1
|
Willner DL, Paudel S, Halleran AD, Solini GE, Gray V, Saha MS. Transcriptional dynamics during Rhodococcus erythropolis infection with phage WC1. BMC Microbiol 2024; 24:107. [PMID: 38561651 PMCID: PMC10986025 DOI: 10.1186/s12866-024-03241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Belonging to the Actinobacteria phylum, members of the Rhodococcus genus thrive in soil, water, and even intracellularly. While most species are non-pathogenic, several cause respiratory disease in animals and, more rarely, in humans. Over 100 phages that infect Rhodococcus species have been isolated but despite their importance for Rhodococcus ecology and biotechnology applications, little is known regarding the molecular genetic interactions between phage and host during infection. To address this need, we report RNA-Seq analysis of a novel Rhodococcus erythopolis phage, WC1, analyzing both the phage and host transcriptome at various stages throughout the infection process. RESULTS By five minutes post-infection WC1 showed upregulation of a CAS-4 family exonuclease, putative immunity repressor, an anti-restriction protein, while the host showed strong upregulation of DNA replication, SOS repair, and ribosomal protein genes. By 30 min post-infection, WC1 DNA synthesis genes were strongly upregulated while the host showed increased expression of transcriptional and translational machinery and downregulation of genes involved in carbon, energy, and lipid metabolism pathways. By 60 min WC1 strongly upregulated structural genes while the host showed a dramatic disruption of metal ion homeostasis. There was significant expression of both host and phage non-coding genes at all time points. While host gene expression declined over the course of infection, our results indicate that phage may exert more selective control, preserving the host's regulatory mechanisms to create an environment conducive for virion production. CONCLUSIONS The Rhodococcus genus is well recognized for its ability to synthesize valuable compounds, particularly steroids, as well as its capacity to degrade a wide range of harmful environmental pollutants. A detailed understanding of these phage-host interactions and gene expression is not only essential for understanding the ecology of this important genus, but will also facilitate development of phage-mediated strategies for bioremediation as well as biocontrol in industrial processes and biomedical applications. Given the current lack of detailed global gene expression studies on any Rhodococcus species, our study addresses a pressing need to identify tools and genes, such as F6 and rpf, that can enhance the capacity of Rhodococcus species for bioremediation, biosynthesis and pathogen control.
Collapse
Affiliation(s)
- Dana L Willner
- Data Science Program, William & Mary, Williamsburg, VA, USA
| | - Sudip Paudel
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Wyss Institute, Harvard University, Cambridge, MA, USA
| | - Andrew D Halleran
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Atalaya Capital Management, New York, NY, USA
| | - Grace E Solini
- Department of Biology, William & Mary, Williamsburg, VA, USA
- California Institute of Technology, Pasadena, CA, USA
| | - Veronica Gray
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Georgetown University School of Medicine, Washington, DC, USA
| | - Margaret S Saha
- Department of Biology, William & Mary, Williamsburg, VA, USA.
| |
Collapse
|
2
|
Hernández Villamizar S, Chica Cárdenas LA, Morales Mancera LT, Vives Florez MJ. Anaerobiosis, a neglected factor in phage-bacteria interactions. Appl Environ Microbiol 2023; 89:e0149123. [PMID: 37966212 PMCID: PMC10734468 DOI: 10.1128/aem.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Many parameters affect phage-bacteria interaction. Some of these parameters depend on the environment in which the bacteria are present. Anaerobiosis effect on phage infection in facultative anaerobic bacteria has not yet been studied. The absence of oxygen triggers metabolic changes in facultative bacteria and this affects phage infection and viral life cycle. Understanding how an anaerobic environment can alter the behavior of phages during infection is relevant for the phage therapy success.
Collapse
|
3
|
Fremin BJ, Bhatt AS, Kyrpides NC. Identification of over ten thousand candidate structured RNAs in viruses and phages. Comput Struct Biotechnol J 2023; 21:5630-5639. [PMID: 38047235 PMCID: PMC10690425 DOI: 10.1016/j.csbj.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Structured RNAs play crucial roles in viruses, exerting influence over both viral and host gene expression. However, the extensive diversity of structured RNAs and their ability to act in cis or trans positions pose challenges for predicting and assigning their functions. While comparative genomics approaches have successfully predicted candidate structured RNAs in microbes on a large scale, similar efforts for viruses have been lacking. In this study, we screened over 5 million DNA and RNA viral sequences, resulting in the prediction of 10,006 novel candidate structured RNAs. These predictions are widely distributed across taxonomy and ecosystem. We found transcriptional evidence for 206 of these candidate structured RNAs in the human fecal microbiome. These candidate RNAs exhibited evidence of nucleotide covariation, indicative of selective pressure maintaining the predicted secondary structures. Our analysis revealed a diverse repertoire of candidate structured RNAs, encompassing a substantial number of putative tRNAs or tRNA-like structures, Rho-independent transcription terminators, and potentially cis-regulatory structures consistently positioned upstream of genes. In summary, our findings shed light on the extensive diversity of structured RNAs in viruses, offering a valuable resource for further investigations into their functional roles and implications in viral gene expression and pave the way for a deeper understanding of the intricate interplay between viruses and their hosts at the molecular level.
Collapse
Affiliation(s)
- Brayon J. Fremin
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ami S. Bhatt
- Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Lead Contact, USA
| |
Collapse
|
4
|
Kornienko M, Bespiatykh D, Gorodnichev R, Abdraimova N, Shitikov E. Transcriptional Landscapes of Herelleviridae Bacteriophages and Staphylococcus aureus during Phage Infection: An Overview. Viruses 2023; 15:1427. [PMID: 37515114 PMCID: PMC10383478 DOI: 10.3390/v15071427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The issue of antibiotic resistance in healthcare worldwide has led to a pressing need to explore and develop alternative approaches to combat infectious diseases. Among these methods, phage therapy has emerged as a potential solution to tackle this growing challenge. Virulent phages of the Herelleviridae family, known for their ability to cause lysis of Staphylococcus aureus, a clinically significant pathogen frequently associated with multidrug resistance, have proven to be one of the most effective viruses utilized in phage therapy. In order to utilize phages for therapeutic purposes effectively, a thorough investigation into their physiology and mechanisms of action on infected cells is essential. The use of omics technologies, particularly total RNA sequencing, is a promising approach for analyzing the interaction between phages and their hosts, allowing for the assessment of both the behavior of the phage during infection and the cell's response. This review aims to provide a comprehensive overview of the physiology of the Herelleviridae family, utilizing existing analyses of their total phage transcriptomes. Additionally, it sheds light on the changes that occur in the metabolism of S. aureus when infected with virulent bacteriophages, contributing to a deeper understanding of the phage-host interaction.
Collapse
Affiliation(s)
- Maria Kornienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Dmitry Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Roman Gorodnichev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Narina Abdraimova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Egor Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| |
Collapse
|
5
|
Jo D, Kim H, Lee Y, Kim J, Ryu S. Characterization and genomic study of EJP2, a novel jumbo phage targeting antimicrobial resistant Escherichia coli. Front Microbiol 2023; 14:1194435. [PMID: 37250060 PMCID: PMC10213699 DOI: 10.3389/fmicb.2023.1194435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) Escherichia coli has noticeably increased in recent years worldwide and causes serious public health concerns. As alternatives to antibiotics, bacteriophages are regarded as promising antimicrobial agents. In this study, we isolated and characterized a novel jumbo phage EJP2 that specifically targets AMR E. coli strains. EJP2 belonged to the Myoviridae family with an icosahedral head (120.9 ± 2.9 nm) and a non-contractile tail (111.1 ± 0.6 nm), and contained 349,185 bp double-stranded DNA genome with 540 putative ORFs, suggesting that EJP2 could be classified as jumbo phage. The functions of genes identified in EJP2 genome were mainly related to nucleotide metabolism, DNA replication, and recombination. Comparative genomic analysis revealed that EJP2 was categorized in the group of Rak2-related virus and presented low sequence similarity at the nucleotide and amino acid level compared to other E. coli jumbo phages. EJP2 had a broad host spectrum against AMR E. coli as well as pathogenic E. coli and recognized LPS as a receptor for infection. Moreover, EJP2 treatment could remove over 80% of AMR E. coli biofilms on 96-well polystyrene, and exhibit synergistic antimicrobial activity with cefotaxime against AMR E. coli. These results suggest that jumbo phage EJP2 could be used as a potential biocontrol agent to combat the AMR issue in food processing and clinical environments.
Collapse
|
6
|
Aggarwal S, Dhall A, Patiyal S, Choudhury S, Arora A, Raghava GPS. An ensemble method for prediction of phage-based therapy against bacterial infections. Front Microbiol 2023; 14:1148579. [PMID: 37032893 PMCID: PMC10076811 DOI: 10.3389/fmicb.2023.1148579] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Phage therapy is a viable alternative to antibiotics for treating microbial infections, particularly managing drug-resistant strains of bacteria. One of the major challenges in designing phage-based therapy is to identify the most appropriate potential phage candidate to treat bacterial infections. In this study, an attempt has been made to predict phage-host interactions with high accuracy to identify the potential bacteriophage that can be used for treating a bacterial infection. The developed models have been created using a training dataset containing 826 phage- host interactions, and have been evaluated on a validation dataset comprising 1,201 phage-host interactions. Firstly, alignment-based models have been developed using similarity between phage-phage (BLASTPhage), host-host (BLASTHost) and phage-CRISPR (CRISPRPred), where we achieved accuracy between 42.4-66.2% for BLASTPhage, 55-78.4% for BLASTHost, and 43.7-80.2% for CRISPRPred across five taxonomic levels. Secondly, alignment free models have been developed using machine learning techniques. Thirdly, hybrid models have been developed by integrating the alignment-free models and the similarity-scores where we achieved maximum performance of (60.6-93.5%). Finally, an ensemble model has been developed that combines the hybrid and alignment-based models. Our ensemble model achieved highest accuracy of 67.9, 80.6, 85.5, 90, and 93.5% at Genus, Family, Order, Class, and Phylum levels on validation dataset. In order to serve the scientific community, we have also developed a webserver named PhageTB and provided a standalone software package (https://webs.iiitd.edu.in/raghava/phagetb/) for the same.
