1
|
Porter AF, Cobbin J, Li CX, Eden JS, Holmes EC. Metagenomic Identification of Viral Sequences in Laboratory Reagents. Viruses 2021; 13:v13112122. [PMID: 34834931 PMCID: PMC8625350 DOI: 10.3390/v13112122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Metagenomic next-generation sequencing has transformed the discovery and diagnosis of infectious disease, with the power to characterise the complete 'infectome' (bacteria, viruses, fungi, parasites) of an individual host organism. However, the identification of novel pathogens has been complicated by widespread microbial contamination in commonly used laboratory reagents. Using total RNA sequencing ("metatranscriptomics") we documented the presence of contaminant viral sequences in multiple 'blank' negative control sequencing libraries that comprise a sterile water and reagent mix. Accordingly, we identified 14 viral sequences in 7 negative control sequencing libraries. As in previous studies, several circular replication-associated protein encoding (CRESS) DNA virus-like sequences were recovered in the blank control libraries, as well as contaminating sequences from the Totiviridae, Tombusviridae and Lentiviridae families of RNA virus. These data suggest that viral contamination of common laboratory reagents is likely commonplace and can comprise a wide variety of viruses.
Collapse
Affiliation(s)
- Ashleigh F. Porter
- The Peter Doherty Institute of Immunity and Infection, Department of Microbiology and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Joanna Cobbin
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ci-Xiu Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China;
| | - John-Sebastian Eden
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
2
|
Current challenges to virus discovery by meta-transcriptomics. Curr Opin Virol 2021; 51:48-55. [PMID: 34592710 DOI: 10.1016/j.coviro.2021.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Meta-transcriptomic next-generation sequencing has transformed virus discovery, dramatically expanding our knowledge of the known virosphere. Nevertheless, the use of meta-transcriptomics for virus discovery faces important challenges. As this technology becomes more widely adopted, the proportion of viral sequences in public databases with incorrect (e.g. mis-assignment of host) or limited information (e.g. lacking taxonomic classification) is likely to grow, limiting their utility in bioinformatic pipelines for virus discovery. In addition, we currently lack the bioinformatic tools that can accurately identify viruses showing little or no sequence similarity to database viruses or those that represent likely reagent contaminants. Herein, we outline some of the challenges to effective meta-transcriptomic virus discovery as well as their potential solutions.
Collapse
|
3
|
Sadato D, Ogawa M, Hirama C, Hishima T, Horiguchi S, Harada Y, Shimoyama T, Itokawa M, Ohashi K, Oboki K. Potential prognostic impact of EBV RNA-seq reads in gastric cancer: a reanalysis of The Cancer Genome Atlas cohort. FEBS Open Bio 2020; 10:455-467. [PMID: 31991047 PMCID: PMC7050242 DOI: 10.1002/2211-5463.12803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC), whose prognosis remains controversial, is diagnosed by in situ hybridization of EBV-derived EBER1/2 small RNAs. In The Cancer Genome Atlas (TCGA) Stomach Adenocarcinoma (STAD) project, the EBV molecular subtype was determined through a combination of multiple next-generation sequencing methods, but not by the gold standard in situ hybridization method. This leaves unanswered questions regarding the discordance of EBV positivity detected by different approaches and the threshold of sequencing reads. Therefore, we reanalyzed the TCGA-STAD RNA sequencing (RNA-seq) dataset including 375 tumor and 32 normal samples, using our analysis pipeline. We defined a reliable threshold for EBV-derived next-generation sequencing reads by mapping them to the EBV genome with three different random arbitrary alignments. We analyzed the prognostic impact of EBV status on the histopathological subtypes of gastric cancer. EBV-positive cases identified by reanalysis comprised nearly half of the cases (49.6%) independent from infiltrating lymphocyte signatures, and showed significantly longer overall survival for adenocarcinomas of the 'not-otherwise-specified' type [P = 0.016 (log-rank test); hazard ratios (HR): 0.476; 95% CI: 0.260-0.870, P = 0.016 (Cox univariate analysis)], but shorter overall survival for the tubular adenocarcinoma type [P = 0.005 (log-rank test); HR: 3.329; 95% CI: 1.406-7.885, P = 0.006 (Cox univariate analysis)]. These results demonstrate that the EBV positivity rates were higher when determined by RNA-seq than when determined by EBER1/2 in situ hybridization. The RNA-seq-based EBV positivity demonstrated distinct results for gastric cancer prognosis depending on the histopathological subtype, suggesting its potential to be used in clinical prognoses.
