1
|
Yu C, Yu M, Ma R, Wei S, Jin M, Jiao N, Zheng Q, Zhang R, Feng X. A novel Alteromonas phage with tail fiber containing six potential iron-binding domains. Microbiol Spectr 2025; 13:e0093424. [PMID: 39565130 PMCID: PMC11705849 DOI: 10.1128/spectrum.00934-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
Viruses play a vital role in regulating microbial communities, contributing to biogeochemical cycles of carbon, nitrogen, and essential metals. Alteromonas is widespread and plays an essential role in marine microbial ecology. However, there is limited knowledge about the interactions of Alteromonas and its viruses (alterophages). This study isolated a novel podovirus, vB_AmeP-R22Y (R22Y), which infects Alteromonas marina SW-47 (T). Phylogenetic analysis suggested that R22Y represented a novel viral genus within the Schitoviridae family. R22Y exhibited a broad host range and a relatively large burst size, exerting an important impact on the adaptability and dynamics of host populations. Two auxiliary metabolic genes, encoding Acyl carrier protein and AAA domain-containing protein, were predicted in R22Y, which may potentially assist in host fatty acid metabolism and VB12 biosynthesis, respectively. Remarkably, the prediction of the R22Y tail fiber structure revealed six conserved histidine residues (HxH motifs) that could potentially bind iron ions, suggesting that alterophages may function as organic iron-binding ligands in the marine environment. Our isolation and characterization of R22Y complements the Trojan Horse hypothesis, proposes the possible role of alterophages for marine iron biogeochemical cycling, and provides new insights into phage-host interactions in the iron-limited ocean.IMPORTANCEIron (Fe), as an essential micronutrient, is often a limiting factor for microbial growth in marine ecosystems. The Trojan Horse hypothesis suggests that iron in the phage tail fibers is recognized by the host's siderophore-bound iron receptor, enabling the phage to attach and initiate infection. The potential role of phages as iron-binding ligands has significant implications for oceanic trace metal biogeochemistry. In this study, we isolated a new phage R22Y with the potential to bind iron ions, using Alteromonas, a major siderophore producer, as the host. The tail fiber structure of R22Y exhibits six conserved HxH motifs, suggesting that each phage could potentially bind up to 36 iron ions. R22Y may contribute to colloidal organically complexed dissolved iron in the marine environment. This finding provides further insights into the Trojan Horse hypothesis, suggesting that alterophages may act as natural iron-binding ligands in the marine environment.
Collapse
Affiliation(s)
- Chen Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meishun Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ruijie Ma
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Shuzhen Wei
- School of Ocean and Earth Science, Tongji University, Shanghai, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xuejin Feng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
2
|
Abozahra R, Shlkamy D, Abdelhamid SM. Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli. BMC Res Notes 2025; 18:3. [PMID: 39754154 PMCID: PMC11699686 DOI: 10.1186/s13104-024-07033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVES The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination. RESULTS ɸEcM-vB1 bacteriophage exhibited high lytic activity against different MDR E. coli isolates and showed stability over wide pH and temperature range. It belongs to the Myoviridae family of the caudovirales order according to TEM. It had a latent period of 5 min and an average burst size of 271.72 pfu/cell. Genomic analysis revealed that it is susceptible to digestion by EcoRI. Ten structural proteins were detected by SDS-PAGE. ɸEcM-vB1 is considered a promising candidate for phage therapy applications.
Collapse
Affiliation(s)
- Rania Abozahra
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Dina Shlkamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Sarah M Abdelhamid
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
3
|
Liu X, Ming Z, Ding Y, Guan P, Shao Y, Wang L, Wang X. Characterization of a novel phage SPX1 and biological control for biofilm of Shewanella in shrimp and food contact surfaces. Int J Food Microbiol 2025; 426:110911. [PMID: 39288570 DOI: 10.1016/j.ijfoodmicro.2024.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/25/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Shewanella putrefaciens, commonly found in seafood, forms tenacious biofilms on various surfaces, contributing to spoilage and cross-contamination. Bacteriophages, owing to their potent lytic capabilities, have emerged as novel and safe options for preventing and eliminating contaminants across various foods and food processing environments. In this study, a novel phage SPX1 was isolated, characterized by a high burst size (43.81 ± 3.01 PFU/CFU) and a short latent period (10 min). SPX1 belongs to the Caudoviricetes class, exhibits resistance to chloroform, and sensitivity to ultraviolet. It shows stability over a wide range of temperatures (30-50 °C) and pH levels (3-11). The genome of phage SPX1 consists of 53,428 bp with 49.72 % G + C composition, and lacks tRNAs or virulence factors. Genome analysis revealed the presence of two endolysins, confirming its biofilm-removal capacity. Following the treatment of shrimp surface biofilm with the optimal MOI of 0.001 of phage SPX1 for 5 h, the bacterial count decreased by 1.84 ± 0.1 log10 CFU/cm2 (> 98.5 %). Biofilms on the surfaces of the three common materials used in shrimp processing and transportation also showed varying degrees of reduction: glass (1.98 ± 0.01 log10 CFU/cm2), stainless steel (1.93 ± 0.05 log10 CFU/cm2), and polyethylene (1.38 ± 0.1 log10 CFU/cm2). The study will contribute to phage as a novel and potent biocontrol agent for effectively managing S. putrefaciens and its biofilm, ensuring a reduction in spoilage bacteria contamination during the aquaculture, processing, and transportation of seafood products.
Collapse
Affiliation(s)
- Xi Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zixin Ming
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yifeng Ding
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Guan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Rodea M GE, González-Villalobos E, Espinoza-Mellado MDR, Hernández-Chiñas U, Eslava-Campos CA, Balcázar JL, Molina-López J. Genomic analysis and characterization of a new Salmonella phage vB_Sen_ST2 infecting Salmonella enterica serovars Typhi and Typhimurium. Microb Pathog 2025; 198:107178. [PMID: 39608505 DOI: 10.1016/j.micpath.2024.107178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
In this study, we have characterized and sequenced the whole genome of a new member of the Kuttervirus genus, Salmonella phage vB_Sen_ST2. This phage selectively targets Salmonella enterica serovars Typhi and Typhimurium, which are major etiologic agents of salmonellosis worldwide. Its genome consists of a linear, double-stranded DNA of 156,028 bp, with a G + C content of 44.93 %. Based on our results, Salmonella phage vB_Sen_ST2 presents suitable features to be considered as a potential control agent against Salmonella enterica serovars that are responsible for salmonellosis.
