting, the bacteriostasis efficacy of both phages exhibited more significantly at 4 °C than that at 28 °C in eggshells and milk and sausages. In sum, the purpose of our research was evaluating the counteracting effect of phage PSE-D1 and PST-H1 on the spread of Salmonella on contaminated foods products. Our results suggested that these two phage-based biocontrol treatments are promising strategies for controlling pathogenic Salmonella contaminated food.
Collapse
Affiliation(s)
- Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Runwen Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Ziyong Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xinyu Mao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yinan Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yuxin Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Lei Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Dongxin Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yuqing Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
- Correspondence: or (X.L.); or (X.W.); Tel.: +86-771-3235635 (X.L. & X.W.)
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
- Correspondence: or (X.L.); or (X.W.); Tel.: +86-771-3235635 (X.L. & X.W.)
| |
Collapse
|
30
|
Jagannathan BV, Dakoske M, Vijayakumar PP. Bacteriophage-mediated control of pre- and post-harvest produce quality and safety. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
31
|
Garvey M. Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics (Basel) 2022; 11:1324. [PMID: 36289982 PMCID: PMC9598955 DOI: 10.3390/antibiotics11101324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Food safety and sustainable food production is an important part of the Sustainable Development goals aiming to safeguard the health and wellbeing of humans, animals and the environment. Foodborne illness is a major cause of morbidity and mortality, particularly as the global crisis of antimicrobial resistance proliferates. In order to actively move towards sustainable food production, it is imperative that green biocontrol options are implemented to prevent and mitigate infectious disease in food production. Replacing current chemical pesticides, antimicrobials and disinfectants with green, organic options such as biopesticides is a step towards a sustainable future. Bacteriophages, virus which infect and kill bacteria are an area of great potential as biocontrol agents in agriculture and aquaculture. Lytic bacteriophages offer many advantages over traditional chemical-based solutions to control microbiological contamination in the food industry. The innate specificity for target bacterial species, their natural presence in the environment and biocompatibility with animal and humans means phages are a practical biocontrol candidate at all stages of food production, from farm-to-fork. Phages have demonstrated efficacy as bio-sanitisation and bio-preservation agents against many foodborne pathogens, with activity against biofilm communities also evident. Additionally, phages have long been recognised for their potential as therapeutics, prophylactically and metaphylactically. Further investigation is warranted however, to overcome their limitations such as formulation and stability issues, phage resistance mechanisms and transmission of bacterial virulence factors.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
32
|
Khan MAS, Rahman SR. Use of Phages to Treat Antimicrobial-Resistant Salmonella Infections in Poultry. Vet Sci 2022; 9:438. [PMID: 36006353 PMCID: PMC9416511 DOI: 10.3390/vetsci9080438] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/18/2023] Open
Abstract
Salmonellosis is one of the most common bacterial infections that impacts both human health and poultry production. Although antibiotics are usually recommended for treating Salmonella infections, their misuse results in the evolution and spread of multidrug-resistant (MDR) bacteria. To minimize the health and economic burdens associated with antimicrobial resistance, a novel antibacterial strategy that can obliterate pathogens without any adverse effects on humans and animals is urgently required. Therefore, therapeutic supplementation of phages has gained renewed attention because of their unique ability to lyse specific hosts, cost-effective production, environmentally-friendly properties, and other potential advantages over antibiotics. In addition, the safety and efficacy of phage therapy for controlling poultry-associated Salmonella have already been proven through experimental studies. Phages can be applied at every stage of poultry production, processing, and distribution through different modes of application. Despite having a few limitations, the optimized and regulated use of phage cocktails may prove to be an effective option to combat infections caused by MDR pathogens in the post-antibiotic era. This article mainly focuses on the occurrence of salmonellosis in poultry and its reduction with the aid of bacteriophages. We particularly discuss the prevalence of Salmonella infections in poultry and poultry products; review the trends in antibiotic resistance; and summarize the application, challenges, and prospects of phage therapy in the poultry industry.