Collapse
Affiliation(s)
- Suchet Aggarwal
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Akanksha Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- *Correspondence: Gajendra P. S. Raghava,
| |
Collapse
|
7
|
Yan A, Butcher J, Schramm L, Mack DR, Stintzi A. Multiomic spatial analysis reveals a distinct mucosa-associated virome. Gut Microbes 2023; 15:2177488. [PMID: 36823020 PMCID: PMC9980608 DOI: 10.1080/19490976.2023.2177488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The human gut virome has been increasingly explored in recent years. However, nearly all virome-sequencing efforts rely solely on fecal samples and few studies leverage multiomic approaches to investigate phage-host relationships. Here, we combine metagenomics, metaviromics, and metatranscriptomics to study virome-bacteriome interactions at the colonic mucosal-luminal interface in a cohort of three individuals with inflammatory bowel disease; non-IBD controls were not included in this study. We show that the mucosal viral population is distinct from the stool virome and houses abundant crAss-like phages that are undetectable by fecal sampling. Through viral protein prediction and metatranscriptomic analysis, we explore viral gene transcription, prophage activation, and the relationship between the presence of integrase and temperate phages in IBD subjects. We also show the impact of deep sequencing on virus recovery and offer guidelines for selecting optimal sequencing depths in future metaviromic studies. Systems biology approaches such as those presented in this report will enhance our understanding of the human virome and its interactions with our microbiome and our health.
Collapse
Affiliation(s)
- Austin Yan
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Laetitia Schramm
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David R. Mack
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,Inflammatory Bowel Disease Centre and CHEO Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,CONTACT Alain Stintzi Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
8
|
Integrated Omics Reveal Time-Resolved Insights into T4 Phage Infection of E. coli on Proteome and Transcriptome Levels. Viruses 2022; 14:v14112502. [PMID: 36423111 PMCID: PMC9697503 DOI: 10.3390/v14112502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages are highly abundant viruses of bacteria. The major role of phages in shaping bacterial communities and their emerging medical potential as antibacterial agents has triggered a rebirth of phage research. To understand the molecular mechanisms by which phages hijack their host, omics technologies can provide novel insights into the organization of transcriptional and translational events occurring during the infection process. In this study, we apply transcriptomics and proteomics to characterize the temporal patterns of transcription and protein synthesis during the T4 phage infection of E. coli. We investigated the stability of E. coli-originated transcripts and proteins in the course of infection, identifying the degradation of E. coli transcripts and the preservation of the host proteome. Moreover, the correlation between the phage transcriptome and proteome reveals specific T4 phage mRNAs and proteins that are temporally decoupled, suggesting post-transcriptional and translational regulation mechanisms. This study provides the first comprehensive insights into the molecular takeover of E. coli by bacteriophage T4. This data set represents a valuable resource for future studies seeking to study molecular and regulatory events during infection. We created a user-friendly online tool, POTATO4, which is available to the scientific community and allows access to gene expression patterns for E. coli and T4 genes.
Collapse
|
9
|
Ledormand P, Desmasures N, Bernay B, Goux D, Rué O, Midoux C, Monnet C, Dalmasso M. Molecular approaches to uncover phage-lactic acid bacteria interactions in a model community simulating fermented beverages. Food Microbiol 2022; 107:104069. [DOI: 10.1016/j.fm.2022.104069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
|
10
|
Finstrlová A, Mašlaňová I, Blasdel Reuter BG, Doškař J, Götz F, Pantůček R. Global Transcriptomic Analysis of Bacteriophage-Host Interactions between a Kayvirus Therapeutic Phage and Staphylococcus aureus. Microbiol Spectr 2022; 10:e0012322. [PMID: 35435752 PMCID: PMC9241854 DOI: 10.1128/spectrum.00123-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Kayviruses are polyvalent broad host range staphylococcal phages with a potential to combat staphylococcal infections. However, the implementation of rational phage therapy in medicine requires a thorough understanding of the interactions between bacteriophages and pathogens at omics level. To evaluate the effect of a phage used in therapy on its host bacterium, we performed differential transcriptomic analysis by RNA-Seq from bacteriophage K of genus Kayvirus infecting two Staphylococcus aureus strains, prophage-less strain SH1000 and quadruple lysogenic strain Newman. The temporal transcriptional profile of phage K was comparable in both strains except for a few loci encoding hypothetical proteins. Stranded sequencing revealed transcription of phage noncoding RNAs that may play a role in the regulation of phage and host gene expression. The transcriptional response of S. aureus to phage K infection resembles a general stress response with differential expression of genes involved in a DNA damage response. The host transcriptional changes involved upregulation of nucleotide, amino acid and energy synthesis and transporter genes and downregulation of host transcription factors. The interaction of phage K with variable genetic elements of the host showed slight upregulation of gene expression of prophage integrases and antirepressors. The virulence genes involved in adhesion and immune evasion were only marginally affected, making phage K suitable for therapy. IMPORTANCE Bacterium Staphylococcus aureus is a common human and veterinary pathogen that causes mild to life-threatening infections. As strains of S. aureus are becoming increasingly resistant to multiple antibiotics, the need to search for new therapeutics is urgent. A promising alternative to antibiotic treatment of staphylococcal infections is a phage therapy using lytic phages from the genus Kayvirus. Here, we present a comprehensive view on the phage-bacterium interactions on transcriptomic level that improves the knowledge of molecular mechanisms underlying the Kayvirus lytic action. The results will ensure safer usage of the phage therapeutics and may also serve as a basis for the development of new antibacterial strategies.
Collapse
Affiliation(s)
- Adéla Finstrlová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Putzeys L, Boon M, Lammens EM, Kuznedelov K, Severinov K, Lavigne R. Development of ONT-cappable-seq to unravel the transcriptional landscape of Pseudomonas phages. Comput Struct Biotechnol J 2022; 20:2624-2638. [PMID: 35685363 PMCID: PMC9163698 DOI: 10.1016/j.csbj.2022.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
RNA sequencing has become the method of choice to study the transcriptional landscape of phage-infected bacteria. However, short-read RNA sequencing approaches generally fail to capture the primary 5' and 3' boundaries of transcripts, confounding the discovery of key transcription initiation and termination events as well as operon architectures. Yet, the elucidation of these elements is crucial for the understanding of the strategy of transcription regulation during the infection process, which is currently lacking beyond a handful of model phages. We developed ONT-cappable-seq, a specialized long-read RNA sequencing technique that allows end-to-end sequencing of primary prokaryotic transcripts using the Nanopore sequencing platform. We applied ONT-cappable-seq to study transcription of Pseudomonas aeruginosa phage LUZ7, obtaining a comprehensive genome-wide map of viral transcription start sites, terminators, and complex operon structures that fine-regulate gene expression. Our work provides new insights in the RNA biology of a non-model phage, unveiling distinct promoter architectures, putative small non-coding viral RNAs, and the prominent regulatory role of terminators during infection. The robust workflow presented here offers a framework to obtain a global, yet fine-grained view of phage transcription and paves the way for standardized, in-depth transcription studies for microbial viruses or bacteria in general.
Collapse
Affiliation(s)
- Leena Putzeys
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | | | | | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
12
|
Nilsson E, Li K, Hoetzinger M, Holmfeldt K. Nutrient driven transcriptional changes during phage infection in an aquatic Gammaproteobacterium. Environ Microbiol 2022; 24:2270-2281. [PMID: 35049095 PMCID: PMC9305737 DOI: 10.1111/1462-2920.15904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/11/2022] [Indexed: 12/01/2022]
Abstract
Phages modulate bacterial metabolism during infection by regulating gene expression, which influences aquatic nutrient cycling. However, the effects of shifting nutrient regimes are less understood. Here, we analyzed transcriptomes of an ecologically relevant Gammaproteobacterium and its lytic phage in high (HNM) and low (LNM) nutrient medium. Despite different infection characteristics, including reduced burst size and longer latent period in LNM, the phage had a fixed expression profile. Bacterial transcription was instead different depending on nutrient regime, with HNM bacteria focusing on growth while LNM bacteria focused on motility and membrane transport. Additionally, phage infection had a larger effect on bacterial gene expression in LNM compared to HNM, e.g. suppressing increased iron uptake and altering expression of phosphorus uptake genes. Overall, phage infection influenced host metabolism more in LNM, which was more similar to natural conditions, emphasizing the importance of considering natural conditions to understand phage and host ecology.
Collapse
Affiliation(s)
- Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| | - Ke Li
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| | - Matthias Hoetzinger
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| |
Collapse
|
13
|
Global Transcriptomic Response of Staphylococcus aureus to Virulent Bacteriophage Infection. Viruses 2022; 14:v14030567. [PMID: 35336974 PMCID: PMC8950790 DOI: 10.3390/v14030567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
In light of the ever-increasing number of multidrug-resistant bacteria worldwide, bacteriophages are becoming a valid alternative to antibiotics; therefore, their interactions with host bacteria must be thoroughly investigated. Here, we report genome-wide transcriptional changes in a clinical Staphylococcus aureus SA515 strain for three time points after infection with the vB_SauM-515A1 kayvirus. Using an RNA sequencing approach, we identify 263 genes that were differentially expressed (DEGs) between phage-infected and uninfected host samples. Most of the DEGs were identified at an early stage of phage infection and were mainly involved in nucleotide and amino acid metabolism, as well as in cell death prevention. At the subsequent infection stages, the vast majority of DEGs were upregulated. Interestingly, 39 upregulated DEGs were common between the 15th and 30th minutes post-infection, and a substantial number of them belonged to the prophages. Furthermore, some virulence factors were overexpressed at the late infection stage, which necessitates more stringent host strain selection requirements for further use of bacteriophages for therapeutic purposes. Thus, this work allows us to better understand the influence of kayviruses on the metabolic systems of S. aureus and contributes to a better comprehension of phage therapy.