Collapse
Affiliation(s)
- Gerardo E Rodea M
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico
| | - Edgar González-Villalobos
- Laboratorio de Epidemiología Molecular División de Investigación, Departamento de Salud Pública, Facultad de Medicina, UNAM, C.P. 06720, Mexico City, Mexico
| | - María Del Rosario Espinoza-Mellado
- Central de Instrumentación de Microscopía, Depto. Investigación, Instituto Politécnico Nacional-Escuela Nacional de Ciencias Biológicas (IPN-ENCB), Prolongación de Carpio y Plan de Ayala, Mexico City, 11340, Mexico
| | - Ulises Hernández-Chiñas
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510, Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico
| | - Carlos Alberto Eslava-Campos
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510, Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, 17004, Girona, Spain
| | - José Molina-López
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510, Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico.
| |
Collapse
|
5
|
Victoria-Blanco EE, González-Gómez JP, Medina-Sánchez JR, Martínez AA, Castro Del Campo N, Chaidez-Quiroz C, Querol-Audi J, Martínez-Torres AO. Characterization of Enterobacter phage vB_EcRAM-01, a new Pseudotevenvirus against Enterobacter cloacae, isolated in an urban river in Panama. PLoS One 2024; 19:e0310824. [PMID: 39739645 DOI: 10.1371/journal.pone.0310824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/07/2024] [Indexed: 01/02/2025] Open
Abstract
The Enterobacter cloacae complex, a prominent bacterium responsible worldwide for most bloodstream infections in the hospital environment, has shown broad-spectrum antibiotic resistance, including carbapenems. Therefore, bacteriophages have again attracted the attention of the science and medical community as an alternative to control Multidrug resistant bacteria. In this study, water samples from Río Abajo River, in Panama City, Panama, were collected, for phage isolation, purification, characterization and propagation against the E. cloacae complex. As result, a phage produced clear and round plaque-forming units indicating a lytic phage was isolated. Further analyses concluded that this phage is stable at temperatures between 25°C and 50°C, it remains infective in a pH range between 7 to 11, with high sensitivity to Ultraviolet light. Remarkedly, it exhibits a narrow host specificity only infecting E. cloacae. Whole genome sequencing revealed that is a myovirus with a genome size of 178,477 bp, a G-C content of 45.8%, and containing approximately 294 genes. Among them, protein-encoding genes involved in morphology, inactivation, adsorption to cells, DNA injection and lytic enzymes were identified. Additionally, the genome contained two tRNA sequences. Genes that encode holins and endolysins, typical of lytic bacteriophages, were also present. A whole-genome sequencing analysis indicated that, according to the genus demarcation criteria, this phage belongs to a novel species within the Family Straboviridae, called genus Pseudotevenvirus.
Collapse
Affiliation(s)
- Ednner E Victoria-Blanco
- Facultad de Medicina, Programa de Maestría en Ciencias Biomédicas, Universidad de Panamá, Panamá, Panamá
- Laboratorio de Microbiología Experimental y Aplicada y Microbiología de Aguas (LAMEXA-LAMA), Universidad de Panamá, Panamá, Panamá
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá, Panamá
| | - Jean Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, México
| | - Juan Raúl Medina-Sánchez
- Laboratorio de Microbiología Experimental y Aplicada y Microbiología de Aguas (LAMEXA-LAMA), Universidad de Panamá, Panamá, Panamá
| | - Alexander A Martínez
- Facultad de Medicina, Programa de Maestría en Ciencias Biomédicas, Universidad de Panamá, Panamá, Panamá
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá, Panamá
- Genomics and Proteomics Research Department, Gorgas Memorial Institute of Health Studies, Panamá, Panamá
| | - Nohelia Castro Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, México
| | - Cristóbal Chaidez-Quiroz
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, México
| | - Jordi Querol-Audi
- Facultad de Medicina, Programa de Maestría en Ciencias Biomédicas, Universidad de Panamá, Panamá, Panamá
- Laboratorio de Microbiología Experimental y Aplicada y Microbiología de Aguas (LAMEXA-LAMA), Universidad de Panamá, Panamá, Panamá
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá, Panamá
- Facultad de Medicina, Departamento de Bioquímica y Nutrición, Universidad de Panamá, Panamá, Panamá
| | - Alex Omar Martínez-Torres
- Laboratorio de Microbiología Experimental y Aplicada y Microbiología de Aguas (LAMEXA-LAMA), Universidad de Panamá, Panamá, Panamá
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá, Panamá
- Facultad de Ciencias Naturales, Departamento de Microbiología y Parasitología, Exactas y Tecnología, Universidad de Panamá, Panamá, Panamá
| |
Collapse
|
6
|
Pascual-Benito M, Méndez J, Ramos-Barbero MD, Jorba-Plassa A, Martín-Díaz J, Blanch AR. Efficient quantification of somatic coliphages in water: Development and validation of the Enumera® Rapid kit. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177500. [PMID: 39551208 DOI: 10.1016/j.scitotenv.2024.177500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
The integration of somatic coliphage analysis into water quality regulations has driven the development of more streamlined, easier, and faster detection methods. These include the Bluephage method, initially designed for the qualitative assessment of coliphages in 100 mL water samples. In the present study this technique was adapted for quantitative analysis using the most probable number method, enabling quantification of somatic coliphages in 100 mL water samples within 6.5 h of incubation. Early readings were optimised using an algorithm developed from an extensive dataset of over 400 environmental samples. This new quantitative method has been refined and commercialised as the Enumera® Rapid kit (BPF-SE, Bluephage S.L.), which includes a new reference somatic coliphage, strain GR8. After sequencing and further characterisation, it was confirmed that the new strain belongs to the same species as the reference somatic coliphage of the ISO 10705-2 method. The Enumera® Rapid kit was then validated by assessing its efficacy across 151 samples from various water matrices. The method provided a mean recovery rate of 103 %, ranging from 95 % for drinking water to 116 % for wastewater, at concentrations from 0 to 300 PFU/100 mL. In comparison, ISO 10705-2 applied after membrane filtration yielded a mean recovery rate of 63.8 %, with the highest rate observed for wastewater (88.9 %). The results obtained with the Enumera® Rapid kit did not differ significantly compared to the reference method after adjusting for potential losses during the concentration stage outlined in ISO 10705-3. The new method also demonstrated a robust accuracy of 0.16 logs, good linearity, and achieved a limit of detection and quantification of 1 MPN/100 mL. The Enumera® Rapid kit enables rapid and straightforward quantification of somatic coliphages in 100 mL water samples within a single working day. Its streamlined workflow serves as a useful tool for microbial water quality monitoring.