Collapse
|
33
|
Application and challenge of bacteriophage in the food protection. Int J Food Microbiol 2022; 380:109872. [PMID: 35981493 DOI: 10.1016/j.ijfoodmicro.2022.109872] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
In recent years, foodborne diseases caused by pathogens have been increasing. Therefore, it is essential to control the growth and transmission of pathogens. Bacteriophages (phages) have the potential to play an important role in the biological prevention, control, and treatment of these foodborne diseases due to their favorable advantages. Phages not only effectively inhibit pathogenic bacteria and prolong the shelf life of food, but also possess the advantages of specificity and an absence of chemical residues. Currently, there are many cases of phage applications in agriculture, animal disease prevention and control, food safety, and the treatment of drug-resistant disease. In this review, we summarize the recent research progress on phages against foodborne pathogenic bacteria, including Escherichia coli, Salmonella, Campylobacter, Listeria monocytogenes, Shigella, Vibrio parahaemolyticus, and Staphylococcus aureus. We also discuss the main issues and their corresponding solutions in the application of phages in the food industry. In recent years, although researchers have discovered more phages with potential applications in the food industry, most researchers use these phages based on their host spectrum, and the application environment is mostly in the laboratory. Therefore, the practical application of these phages in different aspects of the food industry may be unsatisfactory and even have some negative effects. Thus, we suggest that before using these phages, it is necessary to identify their specific receptors. Using their specific receptors as the selection basis for their application and combining phages with other phages or phages with traditional antibacterial agents may further improve their safety and application efficiency. Collectively, this review provides a theoretical reference for the basic research and application of phages in the food industry.
Collapse
|
34
|
Zhou Y, Xu D, Yu H, Han J, Liu W, Qu D. Encapsulation of Salmonella phage SL01 in alginate/carrageenan microcapsules as a delivery system and its application in vitro. Front Microbiol 2022; 13:906103. [PMID: 35992667 PMCID: PMC9386268 DOI: 10.3389/fmicb.2022.906103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Phages can be used successfully to treat pathogenic bacteria including zoonotic pathogens that colonize the intestines of animals and humans. However, low pH and digestive enzyme activity under harsh gastric conditions affect phage viability, thereby reducing their effectiveness. In this study, alginate (ALG)/κ-carrageenan (CG) microcapsules were developed to encapsulate and release phage under simulated gastrointestinal conditions. The effects of ALG and CG concentrations on the encapsulation and loading efficiency of microcapsules, as well as the release behavior and antibacterial effects of microcapsules in simulating human intestinal pH and temperature, were investigated. Based on various indicators, when the concentration of ALG and CG were 2.0 and 0.3%, respectively, the obtained microcapsules have high encapsulation efficiency, strong protection, and high release efficiency in simulated intestinal fluid. This effect is attributed to the formation of a more tightly packed biopolymer network within the composite microcapsules based on the measurements of their microstructure properties. Bead-encapsulation is a promising, reliable, and cost-effective method for the functional delivery of phage targeting intestinal bacteria.
Collapse
Affiliation(s)
- Yuqiao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Dingting Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijie Yu
- Jiaxing Vocational Technical College, Jiaxing, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Daofeng Qu,
| |
Collapse
|
35
|
Lu Z, Marchant J, Thompson S, Melgarejo H, Ignatova D, Kopić S, Damaj R, Trejo H, Paramo R, Reed A, Breidt F, Kathariou S. Bacteriophages Isolated From Turkeys Infecting Diverse Salmonella Serovars. Front Microbiol 2022; 13:933751. [PMID: 35865922 PMCID: PMC9294604 DOI: 10.3389/fmicb.2022.933751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the leading causes of foodborne illnesses worldwide. The rapid emergence of multidrug-resistant Salmonella strains has increased global concern for salmonellosis. Recent studies have shown that bacteriophages (phages) are novel and the most promising antibacterial agents for biocontrol in foods because phages specifically kill target bacteria without affecting other bacteria, do not alter organoleptic properties or nutritional quality of foods, and are safe and environmentally friendly. Due to the vast variation in Salmonella serotypes, large numbers of different and highly virulent Salmonella phages with broad host ranges are needed. This study isolated 14 Salmonella phages from turkey fecal and cecal samples. Six phages (Φ205, Φ206, Φ207, ΦEnt, ΦMont, and Φ13314) were selected for characterization. These phages were from all three families in the Caudovirales order. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that each phage had a unique structural protein profile. Each phage had a distinct host range. Φ207 and ΦEnt are both siphophages. They shared eight hosts, including seven different Salmonella serovars and one Shigella sonnei strain. These two phages showed different restriction banding patterns generated through EcoRI or HindIII digestion, but shared three bands from EcoRI digestion. ΦEnt displayed the broadest and very unusual host range infecting 11 Salmonella strains from nine serovars and three Shigella strains from two species, and thus was further characterized. The one-step growth curve revealed that ΦEnt had a short latent period (10 min) and relatively large burst size (100 PFU/infected cell). ΦEnt and its host showed better thermal stabilities in tryptic soy broth than in saline at 63 or 72°C. In the model food system (cucumber juice or beef broth), ΦEnt infection [regardless of the multiplicity of infections (MOIs) of 1, 10, and 100] resulted in more than 5-log10 reduction in Salmonella concentration within 4 or 5 h. Such high lytic activity combined with its remarkably broad and unusual host range and good thermal stability suggested that ΦEnt is a novel Salmonella phage with great potential to be used as an effective biocontrol agent against diverse Salmonella serovars in foods.