Collapse
Affiliation(s)
- Daichi Sadato
- Division of HematologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
- Center for Medical Research CooperationTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuJapan
- Divisions of Clinical Research SupportTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo-kuJapan
| | - Mina Ogawa
- Center for Medical Research CooperationTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuJapan
- Divisions of Clinical Research SupportTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo-kuJapan
- Department of Medical OncologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
| | - Chizuko Hirama
- Division of HematologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
- Center for Medical Research CooperationTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuJapan
- Divisions of Clinical Research SupportTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo-kuJapan
| | - Tsunekazu Hishima
- Department of PathologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
| | - Shin‐Ichiro Horiguchi
- Department of PathologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
| | - Yuka Harada
- Divisions of Clinical Research SupportTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo-kuJapan
| | - Tatsu Shimoyama
- Department of Medical OncologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
| | - Masanari Itokawa
- Center for Medical Research CooperationTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuJapan
| | - Kazuteru Ohashi
- Division of HematologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
| | - Keisuke Oboki
- Center for Medical Research CooperationTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuJapan
| |
Collapse
|
4
|
Alawi M, Burkhardt L, Indenbirken D, Reumann K, Christopeit M, Kröger N, Lütgehetmann M, Aepfelbacher M, Fischer N, Grundhoff A. DAMIAN: an open source bioinformatics tool for fast, systematic and cohort based analysis of microorganisms in diagnostic samples. Sci Rep 2019; 9:16841. [PMID: 31727957 PMCID: PMC6856179 DOI: 10.1038/s41598-019-52881-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
We describe DAMIAN, an open source bioinformatics tool designed for the identification of pathogenic microorganisms in diagnostic samples. By using authentic clinical samples and comparing our results to those from established analysis pipelines as well as conventional diagnostics, we demonstrate that DAMIAN rapidly identifies pathogens in different diagnostic entities, and accurately classifies viral agents down to the strain level. We furthermore show that DAMIAN is able to assemble full-length viral genomes even in samples co-infected with multiple virus strains, an ability which is of considerable advantage for the investigation of outbreak scenarios. While DAMIAN, similar to other pipelines, analyzes single samples to perform classification of sequences according to their likely taxonomic origin, it also includes a tool for cohort-based analysis. This tool uses cross-sample comparisons to identify sequence signatures that are frequently present in a sample group of interest (e.g., a disease-associated cohort), but occur less frequently in control cohorts. As this approach does not require homology searches in databases, it principally allows the identification of not only known, but also completely novel pathogens. Using samples from a meningitis outbreak, we demonstrate the feasibility of this approach in identifying enterovirus as the causative agent.
Collapse
Affiliation(s)
- Malik Alawi
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany.,Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lia Burkhardt
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Kerstin Reumann
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Maximilian Christopeit
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany. .,German Center for Infection Research, DZIF, partner site Hamburg-Borstel-Lübeck-Riems, Germany.
| | - Adam Grundhoff
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany. .,German Center for Infection Research, DZIF, partner site Hamburg-Borstel-Lübeck-Riems, Germany.