Collapse
Affiliation(s)
- Miriam Pascual-Benito
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; Bluephage S.L. Gavà 4, 08820, El Prat de Llobregat, Barcelona, Spain.
| | - Javier Méndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - María Dolores Ramos-Barbero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | | | - Julia Martín-Díaz
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; Bluephage S.L. Gavà 4, 08820, El Prat de Llobregat, Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Kim B, Kim S, Choi YJ, Shin M, Kim J. Characterization of Newly Isolated Bacteriophages Targeting Carbapenem-Resistant Klebsiella pneumoniae. J Microbiol 2024; 62:1133-1153. [PMID: 39656423 DOI: 10.1007/s12275-024-00180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 12/18/2024]
Abstract
Klebsiella pneumoniae, a Gram-negative opportunistic pathogen, is increasingly resistant to carbapenems in clinical settings. This growing problem necessitates the development of alternative antibiotics, with phage therapy being one promising option. In this study, we investigated novel phages targeting carbapenem-resistant Klebsiella pneumoniae (CRKP) and evaluated their lytic capacity against clinical isolates of CRKP. First, 23 CRKP clinical isolates were characterized using Multi-Locus Sequence Typing (MLST), carbapenemase test, string test, and capsule typing. MLST classified the 23 K. pneumoniae isolates into 10 sequence types (STs), with the capsule types divided into nine known and one unknown type. From sewage samples collected from a tertiary hospital, 38 phages were isolated. Phenotypic and genotypic characterization of these phages was performed using Random Amplification of Polymorphic DNA-PCR (RAPD-PCR), transmission electron microscopy (TEM), and whole genome sequencing (WGS) analysis. Host spectrum analysis revealed that each phage selectively lysed strains sharing the same STs as their hosts, indicating ST-specific activity. These phages were subtyped based on their host spectrum and RAPD-PCR, identifying nine and five groups, respectively. Fourteen phages were selected for further analysis using TEM and WGS, revealing 13 Myoviruses and one Podovirus. Genomic analysis grouped the phages into three clusters: one closely related to Alcyoneusvirus, one to Autographiviridae, and others to Straboviridae. Our results showed that the host spectrum of K. pneumoniae-specific phages corresponds to the STs of the host strain. These 14 novel phages also hold promise as valuable resources for phage therapy against CRKP.
Collapse
Affiliation(s)
- Bokyung Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, Republic of Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, Republic of Korea
| | - Yoon-Jung Choi
- Department of Microbiology, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, Republic of Korea
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, Republic of Korea.
- Untreatable Infectious Disease Institute, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
8
|
Musila L, Bird JT, Margulieux KR, Kigen C, Mzhavia N, Filippov AA, Nikolich MP. Complete genome sequences of three Pseudomonas aeruginosa jumbo bacteriophages discovered in Kenya. Microbiol Resour Announc 2024; 13:e0068424. [PMID: 39377596 PMCID: PMC11556092 DOI: 10.1128/mra.00684-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024] Open
Abstract
The genomes of three Pseudomonas aeruginosa Phikzvirus bacteriophages isolated in Kenya are described. The genomes of phages vB_PaePAO1-KEN19, vB_Pae3705-KEN49, and vB_Pae10145-KEN51, respectively, had lengths of 278,921, 280,231, and 280,173 bp, with 36.93%, 36.84%, and 36.86% GC content, containing 419, 417, and 417 coding sequences (including seven tRNAs in each genome).
Collapse
Affiliation(s)
- Lillian Musila
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Kericho, Kenya
| | - Jordan T. Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas, Little Rock, Arkansas, USA
| | - Katie R. Margulieux
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Collins Kigen
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Kericho, Kenya
| | - Nino Mzhavia
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Andrey A. Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mikeljon P. Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Rackow B, Rolland C, Mohnen I, Wittmann J, Müsken M, Overmann J, Frunzke J. Isolation and characterization of the new Streptomyces phages Kamino, Geonosis, Abafar, and Scarif infecting a broad range of host species. Microbiol Spectr 2024; 12:e0066324. [PMID: 39320111 PMCID: PMC11536984 DOI: 10.1128/spectrum.00663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Streptomyces, a multifaceted genus of soil-dwelling bacteria belonging to the phylum Actinomycetota, features intricate phage-host interactions shaped by its complex life cycle and the synthesis of a diverse array of specialized metabolites. Here, we describe the isolation and characterization of four novel Streptomyces phages infecting a variety of different host species. While phage Kamino, isolated on Streptomyces kasugaensis, is predicted to be temperate and encodes a serine integrase in its genome, phages Geonosis (isolated on Streptomyces griseus) and Abafar and Scarif, isolated on Streptomyces albidoflavus, are virulent phages. Phages Kamino and Geonosis were shown to amplify well in liquid culture leading to a pronounced culture collapse already at low titers. Determination of the host range by testing >40 different Streptomyces species identified phages Kamino, Abafar, and Scarif as broad host-range phages. Overall, the phages described in this study expand the publicly available portfolio of phages infecting Streptomyces and will be instrumental in advancing the mechanistic understanding of the intricate antiviral strategies employed by these multicellular bacteria.IMPORTANCEThe actinobacterial genus Streptomyces is characterized by multicellular, filamentous growth and the synthesis of a diverse range of bioactive molecules. These characteristics also play a role in shaping their interactions with the most abundant predator in the environment, bacteriophages-viruses infecting bacteria. In this study, we characterize four new phages infecting Streptomyces. Out of those, three phages feature a broad host range infecting up to 15 different species. The isolated phages were characterized with respect to plaque and virion morphology, host range, and amplification in liquid culture. In summary, the phages reported in this study contribute to the broader collection of publicly available phages infecting Streptomyces, playing a crucial role in advancing our mechanistic understanding of phage-host interactions of these multicellular bacteria.