Collapse
Affiliation(s)
- Zhongjing Lu
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - John Marchant
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Samantha Thompson
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Henry Melgarejo
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Dzhuliya Ignatova
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Sandra Kopić
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Rana Damaj
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Hedy Trejo
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Rodrigo Paramo
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Ashley Reed
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Fred Breidt
- United States Department of Agriculture, Agricultural Research Service, Washington, DC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
36
|
Dysbiosis and intestinal inflammation caused by Salmonella Typhimurium in mice can be alleviated by preadministration of a lytic phage. Microbiol Res 2022; 260:127020. [DOI: 10.1016/j.micres.2022.127020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/21/2023]
|
37
|
Almutairi M, Imam M, Alammari N, Hafiz R, Patel F, Alajel S. Using Phages to Reduce Salmonella Prevalence in Chicken Meat: A Systematic Review. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:15-27. [PMID: 36161190 PMCID: PMC9041517 DOI: 10.1089/phage.2021.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Salmonellosis is an infection that significantly impacts chicken and humans who consume it; it is a burden on public health and a contributor to commercial losses in the chicken industry worldwide. To tackle chicken meat-related bacterial infections, significant quantities of antibiotics alongside several infection prevention measures are used worldwide. However, chemical additives, such as organic acids, and chlorine-based interventions all have different limitations. These include feed refusal due to a change of taste, and incompatibility between organic acids and other inoculated preservative agents such as antimicrobial agents. Phages are host-specific viruses that interact with bacteria in a specific manner. Therefore, they possess unique biological and therapeutic features that can be used to reduce bacterial contamination, leading to improved food safety and quality. This systematic review examines the current evidence regarding the effectiveness of various phages on Salmonella colonization in chicken meat. This review summarizes findings from 17 studies that were conducted in vitro with similar experimental conditions (temperature and incubation parameters) to test the efficacy of isolated and commercially available phages on chicken raw meat samples. The current evidence suggests that most of the in vitro studies that used phages as a biocontrol to eradicate Salmonella contamination in chicken meat were successful. This indicates that phages constitute a promising solution worldwide for tackling foodborne bacteria, including Salmonella.