Collapse
|
14
|
Melo LDR, Monteiro R, Pires DP, Azeredo J. Phage-Host Interaction Analysis by Flow Cytometry Allows for Rapid and Efficient Screening of Phages. Antibiotics (Basel) 2022; 11:antibiotics11020164. [PMID: 35203767 PMCID: PMC8868278 DOI: 10.3390/antibiotics11020164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Recently, phages have become popular as an alternative to antibiotics. This increased demand for phage therapy needs rapid and efficient methods to screen phages infecting specific hosts. Existing methods are time-consuming, and for clinical purposes, novel, quick, and reliable screening methods are highly needed. Flow cytometry (FC) allows a quick differentiation and enumeration of bacterial cell populations and has been used to assess in vitro the activity of antimicrobial compounds. In this work, we propose FC as a rapid and reliable method to assess the susceptibility of a bacterial population to phage infection. For that, the interaction of phages vB_PaeM_CEB_DP1 and vB_PaeP_PE3 with Pseudomonas aeruginosa PAO1 was characterized by FC. Synchronous infection assays were performed, and samples were collected at different time points and stained with SYTO BC and PI before analysis. Part of the collected samples was used to characterize the expression of early, middle, and late genes by qPCR. Both FC and qPCR results were correlated with phage propagation assays. Results showed that SYTO BC median fluorescence intensity (MFI) values increased in the first 25 min of PE3 and DP1 infection. The increase of fluorescence is due to the expression of phage genes observed by qPCR. Since SYTO BC MFI values increase with gene expression, it allows the determination of host susceptibility to a phage in a short period of time, avoiding false positives caused by lysis from without. In conclusion, this method may allow for a quick and high-throughput real-time screening of different phages to a specific host, which can be crucial for a quick phage selection in clinical practice.
Collapse
Affiliation(s)
- Luís D. R. Melo
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
- Correspondence: (L.D.R.M.); (J.A.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-414 (J.A.)
| | - Rodrigo Monteiro
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Diana P. Pires
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Joana Azeredo
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
- Correspondence: (L.D.R.M.); (J.A.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-414 (J.A.)
| |
Collapse
|
15
|
A novel method to create efficient phage cocktails via use of phage-resistant bacteria. Appl Environ Microbiol 2022; 88:e0232321. [PMID: 35080902 DOI: 10.1128/aem.02323-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid anti-phage mutation of pathogens is a big challenge often encountered in the application of phages in aquaculture, animal husbandry and human disease prevention. A cocktail composed of phages with different infection strategies can better suppress the anti-phage resistance of pathogens. However, randomly selecting phages with different infection strategies is time-consuming and labor-intensive. Here, we verified that using a resistant pathogen quickly-evolved under single phage infection as the new host can easily obtain phages with different infection strategies. We randomly isolated two lytic phages (i.e., Va1 and Va2) that infect the opportunistic pathogen Vibrio alginolyticus. Whether they were used alone or in combination, the pathogen easily gained resistance. Using a mutated pathogen resistant to Va1 as a new host, a third lytic phage Va3 was isolated. These three phages have a similar infection cycle and lytic ability, but quite different morphologies and genome information. Notably, phage Va3 is a jumbo phage containing a larger and more complex genome (240 kb) than Va1 and Va2. Furthermore, the 34 tRNAs and multiple genes encoding receptor binding proteins and NAD+ synthesis proteins in the Va3 genome implicated its quite different infection strategy compared to Va1 and Va2. Although the wild-type pathogen could still readily evolve resistance under single phage infection by Va3, when Va3 was used in combination with Va1 and Va2, pathogen resistance was strongly suppressed. This study provides a novel approach for rapid isolation of phages with different infection strategies, which will be highly beneficial when designing effective phage cocktails. Importance The rapid anti-phage mutation of pathogens is a big challenge often encountered in phage therapy. Using a cocktail composed of phages with different infection strategies can better overcome this problem. However, randomly selecting phages with different infection strategies is time-consuming and labor-intensive. To address this problem, we developed a method to efficiently obtain phages with disparate infection strategies. The trick is to use the characteristics of the pathogenic bacteria that are prone to develop resistance to single phage infection, to rapidly obtain the anti-phage variant of the pathogen. Using this anti-phage variant as the host results in other phages with different infection strategies being efficiently isolated. We also verified the reliability of this method by demonstrating the ideal phage control effects on two pathogens, and thus revealed its potential importance in the development of phage therapies.
Collapse
|
16
|
Oliveira H, Domingues R, Evans B, Sutton JM, Adriaenssens EM, Turner D. Genomic Diversity of Bacteriophages Infecting the Genus Acinetobacter. Viruses 2022; 14:181. [PMID: 35215775 PMCID: PMC8878043 DOI: 10.3390/v14020181] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/21/2023] Open
Abstract
The number of sequenced Acinetobacter phage genomes in the International Nucleotide Sequence Database Collaboration has increased significantly in recent years, from 37 in 2017 to a total of 139 as of January 2021 with genome sizes ranging from 31 to 378 kb. Here, we explored the genetic diversity of the Acinetobacter phages using comparative genomics approaches that included assessment of nucleotide similarity, shared gene content, single gene phylogeny, and the network-based classification tool vConTACT2. Phages infecting Acinetobacter sp. are genetically diverse and can be grouped into 8 clusters (subfamilies) and 46 sub-clusters (genera), of which 8 represent genomic singletons (additional genera). We propose the creation of five new subfamilies and suggest a reorganisation of the genus Obolenskvirus. These results provide an updated view of the viruses infecting Acinetobacter species, providing insights into their diversity.
Collapse
Affiliation(s)
- Hugo Oliveira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga, 4710-057 Braga, Portugal; (H.O.); (R.D.)
| | - Rita Domingues
- Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga, 4710-057 Braga, Portugal; (H.O.); (R.D.)
| | - Benjamin Evans
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK;
| | - J. Mark Sutton
- United Kingdom Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 OJG, UK;
| | | | - Dann Turner
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
17
|
Filik K, Szermer-Olearnik B, Niedziółka-Jönson J, Roźniecka E, Ciekot J, Pyra A, Matyjaszczyk I, Skurnik M, Brzozowska E. φYeO3-12 phage tail fiber Gp17 as a promising high specific tool for recognition of Yersinia enterocolitica pathogenic serotype O:3. AMB Express 2022; 12:1. [PMID: 34989907 PMCID: PMC8739404 DOI: 10.1186/s13568-021-01341-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/19/2021] [Indexed: 11/10/2022] Open
Abstract
Yersiniosis is an infectious zoonotic disease caused by two enteropathogenic species of Gram-negative genus Yersinia: Yersinia enterocolitica and Yersinia pseudotuberculosis. Pigs and other wild and domestic animals are reservoirs for these bacteria. Infection is usually spread to humans by ingestion of contaminated food. Yersiniosis is considered a rare disease, but recent studies indicate that it is overlooked in the diagnostic process therefore the infections with this bacterium are not often identified. Reliable diagnosis of Yersiniosis by culturing is difficult due to the slow growth of the bacteria easily overgrown by other more rapidly growing microbes unless selec-tive growth media is used. Phage adhesins recognizing bacteria in a specific manner can be an excellent diagnostic tool, es-pecially in the diagnosis of pathogens difficult for culturing. In this study, it was shown that Gp17, the tail fiber protein (TFP) of phage φYeO3-12, specifically recognizes only the pathogenic Yersinia enterocolitica serotype O:3 (YeO:3) bacteria. The ELISA test used in this work confirmed the specific interaction of this protein with YeO:3 and demonstrated a promising tool for developing the pathogen recognition method based on phage adhesins.
Collapse
Affiliation(s)
- Karolina Filik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114 Wroclaw, Poland
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114 Wroclaw, Poland
| | - Joanna Niedziółka-Jönson
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| | - Ewa Roźniecka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 5201-224 Warsaw, Poland
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114 Wroclaw, Poland
| | - Anna Pyra
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie St, 50383 Wroclaw, Poland
| | - Irwin Matyjaszczyk
- Department of Mycology and Genetics, Institute of Genetics and Microbiology, University of Wrocław, 51-148 Wroclaw, Poland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Ewa Brzozowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114 Wroclaw, Poland
| |
Collapse
|
18
|
Nazir A, Ali A, Qing H, Tong Y. Emerging Aspects of Jumbo Bacteriophages. Infect Drug Resist 2021; 14:5041-5055. [PMID: 34876823 PMCID: PMC8643167 DOI: 10.2147/idr.s330560] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/30/2021] [Indexed: 01/21/2023] Open
Abstract
The bacteriophages have been explored at a huge scale as a model system for their applications in many biological-related fields. Jumbo phages with a large genome size from 200 to 500 kbp were not previously assigned a great value, and characterized by complex structures coupled with large virions with a wide variety of hosts. The origin of most of the jumbo phages was not well understood; however, many other prominent features have been discovered recently. In the current review, we strive to unearth the most advanced characteristics of jumbo phages, particularly their significance and structural organization that holds immense value to the viral life cycle. The unique characteristics of jumbo phages are the basis of variations in different types of phages concerning their organization at the genomic level, virion structure, evolution, and progeny propagation. The presence of tRNA and additional translation-related genes along with chaperonin genes mark the ability of these phages for being independent of host molecular machinery enabling them to have wide host options. A large number of jumbo phages have been isolated from various sources through advanced standard screening methods. The current review has summarized the available data on jumbo phages and discussed the genome orientation of jumbo phages, translational machinery, diversity and evolution of jumbo phages. In the studies conducted, jumbo phages possessed special additional genes that helps to reduce the dependence of jumbo phages on their hosts. Furthermore, their genomes might have evolved from smaller genome phages.