Collapse
Affiliation(s)
- Bente Rackow
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Clara Rolland
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabelle Mohnen
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
10
|
Milase RN, Lin J, Mvubu NE, Hlengwa N. Reclassification of the first Bacillus tropicus phage calls for reclassification of other Bacillus temperate phages previously designated as plasmids. BMC Genomics 2024; 25:1018. [PMID: 39478480 PMCID: PMC11526630 DOI: 10.1186/s12864-024-10937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Bacillus tropicus is a recently identified subspecies of the Bacillus cereus group of bacteria that have been shown to possess genes associated with antimicrobial resistance (AMR) and identified as the causative agent for anthrax-like disease in Chinese soft-shelled turtles. In addition, B. tropicus has demonstrated great potential in the fields of bioremediation and bioconversion. This article describes the comparative genomics of a Bacillus phage vB_Btc-RBClinn15 (referred to as RBClin15) infecting the recently identified B. tropicus AOA-CPS1. RBClin15 is a temperate phage with a putative parABS partitioning system as well as an arbitrium system, which are presumed to enable extrachromosomal genome maintenance and regulate the lysis/lysogeny switch, respectively. The temperate phage RBClin15 has been sequenced however, was erroneously deposited as a plasmid in the NCBI GenBank database. A BLASTn search against the GenBank database using the whole genome sequence of RBClin15 revealed seven other putative temperate phages that were also deposited as plasmids in the database. Comparative genomic analyses shows that RBClin15 shares between 87 and 92% average nucleotide identity (ANI) with the seven temperate phages from the GenBank database. All together RBClin15 and the seven putative temperate phages share common genome arrangements and < 29% protein homologs with the closest phages, including 0105phi7-2. A phylogenomic tree and proteome-based phylogenetic tree analysis showed that RBClin15 and the seven temperate phages formed a separate branch from the closest phage, 0105phi7-2. In addition, the intergenomic similarity between RBClin15 and its closely related phages ranged between 0.3 and 47.7%. Collectively, based on the phylogenetic, and comparative genomic analyses, we propose three new species which will include RBClin15 and the seven temperate phages in the newly proposed genus Theosmithvirus under Caudoviricetes.
Collapse
Affiliation(s)
- Ridwaan Nazeer Milase
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, Republic of South Africa.
| | - Johnson Lin
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, Republic of South Africa
| | - Nontobeko E Mvubu
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, Medical School, University of KwaZulu Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Nokulunga Hlengwa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
11
|
Li A, Chen C, Li Y, Wang Y, Li X, Zhu Q, Zhang Y, Tian S, Xia Q. Characterisation of a new virulent phage isolated from Hainan Island with potential against multidrug-resistant Pseudomonas aeruginosa infections. Res Microbiol 2024:104250. [PMID: 39477080 DOI: 10.1016/j.resmic.2024.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa is a serious life-threatening pathogen. The rise in P. aeruginosa resistance rates has renewed interest in phages as an alternative therapeutic approach for treating bacterial infections. In this study, we investigated the characteristics of the first Pseudomonas phage, vB_PaP_HN01, isolated from Hainan, the only tropical island in China. The lytic rate of this phage against P. aeruginosa reached 64.3 % (27/42). Under the optimal multiplicity of infection (MOI) of 0.1, more than 90 % of phage particles absorb onto the host cell within 10 min, with an eclipse period of around 15 min, and a high titer phage production (1011 PFU/ml) within 90 min was demonstrated. vB_PaP_HN01 maintains a robust titer after 1 h exposure to pH values and temperatures (up to 50 °C). Genome annotation revealed that vB_PaP_HN01 did not contain drug-resistance or lysogeny-associated genes. It can effectively inhibit the formation of biofilms of MDR P. aeruginosa and eliminated aggressive biofilms (removal rate about 70 %). In the in vivo infection models, it was demonstrated that the survival rate and lifespan of Galleria mellonella larvae were increased alongside the injection of vB_PaP_HN01. These data revealed the potential of vB_PaP_HN01 against P. aeruginosa in clinic.
Collapse
Affiliation(s)
- Anyang Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Chen Chen
- Medical Laboratory Department, Traditional Chinese Medicine Hospital of Yaan, Sichuan, China
| | - Yanmei Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Yanshuang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xuemiao Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Qiao Zhu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Yue Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Shen Tian
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
12
|
Rajab AAH, Fahmy EK, Esmaeel SE, Yousef N, Askoura M. In vitro and in vivo assessment of the competence of a novel lytic phage vB_EcoS_UTEC10 targeting multidrug resistant Escherichia coli with a robust biofilm eradication activity. Microb Pathog 2024; 197:107058. [PMID: 39447656 DOI: 10.1016/j.micpath.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Escherichia coli (E. coli) is a leading cause of human infections worldwide and is considered a major cause of nosocomial infections, sepsis, meningitis and diarrhea. Lately, there has been an alarming increase in the incidence of antimicrobial resistance among clinical E. coli isolates. In the current study, a novel bacteriophage (phage) vB_EcoS_UTEC10 was isolated and characterized. The isolated phage showed high stability over wide temperature and pH ranges beside its promising bacteriolytic activity against multidrug resistant (MDR) E. coli isolates. In addition, vB_EcoS_UTEC10 showed a marked antibiofilm capability against mature E. coli biofilms. Genomic investigation revealed that vB_EcoS_UTEC10 has a double stranded DNA genome that consists of 44,772 bp comprising a total of 73 open reading frames (ORFs), out of which 35 ORFs were annotated as structural or functional proteins, and none were related to antimicrobial resistance or lysogeny. In vivo investigations revealed a promising bacteriolytic activity of vB_EcoS_UTEC10 against MDR E. coli which was further supported by a significant reduction in bacterial load in specimens collected from the phage-treated mice. Histopathology examination demonstrated minimal signs of inflammation and necrosis in the tissues of phage-treated mice compared to the degenerative tissue damage observed in untreated mice. In summary, the present findings suggest that vB_EcoS_UTEC10 has a remarkable ability to eradicate MDR E. coli infections and biofilms. These findings could be further invested for the development of targeted phage therapies that offer a viable alternative to traditional antibiotics against resistant E. coli.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Eslam K Fahmy
- Department of Physiology, College of Medicine, Northern Border University, Arar, Saudi Arabia; Department of Physiology, College of Medicine, Zagazig University, Egypt.