Collapse
Affiliation(s)
| | - Mohammed Imam
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | | | - Radwan Hafiz
- Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Faizal Patel
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sulaiman Alajel
- Saudi Food and Drug Authority, Riyadh, Saudi Arabia
- Address for correspondence: Suliman Alajel, PhD, Saudi Food and Drug Authority, 4904 Northern Ring Road, Hittin-Riyadh 13513-7148, Saudi Arabia
| |
Collapse
|
38
|
Isolation and characterization of Salmonella phages and phage cocktail mediated biocontrol of Salmonella enterica serovar Typhimurium in chicken meat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
A Polyvalent Broad-Spectrum Escherichia Phage Tequatrovirus EP01 Capable of Controlling Salmonella and Escherichia coli Contamination in Foods. Viruses 2022; 14:v14020286. [PMID: 35215879 PMCID: PMC8877722 DOI: 10.3390/v14020286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Salmonella and Escherichia coli (E. coli) food contamination could lead to serious foodborne diseases. The gradual increase in the incidence of foodborne disease invokes new and efficient methods to limit food pathogenic microorganism contamination. In this study, a polyvalent broad-spectrum Escherichia phage named Tequatrovirus EP01 was isolated from pig farm sewage. It could lyse both Salmonella Enteritidis (S. Enteritidis) and E. coli and exhibited broad host range. EP01 possessed a short latent period (10 min), a large burst size (80 PFU/cell), and moderate pH stability (4–10) and appropriate thermal tolerance (30–80 °C). Electron microscopy and genome sequence revealed that EP01 belonged to T4-like viruses genus, Myoviridae family. EP01 harbored 12 CDSs associated with receptor-binding proteins and lacked virulence genes and drug resistance genes. We tested the inhibitory effect of EP01 on S. Enteritidis, E. coli O157:H7, E. coli O114:K90 (B90), and E. coli O142:K86 (B) in liquid broth medium (LB). EP01 could significantly reduce the counts of all tested strains compared with phage-free groups. We further examined the effectiveness of EP01 in controlling bacterial contamination in two kinds of foods (meat and milk) contaminated with S. Enteritidis, E. coli O157:H7, E. coli O114:K90 (B90), and E. coli O142:K86 (B), respectively. EP01 significantly reduced the viable counts of all the tested bacteria (2.18–6.55 log10 CFU/sample, p < 0.05). A significant reduction of 6.55 log10 CFU/cm2 (p < 0.001) in bacterial counts on the surface of meat was observed with EP01 treatment. Addition of EP01 at MOI of 1 decreased the counts of bacteria by 4.3 log10 CFU/mL (p < 0.001) in milk. Generally, the inhibitory effect exhibited more stable at 4 °C than that at 28 °C, whereas the opposite results were observed in milk. The antibacterial effects were better at MOI of 1 than that at MOI of 0.001. These results suggests that phage EP01-based method is a promising strategy of controlling Salmonella and Escherichia coli pathogens to limit microbial food contamination.
Collapse
|
40
|
|
41
|
Durrani RH, Sheikh AA, Rabbani M, Khan MUR, Riaz MI, Naeem MA, Chattha SA, Kokab A, Maqbool M, Abbas MA, Siddique N. Physiological properties of indigenous lytic bacteriophages as monophage suspension and cocktail against poultry-adapted typhoidal Salmonella variants. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:481-487. [PMID: 36686861 PMCID: PMC9840798 DOI: 10.30466/vrf.2021.533964.3212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/20/2021] [Indexed: 01/24/2023]
Abstract
The emergence and spread of multidrug resistance among pathogens of the agro-food sector is increasing at an alarming rate, which has directed attention to the search for alternative to antibiotic therapy. The present work studied the physiological and population dynamics of lytic bacteriophages against avian-adapted Salmonella. Out of 28 positive samples, four bacteriophage isolates (SalØ-ABF37, SalØ-RCMPF12, SalØ-MCOH26, SalØ-DNLS42) were selected based on their ability to clearly lyse bacterial test strains. The isolates propagated were active against closely related D1 serotypes, i.e., S. Enteritidis and S. Typhimurium, with no heterologous activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 23235. Each of the monophage suspension and cocktail efficiently suppressed the bacterial count from exponential increase in comparison to the untreated bacterial control. The bacterial turbidity was recorded as 0.244 at λ600 during 400 min of co-incubation, in contrast to bacterial control showing λ600 = 0.669. The latent period was recorded to be 25, 35, 25 and 30 for SalØ-ABF37, SalØ-RCMPF12, SalØ-MCOH26 and SalØ-DNLS42, with 73.00, 97.00, 132 and 75.00 PFU cell-1, respectively. The highest lytic activity was seen at 37.00 ˚C - 42.00 ˚C, with phage particle count being fairly stable at pH 3.00 - 9.00. Each of the isolates possessed dsDNA by being resistant to RNase A. The current study concludes that lytic phages are promising alternative to combat multidrug resistant superbugs. The physiological characterization and bacterial growth inhibition are important parameters in standardization of phage therapy.