Collapse
Affiliation(s)
- Amina Nazir
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Azam Ali
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Brandão A, Pires DP, Coppens L, Voet M, Lavigne R, Azeredo J. Differential transcription profiling of the phage LUZ19 infection process in different growth media. RNA Biol 2021; 18:1778-1790. [PMID: 33448239 PMCID: PMC8583145 DOI: 10.1080/15476286.2020.1870844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022] Open
Abstract
RNA sequencing of phage-infected bacterial cultures offers a snapshot of transcriptional events occurring during the infection process, providing insights into the phage transcriptional organization as well as the bacterial response. To better mimic real environmental contexts, we performed RNA-seq of Pseudomonas aeruginosa PAO1 cultures infected with phage LUZ19 in a mammalian cell culture medium to better simulate a phage therapy event and the data were compared to lysogeny broth medium. Regardless of the media, phage LUZ19 induces significant transcriptional changes in the bacterial host over time, particularly during early infection (t = 5 min) and gradually shuts down bacterial transcription. In a common response in both media, 56 P. aeruginosa PAO1 genes are differentially transcribed and clustered into several functional categories such as metabolism, translation and transcription. Our data allowed us to tease apart a medium-specific response during infection from the identified infection-associated responses. This reinforces the concept that phages overtake bacterial transcriptome in a strict manner to gain control of the bacterial machinery and reallocate resources for infection, in this case overcoming the nutritional limitations of the mammalian cell culture medium. From a phage therapy perspective, this study contributes towards a better understanding of phage-host interaction in human physiological conditions and demonstrates the versatility of phage LUZ19 to adapt to different environments.
Collapse
Affiliation(s)
- Ana Brandão
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Diana P. Pires
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Lucas Coppens
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
20
|
BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01. Viruses 2021; 13:v13112171. [PMID: 34834977 PMCID: PMC8624392 DOI: 10.3390/v13112171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Yersinia enterocolitica is a food-borne Gram-negative pathogen responsible for several gastrointestinal disorders. Host-specific lytic bacteriophages have been increasingly used recently as an alternative or complementary treatment to combat bacterial infections, especially when antibiotics fail. Here, we describe the proteogenomic characterization and host receptor identification of the siphovirus vB_YenS_ϕR2-01 (in short, ϕR2-01) that infects strains of several Yersinia enterocolitica serotypes. The ϕR2-01 genome contains 154 predicted genes, 117 of which encode products that are homologous to those of Escherichia bacteriophage T5. The ϕR2-01 and T5 genomes are largely syntenic, with the major differences residing in areas encoding hypothetical ϕR2-01 proteins. Label-free mass-spectrometry-based proteomics confirmed the expression of 90 of the ϕR2-01 genes, with 88 of these being either phage particle structural or phage-particle-associated proteins. In vitro transposon-based host mutagenesis and ϕR2-01 adsorption experiments identified the outer membrane vitamin B12 receptor BtuB as the host receptor. This study provides a proteogenomic characterization of a T5-type bacteriophage and identifies specific Y. enterocolitica strains sensitive to infection with possible future applications of ϕR2-01 as a food biocontrol or phage therapy agent.
Collapse
|
21
|
Unraveling Protein Interactions between the Temperate Virus Bam35 and Its Bacillus Host Using an Integrative Yeast Two Hybrid-High Throughput Sequencing Approach. Int J Mol Sci 2021; 22:ijms222011105. [PMID: 34681765 PMCID: PMC8539640 DOI: 10.3390/ijms222011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
Bacillus virus Bam35 is the model Betatectivirus and member of the family Tectiviridae, which is composed of tailless, icosahedral, and membrane-containing bacteriophages. Interest in these viruses has greatly increased in recent years as they are thought to be an evolutionary link between diverse groups of prokaryotic and eukaryotic viruses. Additionally, betatectiviruses infect bacteria of the Bacillus cereus group, which are known for their applications in industry and notorious since it contains many pathogens. Here, we present the first protein–protein interactions (PPIs) network for a tectivirus–host system by studying the Bam35–Bacillus thuringiensis model using a novel approach that integrates the traditional yeast two-hybrid system and high-throughput sequencing (Y2H-HTS). We generated and thoroughly analyzed a genomic library of Bam35′s host B. thuringiensis HER1410 and screened interactions with all the viral proteins using different combinations of bait–prey couples. Initial analysis of the raw data enabled the identification of over 4000 candidate interactions, which were sequentially filtered to produce 182 high-confidence interactions that were defined as part of the core virus–host interactome. Overall, host metabolism proteins and peptidases were particularly enriched within the detected interactions, distinguishing this host–phage system from the other reported host–phage PPIs. Our approach also suggested biological roles for several Bam35 proteins of unknown function, including the membrane structural protein P25, which may be a viral hub with a role in host membrane modification during viral particle morphogenesis. This work resulted in a better understanding of the Bam35–B. thuringiensis interaction at the molecular level and holds great potential for the generalization of the Y2H-HTS approach for other virus–host models.
Collapse
|
22
|
Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annu Rev Microbiol 2021; 75:515-539. [PMID: 34348026 DOI: 10.1146/annurev-micro-060621-043448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Melanie M Callaghan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
23
|
Baum L, Nguyen MTHD, Jia Y, Biazik J, Thomas T. Characterization of a novel roseophage and the morphological and transcriptional response of the sponge symbiont Ruegeria AU67 to infection. Environ Microbiol 2021; 23:2532-2549. [PMID: 33754443 DOI: 10.1111/1462-2920.15474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022]
Abstract
Sponges have recently been recognized to contain complex communities of bacteriophages; however, little is known about how they interact with their bacterial hosts. Here, we isolated a novel phage, called Ruegeria phage Tedan, and characterized its impact on the bacterial sponge symbiont Ruegeria AU67 on a morphological and molecular level. Phage Tedan was structurally, genomically and phylogenetically characterized to be affiliated with the genus Xiamenvirus of the family Siphoviridae. Through microscopic observations and transcriptomic analysis, we show that phage Tedan upon infection induces a process leading to metabolic and morphological changes in its host. These changes would render Ruegeria AU67 better adapted to inhabit the sponge holobiont due to an improved utilization of ecologically relevant energy and carbon sources as well as a potential impediment of phagocytosis by the sponge through cellular enlargement. An increased survival or better growth of the bacterium in the sponge environment will likely benefit the phage reproduction. Our results point towards the possibility that phages from host-associated environments require, and have thus evolved, different strategies to interact with their host when compared to those phages from free-living or planktonic environments.
Collapse
Affiliation(s)
- Lisa Baum
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mary T H D Nguyen
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yunke Jia
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joanna Biazik
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
24
|
Lee Y, Son B, Cha Y, Ryu S. Characterization and Genomic Analysis of PALS2, a Novel Staphylococcus Jumbo Bacteriophage. Front Microbiol 2021; 12:622755. [PMID: 33763042 PMCID: PMC7982418 DOI: 10.3389/fmicb.2021.622755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that can be frequently encountered in clinical and food-processing surroundings. Among the various countermeasures, bacteriophages have been considered to be promising alternatives to antibiotics. In this study, the bacteriophage PALS2 was isolated from bird feces, and the genomic and biological characteristics of this phage were investigated. PALS2 was determined to belong to the Myoviridae family and exhibited extended host inhibition that persisted for up to 24 h with repeated bursts of 12 plaque-forming units/cell. The complete genome of PALS2 measured 268,746 base pairs (bp), indicating that PALS2 could be classified as a jumbo phage. The PALS2 genome contained 279 ORFs and 1 tRNA covering asparagine, and the majority of predicted PALS2 genes encoded hypothetical proteins. Additional genes involved in DNA replication and repair, nucleotide metabolism, and genes encoding multisubunit RNA polymerase were identified in the PALS2 genome, which is a common feature of typical jumbo phages. Comparative genomic analysis indicated that PALS2 is a phiKZ-related virus and is more similar to typical jumbo phages than to staphylococcal phages. Additionally, the effective antimicrobial activities of phage PALS2 suggest its possible use as a biocontrol agent in various clinical and food processing environments.
Collapse
Affiliation(s)
- Yoona Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yoyeon Cha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Salem M, Pajunen MI, Jun JW, Skurnik M. T4-like Bacteriophages Isolated from Pig Stools Infect Yersinia pseudotuberculosis and Yersinia pestis Using LPS and OmpF as Receptors. Viruses 2021; 13:v13020296. [PMID: 33668618 PMCID: PMC7917993 DOI: 10.3390/v13020296] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
The Yersinia bacteriophages fPS-2, fPS-65, and fPS-90, isolated from pig stools, have long contractile tails and elongated heads, and they belong to genus Tequatroviruses in the order Caudovirales. The phages exhibited relatively wide host ranges among Yersinia pseudotuberculosis and related species. One-step growth curve experiments revealed that the phages have latent periods of 50-80 min with burst sizes of 44-65 virions per infected cell. The phage genomes consist of circularly permuted dsDNA of 169,060, 167,058, and 167,132 bp in size, respectively, with a G + C content 35.3%. The number of predicted genes range from 267 to 271. The phage genomes are 84-92% identical to each other and ca 85% identical to phage T4. The phage receptors were identified by whole genome sequencing of spontaneous phage-resistant mutants. The phage-resistant strains had mutations in the ompF, galU, hldD, or hldE genes. OmpF is a porin, and the other genes encode lipopolysaccharide (LPS) biosynthetic enzymes. The ompF, galU, and hldE mutants were successfully complemented in trans with respective wild-type genes. The host recognition was assigned to long tail fiber tip protein Gp38, analogous to that of T-even phages such as Salmonella phage S16, specifically to the distal β-helices connecting loops.
Collapse
Affiliation(s)
- Mabruka Salem
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (M.S.); (M.I.P.)