| | - Safya E Esmaeel
- Department of Physiology, College of Medicine, Northern Border University, Arar, Saudi Arabia; Department of Physiology, College of Medicine, Zagazig University, Egypt.
| | - Nehal Yousef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
13
|
Lekota KE, Mabeo RO, Ramatla T, Van Wyk DAB, Thekisoe O, Molale-Tom LG, Bezuidenhout CC. Genomic insight on Klebsiella variicola isolated from wastewater treatment plant has uncovered a novel bacteriophage. BMC Genomics 2024; 25:986. [PMID: 39438783 PMCID: PMC11494819 DOI: 10.1186/s12864-024-10906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Klebsiella variicola is considered an emerging pathogen, which may colonize a variety of hosts, including environmental sources. Klebsiella variicola investigated in this study was obtained from an influent wastewater treatment plant in the North-West Province, South Africa. Whole genome sequencing was conducted to unravel the genetic diversity and antibiotic resistance patterns of K. variicola. Whole genome core SNP phylogeny was employed on publicly available 170 genomes. Furthermore, capsule types and antibiotic resistance genes, particularly beta-lactamase and carbapenems genes were investigated from the compared genomes. A 38 099 bp bacteriophage was uncovered alongside with K. variicola genome. Whole genome sequencing revealed that the extended beta-lactamase blaLEN (75.3%) of the beta-lactamase is dominant among compared K. variicola strains. The identified IncF plasmid AA035 confers resistance genes of metal and heat element subtypes, i.e., silver, copper, and tellurium. The capsule type KL107-D1 is a predominant capsule type present in 88.2% of the compared K. variicola genomes. The phage was determined to be integrase-deficient consisting of a fosB gene associated with fosfomycin resistance and clusters with the Wbeta genus Bacillus phage group. In silico analysis showed that the phage genome interacts with B. cereus as opposed to K. variicola strain T2. The phage has anti-repressor proteins involved in the lysis-lysogeny decision. This phage will enhance our understanding of its impact on bacterial dissemination and how it may affect disease development and antibiotic resistance mechanisms in wastewater treatment plants. This study highlights the need for ongoing genomic epidemiological surveillance of environmental K. variicola isolates.
Collapse
Affiliation(s)
- Kgaugelo E Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Refilwe O Mabeo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Deidre A B Van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Lesego G Molale-Tom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Cornelius C Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
Miller IP, Laney AG, Zahn G, Sheehan BJ, Whitley KV, Kuddus RH. Isolation and preliminary characterization of a novel bacteriophage vB_KquU_φKuK6 that infects the multidrug-resistant pathogen Klebsiella quasipneumoniae. Front Microbiol 2024; 15:1472729. [PMID: 39479209 PMCID: PMC11524547 DOI: 10.3389/fmicb.2024.1472729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Background Klebsiella quasipneumoniae (previously known as K. pneumoniae K6) strains are among the multidrug-resistant hypervirulent bacterial pathogens. Phage therapy can help treat infections caused by such pathogens. Here we report some aspects of virology and therapeutic potentials of vB_KquU_φKuK6, a bacteriophage that infects Klebsiella quasipneumoniae. Methods K. quasipneumoniae (ATCC 700603) was used to screen wastewater lytic phages. The isolate vB_KquU_φKuK6 that consistently created large clear plaques was characterized using standard virological and molecular methods. Results vB_KquU_φKuK6 has a complex capsid with an icosahedral head (~60 nm) and a slender tail (~140 nm × 10 nm). The phage has a 51% AT-rich linear dsDNA genome (51,251 bp) containing 121 open reading frames. The genome contains genes encoding spanin, endolysin, and holin proteins necessary for lytic infection and a recombinase gene possibly involved in lysogenic infection. vB_KquU_φKuK6 is stable at -80 to +67°C, pH 4-9, and brief exposure to one volume percent of chloroform. vB_KquU_φKuK6 has a narrow host range. Its lytic infection cycle involves a latency of 20 min and a burst size of 435 plaque-forming units. The phage can cause lysogenic infection, and the resulting lysogens are resistant to lytic infection by vB_KquU_φKuK6. vB_KquU_φKuK6 reduces the host cells' ability to form biofilm but fails to eliminate that ability. vB_KquU_φKuK6 demonstrates phage-antibiotic synergy and reduces the minimum inhibitory concentration of chloramphenicol and neomycin sulfate by about 8 folds. Conclusion vB_KquU_φKuK6 cannot be directly used for phage therapy because it is a temperate bacteriophage. However, genetically modified strains of vB_KquU_φKuK6 alone or combined with antibiotics or other lytic Klebsiella phages can have therapeutic utilities in treating K. quasipneumoniae infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruhul H. Kuddus
- Department of Biology, Utah Valley University, Orem, UT, United States
| |
Collapse
|
15
|
Sathe N, Suphioglu C, Athan E, Kapat A. Bacteriophage vB_kpnS-Kpn15: Unveiling its potential triumph against extended-spectrum beta-lactamase-producing Klebsiella pneumoniae - Unraveling efficacy through innovative animal alternate models. Microb Pathog 2024; 195:106891. [PMID: 39214425 DOI: 10.1016/j.micpath.2024.106891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aim -To isolate bacteriophages targeting extended-spectrum beta-lactamase-producing K. pneumoniae and evaluate their effectiveness across diverse models, incorporating innovative alternatives in animal testing. METHODS AND RESULTS vB_kpnS-Kpn15 was isolated from sewage sample from Thane district. It produced a clear plaques on K. pneumoniae ATCC 700603. It has a flexible, non-contractile long tail and an icosahedral head and the Siphoviridae family of viruses in the order Caudovirales matched all of its structural criteria. Sequencing of vB_kpnS-Kpn15 revealed a 48,404 bp genome. The vB_KpnS-Kpn15 genome was found to contain 50 hypothetical proteins, of which 16 were found to possess different functions. The vB_KpnS-Kpn15 was also found to possess enzymes for its DNA synthesis. It was found to be lytic for the planktonic cells of K. pneumoniae and bactericidal for up to 48 h and potentially affected established K. pneumoniae biofilms. It demonstrated a broad host range and caused lytic zones on about 46 % of K. pneumoniae multi-drug resistant strains. In an in vitro wound and burn infection model, phage vB_kpnS-Kpn15 in combination with other phages resulted in successful cell proliferation and wound healing. Based on vB_kpnS-Kpn15's lytic properties, it can be incorporated in a bacteriophage cocktail to combat ESBL strains. CONCLUSIONS The phages isolated during this research are better candidates for phage therapy, and therefore provide new and exciting options for the successful control of antibiotic-resistant bacterial infections in the future. The utilization of animal alternative models in this study elucidates cellular proliferation and migration, underscoring its significance in screening novel drugs with potential applications in the treatment of wound and burn infections. SIGNIFICANCE AND IMPACT OF THE RESEARCH The findings of this research have implications for the creation of innovative, promising strategies to treat ESBL K. pneumoniae infections.