| |
Collapse
|
5
|
Asplund M, Kjartansdóttir KR, Mollerup S, Vinner L, Fridholm H, Herrera JAR, Friis-Nielsen J, Hansen TA, Jensen RH, Nielsen IB, Richter SR, Rey-Iglesia A, Matey-Hernandez ML, Alquezar-Planas DE, Olsen PVS, Sicheritz-Pontén T, Willerslev E, Lund O, Brunak S, Mourier T, Nielsen LP, Izarzugaza JMG, Hansen AJ. Contaminating viral sequences in high-throughput sequencing viromics: a linkage study of 700 sequencing libraries. Clin Microbiol Infect 2019; 25:1277-1285. [PMID: 31059795 DOI: 10.1016/j.cmi.2019.04.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Sample preparation for high-throughput sequencing (HTS) includes treatment with various laboratory components, potentially carrying viral nucleic acids, the extent of which has not been thoroughly investigated. Our aim was to systematically examine a diverse repertoire of laboratory components used to prepare samples for HTS in order to identify contaminating viral sequences. METHODS A total of 322 samples of mainly human origin were analysed using eight protocols, applying a wide variety of laboratory components. Several samples (60% of human specimens) were processed using different protocols. In total, 712 sequencing libraries were investigated for viral sequence contamination. RESULTS Among sequences showing similarity to viruses, 493 were significantly associated with the use of laboratory components. Each of these viral sequences had sporadic appearance, only being identified in a subset of the samples treated with the linked laboratory component, and some were not identified in the non-template control samples. Remarkably, more than 65% of all viral sequences identified were within viral clusters linked to the use of laboratory components. CONCLUSIONS We show that high prevalence of contaminating viral sequences can be expected in HTS-based virome data and provide an extensive list of novel contaminating viral sequences that can be used for evaluation of viral findings in future virome and metagenome studies. Moreover, we show that detection can be problematic due to stochastic appearance and limited non-template controls. Although the exact origin of these viral sequences requires further research, our results support laboratory-component-linked viral sequence contamination of both biological and synthetic origin.
Collapse
Affiliation(s)
- M Asplund
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - K R Kjartansdóttir
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - S Mollerup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - L Vinner
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - H Fridholm
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - J A R Herrera
- Disease Systems Biology Programme, Panum Instituttet, Copenhagen, Denmark; Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - J Friis-Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - T A Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - R H Jensen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - I B Nielsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - S R Richter
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - A Rey-Iglesia
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - M L Matey-Hernandez
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - D E Alquezar-Planas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - P V S Olsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - T Sicheritz-Pontén
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Kedah, Malaysia
| | - E Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - O Lund
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - S Brunak
- Disease Systems Biology Programme, Panum Instituttet, Copenhagen, Denmark; Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - T Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - L P Nielsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - J M G Izarzugaza
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - A J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Chen X, Kost J, Sulovari A, Wong N, Liang WS, Cao J, Li D. A virome-wide clonal integration analysis platform for discovering cancer viral etiology. Genome Res 2019; 29:819-830. [PMID: 30872350 PMCID: PMC6499315 DOI: 10.1101/gr.242529.118] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022]
Abstract
Oncoviral infection is responsible for 12%–15% of cancer in humans. Convergent evidence from epidemiology, pathology, and oncology suggests that new viral etiologies for cancers remain to be discovered. Oncoviral profiles can be obtained from cancer genome sequencing data; however, widespread viral sequence contamination and noncausal viruses complicate the process of identifying genuine oncoviruses. Here, we propose a novel strategy to address these challenges by performing virome-wide screening of early-stage clonal viral integrations. To implement this strategy, we developed VIcaller, a novel platform for identifying viral integrations that are derived from any characterized viruses and shared by a large proportion of tumor cells using whole-genome sequencing (WGS) data. The sensitivity and precision were confirmed with simulated and benchmark cancer data sets. By applying this platform to cancer WGS data sets with proven or speculated viral etiology, we newly identified or confirmed clonal integrations of hepatitis B virus (HBV), human papillomavirus (HPV), Epstein-Barr virus (EBV), and BK Virus (BKV), suggesting the involvement of these viruses in early stages of tumorigenesis in affected tumors, such as HBV in TERT and KMT2B (also known as MLL4) gene loci in liver cancer, HPV and BKV in bladder cancer, and EBV in non-Hodgkin's lymphoma. We also showed the capacity of VIcaller to identify integrations from some uncharacterized viruses. This is the first study to systematically investigate the strategy and method of virome-wide screening of clonal integrations to identify oncoviruses. Searching clonal viral integrations with our platform has the capacity to identify virus-caused cancers and discover cancer viral etiologies.