- Department of Microbiology, Faculty of Medicine, University of Benghazi, Benghazi 16063, Libya
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (M.S.); (M.I.P.)
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (M.S.); (M.I.P.)
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-336-0981
| |
Collapse
|
27
|
Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genet 2021; 17:e1009204. [PMID: 33411815 PMCID: PMC7790226 DOI: 10.1371/journal.pgen.1009204] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (phages) are being considered as alternative therapeutics for the treatment of multidrug resistant bacterial infections. Considering phages have narrow host-ranges, it is generally accepted that therapeutic phages will have a marginal impact on non-target bacteria. We have discovered that lytic phage infection induces transcription of type VIIb secretion system (T7SS) genes in the pathobiont Enterococcus faecalis. Membrane damage during phage infection induces T7SS gene expression resulting in cell contact dependent antagonism of different Gram positive bystander bacteria. Deletion of essB, a T7SS structural component, abrogates phage-mediated killing of bystanders. A predicted immunity gene confers protection against T7SS mediated inhibition, and disruption of its upstream LXG toxin gene rescues growth of E. faecalis and Staphylococcus aureus bystanders. Phage induction of T7SS gene expression and bystander inhibition requires IreK, a serine/threonine kinase, and OG1RF_11099, a predicted GntR-family transcription factor. Additionally, sub-lethal doses of membrane targeting and DNA damaging antibiotics activated T7SS expression independent of phage infection, triggering T7SS antibacterial activity against bystander bacteria. Our findings highlight how phage infection and antibiotic exposure of a target bacterium can affect non-target bystander bacteria and implies that therapies beyond antibiotics, such as phage therapy, could impose collateral damage to polymicrobial communities. Renewed interest in phages as alternative therapeutics to combat multi-drug resistant bacterial infections, highlights the importance of understanding the consequences of phage-bacteria interactions in the context of microbial communities. Although it is well established that phages are highly specific for their host bacterium, there is no clear consensus on whether or not phage infection (and thus phage therapy) would impose collateral damage to non-target bacteria in polymicrobial communities. Here we provide direct evidence of how phage infection of a clinically relevant pathogen triggers an intrinsic type VII secretion system (T7SS) antibacterial response that consequently restricts the growth of neighboring bacterial cells that are not susceptible to phage infection. Phage induction of T7SS activity is a stress response and in addition to phages, T7SS antagonism can be induced using sub-inhibitory concentrations of antibiotics that facilitate membrane or DNA damage. Together these data show that a bacterial pathogen responds to diverse stressors to induce T7SS activity which manifests through the antagonism of neighboring non-kin bystander bacterial cells.
Collapse
Affiliation(s)
- Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Julia L. E. Willett
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Gary M. Dunny
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
28
|
Misol GN, Kokkari C, Katharios P. Biological and Genomic Characterization of a Novel Jumbo Bacteriophage, vB_VhaM_pir03 with Broad Host Lytic Activity against Vibrio harveyi. Pathogens 2020; 9:E1051. [PMID: 33333990 PMCID: PMC7765460 DOI: 10.3390/pathogens9121051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio harveyi is a Gram-negative marine bacterium that causes major disease outbreaks and economic losses in aquaculture. Phage therapy has been considered as a potential alternative to antibiotics however, candidate bacteriophages require comprehensive characterization for a safe and practical phage therapy. In this work, a lytic novel jumbo bacteriophage, vB_VhaM_pir03 belonging to the Myoviridae family was isolated and characterized against V. harveyi type strain DSM19623. It had broad host lytic activity against 31 antibiotic-resistant strains of V. harveyi, V. alginolyticus, V. campbellii and V. owensii. Adsorption time of vB_VhaM_pir03 was determined at 6 min while the latent-phase was at 40 min and burst-size at 75 pfu/mL. vB_VhaM_pir03 was able to lyse several host strains at multiplicity-of-infections (MOI) 0.1 to 10. The genome of vB_VhaM_pir03 consists of 286,284 base pairs with 334 predicted open reading frames (ORFs). No virulence, antibiotic resistance, integrase encoding genes and transducing potential were detected. Phylogenetic and phylogenomic analysis showed that vB_VhaM_pir03 is a novel bacteriophage displaying the highest similarity to another jumbo phage, vB_BONAISHI infecting Vibrio coralliilyticus. Experimental phage therapy trial using brine shrimp, Artemia salina infected with V. harveyi demonstrated that vB_VhaM_pir03 was able to significantly reduce mortality 24 h post infection when administered at MOI 0.1 which suggests that it can be an excellent candidate for phage therapy.
Collapse
Affiliation(s)
- Gerald N. Misol
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
- Department of Biology, University of Crete, 71003 Heraklion, Crete, Greece
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| |
Collapse
|
29
|
Wicke L, Ponath F, Coppens L, Gerovac M, Lavigne R, Vogel J. Introducing differential RNA-seq mapping to track the early infection phase for Pseudomonas phage ɸKZ. RNA Biol 2020; 18:1099-1110. [PMID: 33103565 PMCID: PMC8244752 DOI: 10.1080/15476286.2020.1827785] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As part of the ongoing renaissance of phage biology, more phage genomes are becoming available through DNA sequencing. However, our understanding of the transcriptome architecture that allows these genomes to be expressed during host infection is generally poor. Transcription start sites (TSSs) and operons have been mapped for very few phages, and an annotated global RNA map of a phage – alone or together with its infected host – is not available at all. Here, we applied differential RNA-seq (dRNA-seq) to study the early, host takeover phase of infection by assessing the transcriptome structure of Pseudomonas aeruginosa jumbo phage ɸKZ, a model phage for viral genetics and structural research. This map substantially expands the number of early expressed viral genes, defining TSSs that are active ten minutes after ɸKZ infection. Simultaneously, we record gene expression changes in the host transcriptome during this critical metabolism conversion. In addition to previously reported upregulation of genes associated with amino acid metabolism, we observe strong activation of genes with functions in biofilm formation (cdrAB) and iron storage (bfrB), as well as an activation of the antitoxin ParD. Conversely, ɸKZ infection rapidly down-regulates complexes IV and V of oxidative phosphorylation (atpCDGHF and cyoABCDE). Taken together, our data provide new insights into the transcriptional organization and infection process of the giant bacteriophage ɸKZ and adds a framework for the genome-wide transcriptomic analysis of phage–host interactions.
Collapse
Affiliation(s)
- Laura Wicke
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany.,Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lucas Coppens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| |
Collapse
|
30
|
A Family of Viral Satellites Manipulates Invading Virus Gene Expression and Can Affect Cholera Toxin Mobilization. mSystems 2020; 5:5/5/e00358-20. [PMID: 33051375 PMCID: PMC7567579 DOI: 10.1128/msystems.00358-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many viruses possess temporally unfolding gene expression patterns aimed at subverting host defenses, commandeering host metabolism, and ultimately producing a large number of progeny virions. High-throughput omics tools, such as RNA sequencing (RNA-seq), have dramatically enhanced the resolution of expression patterns during infection. Less studied have been viral satellites, mobile genomes that parasitize viruses. By performing RNA-seq on infection time courses, we have obtained the first time-resolved transcriptomes for bacteriophage satellites during lytic infection. Specifically, we have acquired transcriptomes for the lytic Vibrio cholerae phage ICP1 and all five known variants of ICP1's parasite, the phage inducible chromosomal island-like elements (PLEs). PLEs rely on ICP1 for both DNA replication and mobilization and abolish production of ICP1 progeny in infected cells. We investigated PLEs' impact on ICP1 gene expression and found that PLEs did not broadly restrict or reduce ICP1 gene expression. A major exception occurred in ICP1's capsid morphogenesis operon, which was downregulated by each of the PLE variants. Surprisingly, PLEs were also found to alter the gene expression of CTXΦ, the integrative phage that encodes cholera toxin and is necessary for virulence of toxigenic V. cholerae One PLE, PLE1, upregulated CTXΦ genes involved in replication and integration and boosted CTXΦ mobility following induction of the SOS response.IMPORTANCE Viral satellites are found in all domains of life and can have profound fitness effects on both the viruses they parasitize and the cells they reside in. In this study, we have acquired the first RNA sequencing (RNA-seq) transcriptomes of viral satellites outside plants, as well as the transcriptome of the phage ICP1, a predominant predator of pandemic Vibrio cholerae Capsid downregulation, previously observed in an unrelated phage satellite, is conserved among phage inducible chromosomal island-like elements (PLEs), suggesting that viral satellites are under strong selective pressure to reduce the capsid expression of their larger host viruses. Despite conserved manipulation of capsid expression, PLEs exhibit divergent effects on CTXΦ transcription and mobility. Our results demonstrate that PLEs can influence both their hosts' resistance to phage and the mobility of virulence-encoding elements, suggesting that PLEs can play a substantial role in shaping Vibrio cholerae evolution.
Collapse
|
31
|
Hernández S, Vives MJ. Phages in Anaerobic Systems. Viruses 2020; 12:E1091. [PMID: 32993161 PMCID: PMC7599459 DOI: 10.3390/v12101091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of phages in 1915, these viruses have been studied mostly in aerobic systems, or without considering the availability of oxygen as a variable that may affect the interaction between the virus and its host. However, with such great abundance of anaerobic environments on the planet, the effect that a lack of oxygen can have on the phage-bacteria relationship is an important consideration. There are few studies on obligate anaerobes that investigate the role of anoxia in causing infection. In the case of facultative anaerobes, it is a well-known fact that their shifting from an aerobic environment to an anaerobic one involves metabolic changes in the bacteria. As the phage infection process depends on the metabolic state of the host bacteria, these changes are also expected to affect the phage infection cycle. This review summarizes the available information on phages active on facultative and obligate anaerobes and discusses how anaerobiosis can be an important parameter in phage infection, especially among facultative anaerobes.