Collapse
Affiliation(s)
- Nikhil Sathe
- Reliance Life Sciences Pvt. Ltd, Dhirubhai Ambani Life Sciences Centre, Thane Belapur Road, Rabale, Navi Mumbai 400701, Maharashtra, India; School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221, Burwood Highway, Burwood VIC 3125, Australia
| | - Cenk Suphioglu
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221, Burwood Highway, Burwood VIC 3125, Australia; NeuroAllergy Research Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, 75 Pigdons Road, Waurn Ponds VIC 3216. Australia
| | - Eugene Athan
- School of Medicine, Deakin University, PO Box 281 Geelong 3220, Australia.
| | - Arnab Kapat
- Reliance Life Sciences Pvt. Ltd, Dhirubhai Ambani Life Sciences Centre, Thane Belapur Road, Rabale, Navi Mumbai 400701, Maharashtra, India.
| |
Collapse
|
16
|
Asgharzadeh Kangachar S, Logel DY, Trofimova E, Zhu HX, Zaugg J, Schembri MA, Weynberg KD, Jaschke PR. Discovery and characterisation of new phage targeting uropathogenic Escherichia coli. Virology 2024; 597:110148. [PMID: 38941748 DOI: 10.1016/j.virol.2024.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Antimicrobial resistance is an escalating threat with few new therapeutic options in the pipeline. Urinary tract infections (UTIs) are one of the most prevalent bacterial infections globally and are prone to becoming recurrent and antibiotic resistant. We discovered and characterized six novel Autographiviridae and Guernseyvirinae bacterial viruses (phage) against uropathogenic Escherichia coli (UPEC), a leading cause of UTIs. The phage genomes were between 39,471 bp - 45,233 bp, with 45.0%-51.0% GC%, and 57-84 predicted coding sequences per genome. We show that tail fiber domain structure, predicted host capsule type, and host antiphage repertoire correlate with phage host range. In vitro characterisation of phage cocktails showed synergistic improvement against a mixed UPEC strain population and when sequentially dosed. Together, these phage are a new set extending available treatments for UTI from UPEC, and phage vM_EcoM_SHAK9454 represents a promising candidate for further improvement through engineering.
Collapse
Affiliation(s)
- Shahla Asgharzadeh Kangachar
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Y Logel
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Ellina Trofimova
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Hannah X Zhu
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen D Weynberg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
17
|
Pedersen JS, Carstens AB, Rothgard MM, Roy C, Viry A, Papudeshi B, Kot W, Hille F, Franz CMAP, Edwards R, Hansen LH. A novel genus of Pectobacterium bacteriophages display broad host range by targeting several species of Danish soft rot isolates. Virus Res 2024; 347:199435. [PMID: 38986742 PMCID: PMC11445585 DOI: 10.1016/j.virusres.2024.199435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus Pectobacteriaceae are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents. In this study we isolated soft rot bacteria from potato tubers and plant tissue displaying soft rot or black leg symptoms collected in Danish fields. We then used the isolated bacterial strains as hosts for phage isolation. Using organic waste, we isolated phages targeting different species within Pectobacterium. Here we focus on seven of these phages representing a new genus primarily targeting P. brasiliense; phage Ymer, Amona, Sabo, Abuela, Koroua, Taid and Pappous. TEM image of phage Ymer showed siphovirus morphotype, and the proposed Ymer genus belongs to the class Caudoviricetes, with double-stranded DNA genomes varying from 39 kb to 43 kb. In silico host range prediction using a CRISPR-Cas spacer database suggested both P. brasiliense, P. polaris and P. versatile as natural hosts for phages within the proposed Ymer genus. A following host range experiment, using 47 bacterial isolates from Danish tubers and plants symptomatic with soft rot or black leg disease verified the in silico host range prediction, as the genus as a group were able to infect all three Pectobacterium species. Phages did, however, primarily target P. brasiliense isolates and displayed differences in host range even within the species level. Two of the phages were able to infect two or more Pectobacterium species. Despite no nucleotide similarity with any phages in the NCBI database, the proposed Ymer genus did share some similarity at the protein level, as well as gene synteny, with currently known phages. None of the phages encoded integrases or other genes typically associated with lysogeny. Similarly, no virulence factors nor antimicrobial resistance genes were found, and combined with their ability to infect several soft rot-causing Pectobacterium species from Danish fields, demonstrates their potential as biocontrol agents against soft rot and black leg diseases in potatoes.
Collapse
Affiliation(s)
- Julie Stenberg Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Alexander Byth Carstens
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Magnus Mulbjerg Rothgard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Chayan Roy
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Anouk Viry
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Frank Hille
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Robert Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| |
Collapse
|
18
|
Torkashvand N, Kamyab H, Shahverdi AR, Khoshayand MR, Karimi Tarshizi MA, Sepehrizadeh Z. Characterization and genome analysis of a broad host range lytic phage vB_SenS_TUMS_E19 against Salmonella enterica and its efficiency evaluation in the liquid egg. Can J Microbiol 2024; 70:358-369. [PMID: 38990097 DOI: 10.1139/cjm-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Salmonella enterica serovars are zoonotic bacterial that cause foodborne enteritis. Due to bacteria's antibiotic resistance, using bacteriophages for biocontrol and treatment is a new therapeutic approach. In this study, we isolated, characterized, and analyzed the genome of vB_SenS_TUMS_E19 (E19), a broad host range Salmonella bacteriophage, and evaluated the influence of E19 on liquid eggs infected with Salmonella enterica serovar Enteritidis. Transmission electron microscopy showed that the isolated bacteriophage had a siphovirus morphotype. E19 showed rapid adsorption (92% in 5 min), a short latent period (18 min), a large burst size (156 PFU per cell), and a broad host range against different Salmonella enterica serovars. Whole-genome sequencing analysis indicated that the isolated phage had a 42 813 bp long genome with 49.8% G + C content. Neither tRNA genes nor those associated with antibiotic resistance, virulence factors, or lysogenic formation were detected in the genome. The efficacy of E19 was evaluated in liquid eggs inoculated with S. Enteritidis at 4 and 25 °C, and results showed that it could effectively eradicate S. Enteritidis in just 30 min and prevented its growth up to 72 h. Our findings indicate that E19 can be an alternative to a preservative to control Salmonella in food samples and help prevent and treat salmonellosis.