Collapse
Affiliation(s)
- Rida Haroon Durrani
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan; , These authors have contributed equally to this manuscript.
| | - Ali Ahmad Sheikh
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan; , These authors have contributed equally to this manuscript.,Correspondence Ali Ahmad Sheikh. PhD Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan E-mail:
| | - Masood Rabbani
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan;
| | - Muti-ur-Rehman Khan
- Department of Pathology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan;
| | - Muhammad Ilyas Riaz
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan;
| | - Muhammad Anas Naeem
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan;
| | - Salman Ashraf Chattha
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan;
| | - Aleena Kokab
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan;
| | - Munazzah Maqbool
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan;
| | - Muhammad Athar Abbas
- National Reference Laboratory for Poultry Diseases, Animal Sciences Institute, National Agricultural Research Council, Islamabad, Pakistan.
| | - Naila Siddique
- National Reference Laboratory for Poultry Diseases, Animal Sciences Institute, National Agricultural Research Council, Islamabad, Pakistan.
| |
Collapse
|
42
|
Jongman M, Carmichael P, Loeto D, Gomba A. Advances in the use of biocontrol applications in preharvest and postharvest environments: A food safety milestone. J Food Saf 2021. [DOI: 10.1111/jfs.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Patricia Carmichael
- Department of Agricultural Research and Specialists Services Malkerns Eswatini
| | - Daniel Loeto
- Department of Biological Sciences University of Botswana Gaborone Botswana
| | - Annancietar Gomba
- National Institute for Occupational Health National Health Laboratory Service Johannesburg South Africa
| |
Collapse
|
43
|
The lytic siphophage vB_StyS-LmqsSP1 reduces Salmonella Typhimurium isolates on chicken skin. Appl Environ Microbiol 2021; 87:e0142421. [PMID: 34586906 DOI: 10.1128/aem.01424-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phage-based biocontrol of bacteria is considered as a natural approach to combat food-borne pathogens. Salmonella spp. are notifiable and highly prevalent pathogens that cause foodborne diseases globally. In this study, six bacteriophages were isolated and further characterized that infect food-derived Salmonella isolates from different meat sources. The siphovirus VB_StyS-LmqsSP1, which was isolated from a cow´s nasal swab, was further subjected to in-depth characterization. Phage-host interaction investigations in liquid medium showed that vB_StyS-LmqsSP1 can suppress the growth of Salmonella spp. isolates at 37°C for ten hours and reduce the bacterial titer at 4°C significantly. A reduction of 1.4 to 3 log units was observed in investigations with two food-derived Salmonella isolates and one reference strain under cooling conditions using MOIs of 104 and 105. Phage application on chicken skin resulted in a reduction of about 2 log units in the tested Salmonella isolates from the first three hours throughout a one-week experiment at cooling temperature and an MOI of 105. The one-step growth curve analysis using vB_StyS-LmqsSP1 demonstrated a 60-min latent period and a burst size of 50-61 PFU/infected cell for all tested hosts. Furthermore, the genome of the phage was determined to be free from genes causing undesired effects. Based on the phenotypic and genotypic properties, LmqsSP1 was assigned as a promising candidate for biocontrol of Salmonella Typhimurium in food. Importance: Salmonella enterica is one of the major global causes of foodborne enteritis in humans. The use of chemical sanitizers for reducing bacterial pathogens in the food chain can result in the spread of bacterial resistance. Targeted and clean label intervention strategies can reduce Salmonella contamination in food. The significance of our research demonstrates the suitability of a bacteriophage (vB_StyS-LmqsSP1) for biocontrol of Salmonella enterica serovar Typhimurium on poultry due to its lytic efficacy under conditions prevailing in food production environments.