Collapse
Affiliation(s)
- Santiago Hernández
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Martha J. Vives
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia;
- School of Sciences, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
32
|
Multisubunit RNA Polymerases of Jumbo Bacteriophages. Viruses 2020; 12:v12101064. [PMID: 32977622 PMCID: PMC7598289 DOI: 10.3390/v12101064] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
Prokaryotic viruses with DNA genome longer than 200 kb are collectively referred to as “jumbo phages”. Some representatives of this phylogenetically diverse group encode two DNA-dependent RNA polymerases (RNAPs)—a virion RNAP and a non-virion RNAP. In contrast to most other phage-encoded RNAPs, the jumbo phage RNAPs are multisubunit enzymes related to RNAPs of cellular organisms. Unlike all previously characterized multisubunit enzymes, jumbo phage RNAPs lack the universally conserved alpha subunits required for enzyme assembly. The mechanism of promoter recognition is also different from those used by cellular enzymes. For example, the AR9 phage non-virion RNAP requires uracils in its promoter and is able to initiate promoter-specific transcription from single-stranded DNA. Jumbo phages encoding multisubunit RNAPs likely have a common ancestor allowing making them a separate subgroup within the very diverse group of jumbo phages. In this review, we describe transcriptional strategies used by RNAP-encoding jumbo phages and describe the properties of characterized jumbo phage RNAPs.
Collapse
|
33
|
Clokie MR, Blasdel BG, Demars BO, Sicheritz-Pontén T. Rethinking Phage Ecology by Rooting it Within an Established Plant Framework. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:121-136. [PMID: 36147824 PMCID: PMC9041459 DOI: 10.1089/phage.2020.0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Despite the abundance and significance of bacteriophages to microbial ecosystems, no broad ecological frameworks exist within which to determine "bacteriophage types" that reflect their ecological strategies and ways in which they interact with bacterial cells. To address this, we repurposed the well-established Grime's triangular CSR framework, which classifies plants according to three axes: competitiveness (C), ability to tolerate stress (S), and capacity to cope with disturbance (R). This framework is distinguished from other accepted schemes, as it seeks to identify individual characteristics of plants to understand their biological strategies and roles within an ecosystem. Our repurposing of the CSR triangle is based on phage transcription and the observation that typically phages have three major distinguishable transcription phases: early, middle, and late. We hypothesize that the proportion of genes expressed in these phases reflects key information about the phage "ecological strategy," namely the C, S, and R strategies, allowing us to examine phages in a similar way to how plants are projected onto the triangle. In the "phage version" of this scheme, we suggest: (1) that some phages prioritize the early phase of transcription that shuts off host defense mechanisms, which reflects competitiveness; (2) other phages prioritize tuning resource management mechanisms in the cell such as nucleotide metabolism during their "mid" expression profile to tolerate stress; and (3) a further subset of phages (termed Ruderals) survive disturbance by investing significant resources into regeneration so they express a higher proportion of their genes during late infection. We examined 42 published phage transcriptomes and show that they fall into discrete CSR categories according to their expression profiles. We discuss these positions in the context of their biology, which is largely consistent with our predictions of specific phage characteristics. In this opinion article, we suggest a starting point to ascribe phages into different functional types and thus understand them in an ecological framework. We suggest that this may have far-reaching implications for the application of phages in therapy and their exploitation to manipulate bacterial communities. We invite further use of this framework via our online tool; www.PhageCSR.ml.
Collapse
Affiliation(s)
- Martha R.J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Address correspondence to: Martha R.J. Clokie, PhD, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | | | - Thomas Sicheritz-Pontén
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Address correspondence to: Thomas Sicheritz Pontén, PhD, Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, Bygning 7, Copenhagen 1353, Denmark
| |
Collapse
|
34
|
Bloch S, Lewandowska N, Węgrzyn G, Nejman-Faleńczyk B. Bacteriophages as sources of small non-coding RNA molecules. Plasmid 2020; 113:102527. [PMID: 32768406 DOI: 10.1016/j.plasmid.2020.102527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
Bacteriophages play an essential role in the transferring of genes that contribute to the bacterial virulence and whose products are dangerous to human health. Interestingly, phages carrying virulence genes are mostly temperate and in contrast to lytic phages undergo both lysogenic and lytic cycles. Importantly, expression of the majority of phage genes and subsequent production of phage encoded proteins is suppressed during lysogeny. The expression of the majority of phage genes is tightly linked to lytic development. Among others, small non-coding RNAs (sRNAs) of phage origin are involved in the regulation of phage gene expression and thus play an important role in both phage and host development. In the case of bacteria, sRNAs affect processes such as virulence, colonization ability, motility and cell growth or death. In turn, in the case of phages, they play essential roles during the early stage of infection, maintaining the state of lysogeny and silencing the expression of late structural genes, thereby regulating the transition between phage life cycles. Interestingly, sRNAs have been identified in both lytic and temperate phages and they have been discussed in this work according to this classification. Particular attention was paid to viral sRNAs resembling eukaryotic microRNAs.
Collapse
Affiliation(s)
- Sylwia Bloch
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Natalia Lewandowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
35
|
Filik K, Szermer-Olearnik B, Wernecki M, Happonen LJ, Pajunen MI, Nawaz A, Qasim MS, Jun JW, Mattinen L, Skurnik M, Brzozowska E. The Podovirus ϕ80-18 Targets the Pathogenic American Biotype 1B Strains of Yersinia enterocolitica. Front Microbiol 2020; 11:1356. [PMID: 32636826 PMCID: PMC7316996 DOI: 10.3389/fmicb.2020.01356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 01/31/2023] Open
Abstract
We report here the complete genome sequence and characterization of Yersinia bacteriophage vB_YenP_ϕ80-18. ϕ80-18 was isolated in 1991 using a Y. enterocolitica serotype O:8 strain 8081 as a host from a sewage sample in Turku, Finland, and based on its morphological and genomic features is classified as a podovirus. The genome is 42 kb in size and has 325 bp direct terminal repeats characteristic for podoviruses. The genome contains 57 predicted genes, all encoded in the forward strand, of which 29 showed no similarity to any known genes. Phage particle proteome analysis identified altogether 24 phage particle-associated proteins (PPAPs) including those identified as structural proteins such as major capsid, scaffolding and tail component proteins. In addition, also the DNA helicase, DNA ligase, DNA polymerase, 5'-exonuclease, and the lytic glycosylase proteins were identified as PPAPs, suggesting that they might be injected together with the phage genome into the host cell to facilitate the take-over of the host metabolism. The phage-encoded RNA-polymerase and DNA-primase were not among the PPAPs. Promoter search predicted the presence of four phage and eleven host RNA polymerase -specific promoters in the genome, suggesting that early transcription of the phage is host RNA-polymerase dependent and that the phage RNA polymerase takes over later. The phage tolerates pH values between 2 and 12, and is stable at 50°C but is inactivated at 60°C. It grows slowly with a 50 min latent period and has apparently a low burst size. Electron microscopy revealed that the phage has a head diameter of about 60 nm, and a short tail of 20 nm. Whole-genome phylogenetic analysis confirmed that ϕ80-18 belongs to the Autographivirinae subfamily of the Podoviridae family, that it is 93.2% identical to Yersinia phage fHe-Yen3-01. Host range analysis showed that ϕ80-18 can infect in addition to Y. enterocolitica serotype O:8 strains also strains of serotypes O:4, O:4,32, O:20 and O:21, the latter ones representing similar to Y. enterocolitica serotype O:8, the American pathogenic biotype 1B strains. In conclusion, the phage ϕ80-18 is a promising candidate for the biocontrol of the American biotype 1B Y. enterocolitica.
Collapse
Affiliation(s)
- Karolina Filik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Wernecki
- Department of Microbiology, Institute of Genetics and Microbiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Lotta J Happonen
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria I Pajunen
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ayesha Nawaz
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Muhammad Suleman Qasim
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jin Woo Jun
- Department of Aquaculture, The Korea National College of Agriculture and Fisheries, Jeonju, South Korea
| | - Laura Mattinen
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Ewa Brzozowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
36
|
Lood C, Danis‐Wlodarczyk K, Blasdel BG, Jang HB, Vandenheuvel D, Briers Y, Noben J, van Noort V, Drulis‐Kawa Z, Lavigne R. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ Microbiol 2020; 22:2165-2181. [PMID: 32154616 PMCID: PMC7318152 DOI: 10.1111/1462-2920.14979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/06/2020] [Indexed: 11/28/2022]
Abstract
Pseudomonas virus vB_PaeM_PA5oct is proposed as a model jumbo bacteriophage to investigate phage-bacteria interactions and is a candidate for phage therapy applications. Combining hybrid sequencing, RNA-Seq and mass spectrometry allowed us to accurately annotate its 286,783 bp genome with 461 coding regions including four non-coding RNAs (ncRNAs) and 93 virion-associated proteins. PA5oct relies on the host RNA polymerase for the infection cycle and RNA-Seq revealed a gradual take-over of the total cell transcriptome from 21% in early infection to 93% in late infection. PA5oct is not organized into strictly contiguous regions of temporal transcription, but some genomic regions transcribed in early, middle and late phases of infection can be discriminated. Interestingly, we observe regions showing limited transcription activity throughout the infection cycle. We show that PA5oct upregulates specific bacterial operons during infection including operons pncA-pncB1-nadE involved in NAD biosynthesis, psl for exopolysaccharide biosynthesis and nap for periplasmic nitrate reductase production. We also observe a downregulation of T4P gene products suggesting mechanisms of superinfection exclusion. We used the proteome of PA5oct to position our isolate amongst other phages using a gene-sharing network. This integrative omics study illustrates the molecular diversity of jumbo viruses and raises new questions towards cellular regulation and phage-encoded hijacking mechanisms.