Collapse
Affiliation(s)
- Narges Torkashvand
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Kamyab
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Tan S, Chen H, Huang S, Zhu B, Wu J, Chen M, Zhang J, Wang J, Ding Y, Wu Q, Yang M. Characterization of the novel phage vB_BceP_LY3 and its potential role in controlling Bacillus cereus in milk and rice. Int J Food Microbiol 2024; 421:110778. [PMID: 38861847 DOI: 10.1016/j.ijfoodmicro.2024.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Bacillus cereus is a foodborne pathogen that induces vomiting and diarrhea in affected individuals. It exhibits resistance to traditional sterilization methods and has a high contamination rate in dairy products and rice. Therefore, the development of a new food safety controlling strategy is necessary. In this research, we isolated and identified a novel phage named vB_BceP_LY3, which belongs to a new genus of the subfamily Northropvirinae. This phage demonstrates a short latency period and remains stable over a wide range of temperatures (4-60 °C) and pH levels (4-11). The 28,124 bp genome of LY3 does not contain any antibiotic-resistance genes or virulence factors. With regards to its antibacterial properties, LY3 not only effectively inhibits the growth of B. cereus in TSB (tryptic soy broth), but also demonstrates significant inhibitory effects in various food matrices. Specifically, LY3 treatment at 4 °C with a high MOI (MOI = 10,000) can maintain B. cereus levels below the detection limit for up to 24 h in milk. LY3 represents a safe and promising biocontrol agent against B. cereus, possessing long-term antibacterial capabilities and stability.
Collapse
Affiliation(s)
- Shilin Tan
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Hanfang Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Shixuan Huang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Bin Zhu
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Junquan Wu
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Moutong Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Jumei Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yu Ding
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| | - Meiyan Yang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| |
Collapse
|
20
|
Jaglan AB, Verma R, Vashisth M, Virmani N, Bera BC, Vaid RK, Anand T. A novel lytic phage infecting MDR Salmonella enterica and its application as effective food biocontrol. Front Microbiol 2024; 15:1387830. [PMID: 39211316 PMCID: PMC11358711 DOI: 10.3389/fmicb.2024.1387830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Salmonella enterica is a foodborne pathogen associated with both typhoid and non-typhoid illness in humans and animals. This problem is further exacerbated by the emergence of antibiotic-resistant strains of Salmonella enterica. Therefore, to meet public health and safety, there is a need for an alternative strategy to tackle antibiotic-resistant bacteria. Bacteriophages or (bacterial viruses), due to their specificity, self-dosing, and antibiofilm activity, serve as a better approach to fighting against drug-resistant bacteria. In the current study, a broad-host range lytic phage phiSalP219 was isolated against multidrug-resistant Salmonella enterica serotypes Paratyphi from a pond water sample. Salmonella phage phiSalP219 was able to lyse 28/30 tested strains of Salmonella enterica. Salmonella phage phiSalP219 exhibits activity in acidic environments (pH3) and high temperatures (70°C). Electron microscopy and genome analysis revealed that phage phiSalP219 is a member of class Caudoviricetes. The genome of Salmonella phage phiSalP219 is 146Kb in size with 44.5% GC content. A total of 250 Coding Sequence (CDS) and 25 tRNAs were predicted in its genome. Predicted open reading frames (ORFs) were divided into five groups based on their annotation results: (1) nucleotide metabolism, (2) DNA replication and transcription, (3) structural proteins, (4) lysis protein, and (5) other proteins. The absence of lysogeny-related genes in their genome indicates that Salmonella phage phiSalP219 is lytic in nature. Phage phiSalP219 was also found to be microbiologically safe (due to the absence of toxin or virulence-related genes) in the control of Salmonella enterica serovar Typhimurium infections in the ready-to-eat meat and also able to eradicate biofilm formed by the same bacterium on the borosilicate glass surface.
Collapse
Affiliation(s)
- Anu Bala Jaglan
- ICAR – National Research Centre on Equines, Hisar, India
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Ravikant Verma
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | | | - Nitin Virmani
- ICAR – National Research Centre on Equines, Hisar, India
| | - B. C. Bera
- ICAR – National Research Centre on Equines, Hisar, India
| | - R. K. Vaid
- ICAR – National Research Centre on Equines, Hisar, India
| | - Taruna Anand
- ICAR – National Research Centre on Equines, Hisar, India
| |
Collapse
|
21
|
Yang L, Wang C, Zeng Y, Song Y, Zhang G, Wei D, Li Y, Feng J. Characterization of a novel phage against multidrug-resistant Klebsiella pneumoniae. Arch Microbiol 2024; 206:379. [PMID: 39143367 DOI: 10.1007/s00203-024-04106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant challenge in global healthcare, underscoring the urgency for innovative therapeutic approaches. Phage therapy emerges as a promising strategy amidst rising antibiotic resistance, emphasizing the crucial need to identify and characterize effective phage resources for clinical use. In this study, we introduce a novel lytic phage, RCIP0100, distinguished by its classification into the Chaoyangvirus genus and Fjlabviridae family based on International Committee on Taxonomy of Viruses (ICTV) criteria due to low genetic similarity to known phage families. Our findings demonstrate that RCIP0100 exhibits broad lytic activity against 15 out of 27 tested MDR-KP strains, including diverse profiles such as carbapenem-resistant K. pneumoniae (CR-KP). This positions phage RCIP0100 as a promising candidate for phage therapy. Strains resistant to RCIP0100 also showed increased susceptibility to various antibiotics, implying the potential for synergistic use of RCIP0100 and antibiotics as a strategic countermeasure against MDR-KP.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Qilu Medical University, Zibo, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Zeng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yalin Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Gauthier CH, Hatfull GF. A Bioinformatic Ecosystem for Bacteriophage Genomics: PhaMMSeqs, Phamerator, pdm_utils, PhagesDB, DEPhT, and PhamClust. Viruses 2024; 16:1278. [PMID: 39205252 PMCID: PMC11359507 DOI: 10.3390/v16081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
The last thirty years have seen a meteoric rise in the number of sequenced bacteriophage genomes, spurred on by both the rise and success of groups working to isolate and characterize phages, and the rapid and significant technological improvements and reduced costs associated with sequencing their genomes. Over the course of these decades, the tools used to glean evolutionary insights from these sequences have grown more complex and sophisticated, and we describe here the suite of computational and bioinformatic tools used extensively by the integrated research-education communities such as SEA-PHAGES and PHIRE, which are jointly responsible for 25% of all complete phage genomes in the RefSeq database. These tools are used to integrate and analyze phage genome data from different sources, for identification and precise extraction of prophages from bacterial genomes, computing "phamilies" of related genes, and displaying the complex nucleotide and amino acid level mosaicism of these genomes. While over 50,000 SEA-PHAGES students have primarily benefitted from these tools, they are freely available for the phage community at large.