Collapse
|
44
|
Characterization of Fitness Cost Caused by Tigecycline-Resistance Gene tet(X6) in Different Host Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10101172. [PMID: 34680753 PMCID: PMC8532885 DOI: 10.3390/antibiotics10101172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022] Open
Abstract
The emergence and prevalence of the tet(X) gene and its variants in the environment and in clinical settings constitute a growing concern for public health worldwide. Accordingly, the tigecycline resistance gene variant tet(X6) is widely detected in Proteus spp. and Acinetobacter spp. rather than Enterobacteriaceae, while the underpinning behind this phenomenon is still unclear. To investigate the mechanisms underlying this distinct phenomenon, we assessed the fitness of the engineered plasmid pBAD-tet(X6) in different host bacteria by monitoring their growth curves, relative fitness and the ability of biofilm formation, as well as virulence in a Galleria mellonella model. MIC and qRT-PCR analysis indicated the successful expression of the tet(X6) gene in these strains in the presence of l-arabinose. Furthermore, we found that pBAD-tet(X6) displayed the lowest fitness cost in P. mirabilis compared with that in E. coli or S. Enteritidis, suggesting the fitness difference of tet(X6)-bearing plasmids in different host bacteria. Consistently, the carriage of pBAD-tet(X6) remarkably reduced the biofilm production and virulence of E. coli or S. Enteritidis. These findings not only indicate that the fitness cost difference elicited by the tet(X6) gene may be responsible for its selectivity in host bacteria but also sheds new insight into the dissemination of antibiotic resistance genes (ARGs) in clinical and environmental isolates.
Collapse
|
45
|
López-Cuevas O, Medrano-Félix JA, Castro-Del Campo N, Chaidez C. Bacteriophage applications for fresh produce food safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:687-702. [PMID: 31646886 DOI: 10.1080/09603123.2019.1680819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Foodborne illnesses, mainly bacteria, are a major cause of morbidity and mortality worldwide. Pathogenic bacteria are involved in almost every step within the fresh produce chain compromising the companies' food safety programs and generating an ascending number of foodborne outbreaks in various regions of the world. Recently, bacteriophages return to the status of biocontrol agents. These bacteria-killing viruses are able to reduce or eliminate pathogenic bacterial load from raw and ready to eat foods. Phages are efficient, strain specific, easy to isolate and manipulate, and for that reasons, they have been used in pre and post harvest processes alone or mixed with antimicrobial agents for biocontrolling pathogenic bacteria. In this review, we focused on the feasibility of using lytic bacteriophage on fresh fruits and vegetables industry, considering challenges and perspectives mainly at industrial production level (packinghouses, supermarkets), where high volume of phage preparations and consequently high costs may be required.
Collapse
Affiliation(s)
- O López-Cuevas
- Laboratorio Nacional para la Investigación en Inocuidad Alimentari (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C Culiacán, México
| | - J A Medrano-Félix
- CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C Culiacán, México
| | - N Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentari (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C Culiacán, México
| | - C Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentari (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C Culiacán, México
| |
Collapse
|
46
|
Ramos-Vivas J, Elexpuru-Zabaleta M, Samano ML, Barrera AP, Forbes-Hernández TY, Giampieri F, Battino M. Phages and Enzybiotics in Food Biopreservation. Molecules 2021; 26:molecules26175138. [PMID: 34500572 PMCID: PMC8433972 DOI: 10.3390/molecules26175138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Presently, biopreservation through protective bacterial cultures and their antimicrobial products or using antibacterial compounds derived from plants are proposed as feasible strategies to maintain the long shelf-life of products. Another emerging category of food biopreservatives are bacteriophages or their antibacterial enzymes called "phage lysins" or "enzybiotics", which can be used directly as antibacterial agents due to their ability to act on the membranes of bacteria and destroy them. Bacteriophages are an alternative to antimicrobials in the fight against bacteria, mainly because they have a practically unique host range that gives them great specificity. In addition to their potential ability to specifically control strains of pathogenic bacteria, their use does not generate a negative environmental impact as in the case of antibiotics. Both phages and their enzymes can favor a reduction in antibiotic use, which is desirable given the alarming increase in resistance to antibiotics used not only in human medicine but also in veterinary medicine, agriculture, and in general all processes of manufacturing, preservation, and distribution of food. We present here an overview of the scientific background of phages and enzybiotics in the food industry, as well as food applications of these biopreservatives.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | - María Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
| | - María Luisa Samano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | - Alina Pascual Barrera
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | | | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (F.G.); (M.B.); Tel.: +339-071-220-4136 (F.G.); +339-071-220-4646 (M.B.)