Collapse
Affiliation(s)
- Cédric Lood
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
| | - Katarzyna Danis‐Wlodarczyk
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Bob G. Blasdel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Ho Bin Jang
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Dieter Vandenheuvel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Yves Briers
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Jean‐Paul Noben
- Biomedical Research Institute and Transnational University LimburgHasselt UniversityDiepenbeekBelgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | - Zuzanna Drulis‐Kawa
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| |
Collapse
|
37
|
Xue Y, Zhai S, Wang Z, Ji Y, Wang G, Wang T, Wang X, Xi H, Cai R, Zhao R, Zhang H, Bi L, Guan Y, Guo Z, Han W, Gu J. The Yersinia Phage X1 Administered Orally Efficiently Protects a Murine Chronic Enteritis Model Against Yersinia enterocolitica Infection. Front Microbiol 2020; 11:351. [PMID: 32210942 PMCID: PMC7067902 DOI: 10.3389/fmicb.2020.00351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Yersinia enterocolitica is generally considered an important food-borne pathogen worldwide, especially in the European Union. A lytic Yersinia phage X1 (Viruses; dsDNA viruses, no RNA stage; Caudovirales; and Myoviridae) was isolated. Phage X1 showed a broad host range and could effectively lyse 27/51 Y. enterocolitica strains covering various serotypes that cause yersiniosis in humans and animals (such as serotype O3 and serotype O8). The genome of this phage was sequenced and analyzed. No toxin, antibiotic-resistance or lysogeny related modules were found in the genome of phage X1. Studies of phage stability confirmed that X1 had a high tolerance toward a broad range of temperatures (4–60°C) and pH values (4–11) for 1 h. The ability to resist harsh acidic conditions and enzymatic degradation in vitro demonstrated that phage X1 is suitable for oral administration, and in particular, that this phage can pass the stomach barrier and efficiently reach the intestine in vivo without losing infectious ability. The potential of this phage against Y. enterocolitica infection in vitro was studied. In animal experiments, a single oral administration of phage X1 at 6 h post infection was sufficient to eliminate Y. enterocolitica in 33.3% of mice (15/45). In addition, the number of Y. enterocolitica strains in the mice was also dramatically reduced to approximately 103 CFU/g after 18 h compared with 107 CFU/g in the mice without phage treatment. Treatment with phage X1 showed significant improvement by intestinal histopathologic observations. Moreover, proinflammatory cytokine levels (IL-6, TNF-α, and IL-1β) were significantly reduced (P < 0.05). These results indicate that phage X1 is a promising candidate to control infection by Y. enterocolitica in vivo.
Collapse
Affiliation(s)
- Yibing Xue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shengjie Zhai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tianqi Wang
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Xinwu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rihong Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lanting Bi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuan Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
38
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
39
|
Abstract
We lack fundamental understanding of how phage infection influences bacterial gene expression and, consequently, how bacterial responses to phage infection affect the assembly of polymicrobial communities. Using parallel genomic approaches, we have discovered novel transcriptional regulators and metabolic genes that influence phage infection. The integration of whole-genome transcriptomic profiling during phage infection has revealed the differential regulation of genes important for group behaviors and polymicrobial interactions. Our work suggests that therapeutic phages could more broadly influence bacterial community composition outside their intended host targets. Bacteriophages (phages) have been proposed as alternative therapeutics for the treatment of multidrug-resistant bacterial infections. However, there are major gaps in our understanding of the molecular events in bacterial cells that control how bacteria respond to phage predation. Using the model organism Enterococcus faecalis, we used two distinct genomic approaches, namely, transposon library screening and RNA sequencing, to investigate the interaction of E. faecalis with a virulent phage. We discovered that a transcription factor encoding a LytR family response regulator controls the expression of enterococcal polysaccharide antigen (epa) genes that are involved in phage infection and bacterial fitness. In addition, we discovered that DNA mismatch repair mutants rapidly evolve phage adsorption deficiencies, underpinning a molecular basis for epa mutation during phage infection. Transcriptomic profiling of phage-infected E. faecalis revealed broad transcriptional changes influencing viral replication and progeny burst size. We also demonstrate that phage infection alters the expression of bacterial genes associated with intra- and interbacterial interactions, including genes involved in quorum sensing and polymicrobial competition. Together, our results suggest that phage predation has the potential to influence complex microbial behavior and may dictate how bacteria respond to external environmental stimuli. These responses could have collateral effects (positive or negative) on microbial communities, such as the host microbiota, during phage therapy.
Collapse
|
40
|
Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant Acinetobacter baumannii. mSystems 2019; 4:mSystems00068-19. [PMID: 31020041 PMCID: PMC6469957 DOI: 10.1128/msystems.00068-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a growing threat, although lytic bacteriophages have been shown to effectively kill A. baumannii. However, the interaction between the host and the phage has not been fully studied. We demonstrate the global profile of transcriptional changes in extensively drug-resistant A. baumannii AB1 and the interaction with phage φAbp1 through RNA sequencing (RNA-seq) and bioinformatic analysis. Only 15.6% (600/3,838) of the genes of the infected host were determined to be differentially expressed genes (DEGs), indicating that only a small part of the bacterial resources was needed for φAbp1 propagation. Contrary to previous similar studies, more upregulated rather than downregulated DEGs were detected. Specifically, φAbp1 infection caused the most extensive impact on host gene expression at 10 min, which was related to the intracellular accumulation phase of virus multiplication. Based on the gene coexpression network, a middle gene (gp34, encoding phage-associated RNA polymerase) showed a negative interaction with numerous host ribosome protein genes. In addition, the gene expression of bacterial virulence/resistance factors was proven to change significantly. This work provides new insights into the interactions of φAbp1 and its host, which contributes to the further understanding of phage therapy, and provides another reference for antibacterial agents. IMPORTANCE Previous research has reported the transcriptomic phage-host interactions in Escherichia coli and Pseudomonas aeruginosa, leading to the detailed discovery of transcriptomic regulations and predictions of specific gene functions. However, a direct relationship between A. baumannii and its phage has not been previously reported, although A. baumannii is becoming a rigorous drug-resistant threat. We analyzed transcriptomic changes after φAbp1 infected its host, extensively drug-resistant (XDR) A. baumannii AB1, and found defense-like responses of the host, step-by-step control by the invader, elaborate interactions between host and phage, and elevated drug resistance gene expressions of AB1 after phage infection. These findings suggest the detailed interactions of A. baumannii and its phage, which may provide both encouraging suggestions for drug design and advice for the clinical use of vital phage particles.
Collapse
|
41
|
El-Dougdoug N, Cucic S, Abdelhamid A, Brovko L, Kropinski A, Griffiths M, Anany H. Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. Int J Food Microbiol 2019; 293:60-71. [DOI: 10.1016/j.ijfoodmicro.2019.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
|
42
|
Weintraub ST, Mohd Redzuan NH, Barton MK, Md Amin NA, Desmond MI, Adams LE, Ali B, Pardo S, Molleur D, Wu W, Newcomb WW, Osier MV, Black LW, Steven AC, Thomas JA. Global Proteomic Profiling of Salmonella Infection by a Giant Phage. J Virol 2019; 93:e01833-18. [PMID: 30541839 PMCID: PMC6384053 DOI: 10.1128/jvi.01833-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 11/20/2022] Open
Abstract
The 240-kb Salmonella phage SPN3US genome encodes 264 gene products, many of which are functionally uncharacterized. We have previously used mass spectrometry to define the proteomes of wild-type and mutant forms of the SPN3US virion. In this study, we sought to determine whether this technique was suitable for the characterization of the SPN3US proteome during liquid infection. Mass spectrometry of SPN3US-infected cells identified 232 SPN3US and 1,994 Salmonella proteins. SPN3US proteins with related functions, such as proteins with roles in DNA replication, transcription, and virion formation, were coordinately expressed in a temporal manner. Mass spectral counts showed the four most abundant SPN3US proteins to be the major capsid protein, two head ejection proteins, and the functionally unassigned protein gp22. This high abundance of gp22 in infected bacteria contrasted with its absence from mature virions, suggesting that it might be the scaffold protein, an essential head morphogenesis protein yet to be identified in giant phages. We identified homologs to SPN3US gp22 in 45 related giant phages, including ϕKZ, whose counterpart is also abundant in infected bacteria but absent in the virion. We determined the ϕKZ counterpart to be cleaved in vitro by its prohead protease, an event that has been observed to promote head maturation of some other phages. Our findings are consistent with a scaffold protein assignment for SPN3US gp22, although direct evidence is required for its confirmation. These studies demonstrate the power of mass spectral analyses for facilitating the acquisition of new knowledge into the molecular events of viral infection.IMPORTANCE "Giant" phages with genomes >200 kb are being isolated in increasing numbers from a range of environments. With hosts such as Salmonella enterica, Pseudomonas aeruginosa, and Erwinia amylovora, these phages are of interest for phage therapy of multidrug-resistant pathogens. However, our understanding of how these complex phages interact with their hosts is impeded by the proportion (∼80%) of their gene products that are functionally uncharacterized. To develop the repertoire of techniques for analysis of phages, we analyzed a liquid infection of Salmonella phage SPN3US (240-kb genome) using third-generation mass spectrometry. We observed the temporal production of phage proteins whose genes collectively represent 96% of the SPN3US genome. These findings demonstrate the sensitivity of mass spectrometry for global proteomic profiling of virus-infected cells, and the identification of a candidate for a major head morphogenesis protein will facilitate further studies into giant phage head assembly.