Collapse
Affiliation(s)
- Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | - Jason Kost
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | - Arvis Sulovari
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | - Nathalie Wong
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong 999077, P.R. China
| | - Winnie S Liang
- Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Jian Cao
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA.,Neuroscience, Behavior, and Health Initiative, University of Vermont, Burlington, Vermont 05405, USA.,Department of Computer Science, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
7
|
Smith J, Qvist CC, Jacobsen KK, Larsen JM. Medical laboratory scientist: a new partner in biomarker research. Per Med 2018; 14:285-291. [PMID: 29749831 DOI: 10.2217/pme-2017-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Julie Smith
- Department of Technology, Faculty of Health & Technology, Metropolitan University College, 26 Sigurdsgade, DK-2200 Copenhagen, Denmark
| | - Camilla Christine Qvist
- Department of Pathology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Katja Kemp Jacobsen
- Department of Technology, Faculty of Health & Technology, Metropolitan University College, 26 Sigurdsgade, DK-2200 Copenhagen, Denmark
| | - Jeppe Madura Larsen
- Department of Technology, Faculty of Health & Technology, Metropolitan University College, 26 Sigurdsgade, DK-2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Tang KW, Larsson E. Tumour virology in the era of high-throughput genomics. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0265. [PMID: 28893932 PMCID: PMC5597732 DOI: 10.1098/rstb.2016.0265] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
With the advent of massively parallel sequencing, oncogenic viruses in tumours can now be detected in an unbiased and comprehensive manner. Additionally, new viruses or strains can be discovered based on sequence similarity with known viruses. Using this approach, the causative agent for Merkel cell carcinoma was identified. Subsequent studies using data from large collections of tumours have confirmed models built during decades of hypothesis-driven and low-throughput research, and a more detailed and comprehensive description of virus-tumour associations have emerged. Notably, large cohorts and high sequencing depth, in combination with newly developed bioinformatical techniques, have made it possible to rule out several suggested virus-tumour associations with a high degree of confidence. In this review we discuss possibilities, limitations and insights gained from using massively parallel sequencing to characterize tumours with viral content, with emphasis on detection of viral sequences and genomic integration events.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Ka-Wei Tang
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| |
Collapse
|
9
|
The Human Virome: Implications for Clinical Practice in Transplantation Medicine. J Clin Microbiol 2017; 55:2884-2893. [PMID: 28724557 DOI: 10.1128/jcm.00489-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Advances in DNA sequencing technology have provided an unprecedented opportunity to study the human virome. Transplant recipients and other immunocompromised hosts are at particular risk for developing virus-related pathology; thus, the impact of the virome on health and disease may be even more relevant in this population. Here, we discuss technical considerations in studying the human virome, the current literature on the virome in transplant recipients, and near-future applications of sequence-based findings that can further our understanding of viruses in transplantation medicine.
Collapse
|
10
|
Hansen TA, Mollerup S, Nguyen NP, White NE, Coghlan M, Alquezar-Planas DE, Joshi T, Jensen RH, Fridholm H, Kjartansdóttir KR, Mourier T, Warnow T, Belsham GJ, Bunce M, Willerslev E, Nielsen LP, Vinner L, Hansen AJ. High diversity of picornaviruses in rats from different continents revealed by deep sequencing. Emerg Microbes Infect 2016; 5:e90. [PMID: 27530749 PMCID: PMC5034103 DOI: 10.1038/emi.2016.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 12/02/2022]
Abstract
Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission.
Collapse
Affiliation(s)
- Thomas Arn Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Sarah Mollerup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Nam-Phuong Nguyen
- Carl R. Woese Institute for Genomic Biology, The University of Illinois at Urbana-Champaign, Urbana, IL 61801-2302, USA
| | - Nicole E White
- Trace and Environmental DNA Lab and Australian Wildlife Forensic Services, Curtin University, Perth, Western Australia 6102, Australia
| | - Megan Coghlan
- Trace and Environmental DNA Lab and Australian Wildlife Forensic Services, Curtin University, Perth, Western Australia 6102, Australia
| | - David E Alquezar-Planas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Tejal Joshi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, DK-2800 Kongens Lyngby, Denmark
| | - Randi Holm Jensen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Helena Fridholm
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.,Virus Research and Development, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Kristín Rós Kjartansdóttir
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Tandy Warnow
- Departments of Bioengineering and Computer Science, The University of Illinois at Urbana-Champaign, Urbana, IL 61801-2302, USA
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Michael Bunce
- Trace and Environmental DNA Lab and Australian Wildlife Forensic Services, Curtin University, Perth, Western Australia 6102, Australia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Lars Peter Nielsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Lasse Vinner
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Anders Johannes Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| |
Collapse
|