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (F.G.); (M.B.); Tel.: +339-071-220-4136 (F.G.); +339-071-220-4646 (M.B.)
| |
Collapse
|
47
|
Śliwka P, Ochocka M, Skaradzińska A. Applications of bacteriophages against intracellular bacteria. Crit Rev Microbiol 2021; 48:222-239. [PMID: 34428105 DOI: 10.1080/1040841x.2021.1960481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infectious diseases pose a significant threat to both human and animal populations. Intracellular bacteria are a group of pathogens that invade and survive within the interior of eukaryotic cells, which in turn protect them from antibacterial drugs and the host immune system. Limited penetration of antibacterials into host cells results in insufficient bacterial clearance and treatment failure. Bacteriophages have, over the decades, been proved to play an important role in combating bacterial infections (phage therapy), making them an important alternative to classical antibiotic strategies today. Phages have been found to be effective at killing various species of extracellular bacteria, but little is still known about how phages control intracellular infections. With advances in phage genomics and mechanisms of delivery and cell uptake, the development of phage-based antibacterial strategies to address the treatment of intracellular bacteria has general potential. In this review, we present the current state of knowledge regarding the application of bacteriophages against intracellular bacteria. We cover phage deployment against the most common intracellular pathogens with special attention to therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Ochocka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
48
|
In vitro efficiency evaluation of phage cocktail for biocontrol of Salmonella spp. in food products. Arch Microbiol 2021; 203:5445-5452. [PMID: 34406443 DOI: 10.1007/s00203-021-02522-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
This study used a set of different bacteriophages to control contaminations of Salmonella spp., a major food pathogen. A cocktail of four phages designated based on host range and in vitro lytic assay showed a lower bacteriophage insensitive mutant frequency and considerable stability at 4 °C and 28 °C up to 60 days. The work evaluated the effectiveness of cocktail of four phages in reducing Salmonella spp. in four different food matrices (liquid egg, eggshell, milk, lettuce). A maximum of 1.7 log reduction in Salmonella spp. was achieved upon treatment of liquid eggs with phage cocktail for 72 h at 4 °C. In milk, the application of phage cocktail reduced recoverable Salmonella spp. by 1.9 log and 1.8 log at 28ºC (6 h) and 4ºC (72 h), respectively. A significant 2.9 log reduction of Salmonella spp. was obtained in eggshell after a 6 h incubation and Salmonella spp. was beyond detection level after 24 h at 28ºC. The application of cocktail also reduced Salmonella spp. beyond the detectable level in lettuce after 8 h at 28 °C. Our results indicated considerable stability of phages in different food matrices. Taken together, our findings establish the potential effectiveness of the bacteriophage cocktail as a biocontrol agent for Salmonella spp. in different food matrices.
Collapse
|
49
|
Characterization and Application of a Lytic Phage D10 against Multidrug-Resistant Salmonella. Viruses 2021; 13:v13081626. [PMID: 34452490 PMCID: PMC8402666 DOI: 10.3390/v13081626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
Salmonella is a widely distributed foodborne pathogen that is a serious threat to human health. The accelerated development of drug resistance and the increased demand for natural foods invoke new biocontrol agents to limit contamination by multidrug-resistant (MDR) Salmonella strains. In this study, a lytic Salmonella phage named D10 was characterized at the biological and genomic levels. D10 possesses a short latent period (10 min) and a large burst size (163 PFU/cell), as well as adequate stability under a range of pH conditions and moderate thermal tolerance. D10 effectively lysed different MDR Salmonella serovars and repressed their dynamic growth in the medium. Genomic analysis disclosed that D10 is a new member of the Siphoviridae family and lacks the genes implicated in lysogeny, pathogenicity, or antibiotic resistance. A three-ingredient phage cocktail was then developed by mixing D10 with previously identified myovirus D1-2 and podovirus Pu20. The cocktail significantly reduced the count of MDR strains in liquid eggs, regardless of the temperature applied (4 and 25 °C). These results suggest that phage D10 is a promising tool to prevent food contamination by MDR Salmonella.
Collapse
|
50
|
Isolation and Characterization of Bacteriophage ZCSE6 against Salmonella spp.: Phage Application in Milk. Biologics 2021. [DOI: 10.3390/biologics1020010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.
Collapse
|