Collapse
Affiliation(s)
- Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Melissa K Barton
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Nur Amira Md Amin
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Maxim I Desmond
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Lily E Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Bazla Ali
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Sammy Pardo
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Dana Molleur
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Weimin Wu
- Laboratory of Structural Biology Research, National Institute for Arthritis, Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - William W Newcomb
- Laboratory of Structural Biology Research, National Institute for Arthritis, Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael V Osier
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Lindsay W Black
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute for Arthritis, Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Julie A Thomas
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
43
|
Melo LDR, França A, Brandão A, Sillankorva S, Cerca N, Azeredo J. Assessment of Sep1virus interaction with stationary cultures by transcriptional and flow cytometry studies. FEMS Microbiol Ecol 2018; 94:5061119. [DOI: 10.1093/femsec/fiy143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Luís D R Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Angela França
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Ana Brandão
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Sanna Sillankorva
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Nuno Cerca
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
44
|
Saad AM, Soliman AM, Kawasaki T, Fujie M, Nariya H, Shimamoto T, Yamada T. Systemic method to isolate large bacteriophages for use in biocontrol of a wide-range of pathogenic bacteria. J Biosci Bioeng 2018; 127:73-78. [PMID: 30049605 DOI: 10.1016/j.jbiosc.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/18/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
Abstract
Large phages are characterized by genomes around 200 kbp or more. They can infect wide host ranges of bacteria and maintain long-lasting infection. There is no standard method for selective isolation of large phages. In this study, we developed a systemic method to isolate large phages and succeeded in isolating 11 large phages, named Escherichia phage E1∼E11. Electron microscopy observations revealed typical Myoviridae phages with big capsids and long contractile tails. Genome sizes of the isolated phages were determined by pulsed-field gel electrophoresis and found to be in two groups, those around 200 kbp for E1, E2, E5, E6, E7, E9 and E10 phages, and others of approximately 450 kbp for E3, E4, E8 and E11 phages. The isolated large phages had wide host ranges: for example, E9 was effective against Shigella sonnei SH05001, Shigella bydii SH00007, Shigella flexneri SH00006, Salmonella enterica serovar Enteritidis SAL01078 and Escherichia coli C3000 (K-12 derivative), as well as its original host E. coli BL21. Screening of these jumbo phages was performed with non-pathogenic E. coli strains as hosts. Therefore, this method opens a way to isolate jumbo phages infecting wide ranges of pathogenic bacteria in a typical laboratory with standard laboratory strains as the hosts. The isolated large phages will be good candidates for biocontrol of various pathogens.
Collapse
Affiliation(s)
- Alaaeldin Mohamed Saad
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Mahrous Soliman
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Hirofumi Nariya
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; Hiroshima Study Center, The Open University of Japan, Hiroshima 730-0053, Japan.
| |
Collapse
|
45
|
Chatterjee A, Duerkop BA. Beyond Bacteria: Bacteriophage-Eukaryotic Host Interactions Reveal Emerging Paradigms of Health and Disease. Front Microbiol 2018; 9:1394. [PMID: 29997604 PMCID: PMC6030379 DOI: 10.3389/fmicb.2018.01394] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022] Open
Abstract
For decades, a wealth of information has been acquired to define how host associated microbial communities contribute to health and disease. Within the human microbiota this has largely focused on bacteria, yet there is a myriad of viruses that occupy various tissue sites, the most abundant being bacteriophages that infect bacteria. Animal hosts are colonized with niche specific microbial communities where bacteria are continuously co-evolving with phages. Bacterial growth, metabolic activity, pathogenicity, antibiotic resistance, interspecies competition and evolution can all be influenced by phage infection and the beneficial nature of such interactions suggests that to an extent phages are tolerated by their hosts. With the understanding that phage-specific host–microbe interactions likely contribute to bacterial interactions with their mammalian hosts, phages and their communities may also impact aspects of mammalian health and disease that have gone unrecognized. Here, we review recent progress in understanding how bacteria acquire and tolerate phage in both pure culture and within complex communities. We apply these findings to discuss how intra-body phages interact with bacteria to influence their eukaryotic hosts through potential contributions to microbial homeostasis, mucosal immunity, immune tolerance and autoimmunity.
Collapse
Affiliation(s)
- Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
46
|
Patterson-West J, Arroyo-Mendoza M, Hsieh ML, Harrison D, Walker MM, Knipling L, Hinton DM. The Bacteriophage T4 MotB Protein, a DNA-Binding Protein, Improves Phage Fitness. Viruses 2018; 10:v10070343. [PMID: 29949907 PMCID: PMC6070864 DOI: 10.3390/v10070343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 01/21/2023] Open
Abstract
The lytic bacteriophage T4 employs multiple phage-encoded early proteins to takeover the Escherichia coli host. However, the functions of many of these proteins are not known. In this study, we have characterized the T4 early gene motB, located in a dispensable region of the T4 genome. We show that heterologous production of MotB is highly toxic to E. coli, resulting in cell death or growth arrest depending on the strain and that the presence of motB increases T4 burst size 2-fold. Previous work suggested that motB affects middle gene expression, but our transcriptome analyses of T4 motBam vs. T4 wt infections reveal that only a few late genes are mildly impaired at 5 min post-infection, and expression of early and middle genes is unaffected. We find that MotB is a DNA-binding protein that binds both unmodified host and T4 modified [(glucosylated, hydroxymethylated-5 cytosine, (GHme-C)] DNA with no detectable sequence specificity. Interestingly, MotB copurifies with the host histone-like proteins, H-NS and StpA, either directly or through cobinding to DNA. We show that H-NS also binds modified T4 DNA and speculate that MotB may alter how H-NS interacts with T4 DNA, host DNA, or both, thereby improving the growth of the phage.
Collapse
Affiliation(s)
- Jennifer Patterson-West
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Danielle Harrison
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Morgan M Walker
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
47
|
Sacher JC, Flint A, Butcher J, Blasdel B, Reynolds HM, Lavigne R, Stintzi A, Szymanski CM. Transcriptomic Analysis of the Campylobacter jejuni Response to T4-Like Phage NCTC 12673 Infection. Viruses 2018; 10:E332. [PMID: 29914170 PMCID: PMC6024767 DOI: 10.3390/v10060332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Campylobacter jejuni is a frequent foodborne pathogen of humans. As C. jejuni infections commonly arise from contaminated poultry, phage treatments have been proposed to reduce the C. jejuni load on farms to prevent human infections. While a prior report documented the transcriptome of C. jejuni phages during the carrier state life cycle, transcriptomic analysis of a lytic C. jejuni phage infection has not been reported. We used RNA-sequencing to profile the infection of C. jejuni NCTC 11168 by the lytic T4-like myovirus NCTC 12673. Interestingly, we found that the most highly upregulated host genes upon infection make up an uncharacterized operon (cj0423⁻cj0425), which includes genes with similarity to T4 superinfection exclusion and antitoxin genes. Other significantly upregulated genes include those involved in oxidative stress defense and the Campylobactermultidrug efflux pump (CmeABC). We found that phage infectivity is altered by mutagenesis of the oxidative stress defense genes catalase (katA), alkyl-hydroxyperoxidase (ahpC), and superoxide dismutase (sodB), and by mutagenesis of the efflux pump genes cmeA and cmeB. This suggests a role for these gene products in phage infection. Together, our results shed light on the phage-host dynamics of an important foodborne pathogen during lytic infection by a T4-like phage.
Collapse
Affiliation(s)
- Jessica C Sacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Annika Flint
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Bob Blasdel
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven 3001, Belgium.
| | - Hayley M Reynolds
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven 3001, Belgium.
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
48
|
Fernández L, Rodríguez A, García P. Phage or foe: an insight into the impact of viral predation on microbial communities. THE ISME JOURNAL 2018; 12:1171-1179. [PMID: 29371652 PMCID: PMC5932045 DOI: 10.1038/s41396-018-0049-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/24/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
Since their discovery, bacteriophages have been traditionally regarded as the natural enemies of bacteria. However, recent advances in molecular biology techniques, especially data from "omics" analyses, have revealed that the interplay between bacterial viruses and their hosts is far more intricate than initially thought. On the one hand, we have become more aware of the impact of viral predation on the composition and genetic makeup of microbial communities thanks to genomic and metagenomic approaches. Moreover, data obtained from transcriptomic, proteomic, and metabolomic studies have shown that responses to phage predation are complex and diverse, varying greatly depending on the bacterial host, phage, and multiplicity of infection. Interestingly, phage exposure may alter different phenotypes, including virulence and biofilm formation. The complexity of the interactions between microbes and their viral predators is also evidenced by the link between quorum-sensing signaling pathways and bacteriophage resistance. Overall, new data increasingly suggests that both temperate and virulent phages have a positive effect on the evolution and adaptation of microbial populations. From this perspective, further research is still necessary to fully understand the interactions between phage and host under conditions that allow co-existence of both populations, reflecting more accurately the dynamics in natural microbial communities.
Collapse
Affiliation(s)
- Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
| |
Collapse
|
49
|
Luo P, Liu Q, Deng Y, Tian Y, Yun L, Hu C. Strand-specific RNA-Seq analysis provides first insight into transcriptome response of Vibrio alginolyticus to phage infection. Mar Genomics 2018. [DOI: 10.1016/j.margen.2017.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Virus-host protein-protein interactions of mycobacteriophage Giles. Sci Rep 2017; 7:16514. [PMID: 29184079 PMCID: PMC5705681 DOI: 10.1038/s41598-017-16303-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/31/2017] [Indexed: 01/21/2023] Open
Abstract
Mycobacteriophage are viruses that infect mycobacteria. More than 1,400 mycobacteriophage genomes have been sequenced, coding for over one hundred thousand proteins of unknown functions. Here we investigate mycobacteriophage Giles-host protein-protein interactions (PPIs) using yeast two-hybrid screening (Y2H). A total of 25 reproducible PPIs were found for a selected set of 10 Giles proteins, including a putative virion assembly protein (gp17), the phage integrase (gp29), the endolysin (gp31), the phage repressor (gp47), and six proteins of unknown function (gp34, gp35, gp54, gp56, gp64, and gp65). We note that overexpression of the proteins is toxic to M. smegmatis, although whether this toxicity and the associated changes in cellular morphology are related to the putative interactions revealed in the Y2H screen is unclear.
Collapse
|