Collapse
Affiliation(s)
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
23
|
Huang B, Ge L, Xiang D, Tan G, Liu L, Yang L, Jing Y, Liu Q, Chen W, Li Y, He H, Sun H, Pan Q, Yi K. Isolation, characterization, and genomic analysis of a lytic bacteriophage, PQ43W, with the potential of controlling bacterial wilt. Front Microbiol 2024; 15:1396213. [PMID: 39149212 PMCID: PMC11324598 DOI: 10.3389/fmicb.2024.1396213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Bacterial wilt (BW) is a devastating plant disease caused by the soil-borne bacterium Ralstonia solanacearum species complex (Rssc). Numerous efforts have been exerted to control BW, but effective, economical, and environmentally friendly approaches are still not available. Bacteriophages are a promising resource for the control of bacterial diseases, including BW. So, in this study, a crop BW pathogen of lytic bacteriophage was isolated and named PQ43W. Biological characterization revealed PQ43W had a short latent period of 15 min, 74 PFU/cell of brust sizes, and good stability at a wide range temperatures and pH but a weak resistance against UV radiation. Sequencing revealed phage PQ43W contained a circular double-stranded DNA genome of 47,156 bp with 65 predicted open reading frames (ORFs) and genome annotation showed good environmental security for the PQ43W that no tRNA, antibiotic resistance, or virulence genes contained. Taxonomic classification showed PQ43W belongs to a novel genus of subfamily Kantovirinae under Caudoviricetes. Subsequently, a dose of PQ43W for phage therapy in controlling crop BW was determined: 108 PFU*20 mL per plant with non-invasive irrigation root application twice by pot experiment. Finally, a field experiment of PQ43W showed a significantly better control effect in crop BW than the conventional bactericide Zhongshengmycin. Therefore, bacteriophage PQ43W is an effective bio-control resource for controlling BW diseases, especially for crop cultivation.
Collapse
Affiliation(s)
- Binbin Huang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Long Ge
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
| | - Dong Xiang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Ge Tan
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lijia Liu
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lei Yang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Jing
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ye Li
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Haoxin He
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Huzhi Sun
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
| | - Qiang Pan
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
- Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| | - Ke Yi
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| |
Collapse
|
24
|
Liu W, Wu Y, Wang H, Wang H, Zhou M. Isolation and Biological Characteristics of a Novel Phage and Its Application to Control Vibrio Parahaemolyticus in Shellfish Meat. Foodborne Pathog Dis 2024; 21:467-477. [PMID: 38757692 DOI: 10.1089/fpd.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Vibrio parahaemolyticus is a common foodborne pathogenic bacterium. With the overuse of antibiotics, an increasing proportion of drug-resistant strains are emerging, which puts enormous pressure on public health. In this study, a V. parahaemolyticus-specific phage, VP41s3, was isolated. The head length, width, and tail length of the phage were 77.7 nm, 72.2 nm, and 17.5 nm, respectively. It remained active in the temperature range of 30-50°C and pH range of 4-11. The lytic curve of phage VP41s3 showed that the host bacteria did not grow until 11 h under phage treatment at MOI of 1000, indicating that the phage had good bacteriostatic ability. When it was added to shellfish contaminated with V. parahaemolyticus (15°C, 48 h), the number of bacteria in the experimental group was 2.11 log10 CFU/mL lower than that in the control group at 24 h. Furthermore, genomic characterization and phylogenetic analysis indicated that phage VP41s3 was a new member of the Podoviridae family. The genome contained 50 open reading frames (ORFs), in which the ORF19 (thymidine kinase) was an enzyme involved in the pyrimidine salvage pathway, which might lead to the accelerated DNA synthesis efficiency after phage entered into host cells. This study not only contributed to the improvement of phage database and the development of beneficial phage resources but also revealed the potential application of phage VP41s3 in food hygiene and safety.
Collapse
Affiliation(s)
- Wenting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Yiming Wu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Huajuan Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| |
Collapse
|
25
|
Shi Z, Hong X, Li Z, Zhang M, Zhou J, Zhao Z, Qiu S, Liu G. Characterization of the novel broad-spectrum lytic phage Phage_Pae01 and its antibiofilm efficacy against Pseudomonas aeruginosa. Front Microbiol 2024; 15:1386830. [PMID: 39091310 PMCID: PMC11292732 DOI: 10.3389/fmicb.2024.1386830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is present throughout nature and is a common opportunistic pathogen in the human body. Carbapenem antibiotics are typically utilized as a last resort in the clinical treatment of multidrug-resistant infections caused by P. aeruginosa. The increase in carbapenem-resistant P. aeruginosa poses an immense challenge for the treatment of these infections. Bacteriophages have the potential to be used as antimicrobial agents for treating antibiotic-resistant bacteria. Methods and Results In this study, a new virulent P. aeruginosa phage, Phage_Pae01, was isolated from hospital sewage and shown to have broad-spectrum antibacterial activity against clinical P. aeruginosa isolates (83.6%). These clinical strains included multidrug-resistant P. aeruginosa and carbapenem-resistant P. aeruginosa. Transmission electron microscopy revealed that the phage possessed an icosahedral head of approximately 80 nm and a long tail about 110 m, indicating that it belongs to the Myoviridae family of the order Caudovirales. Biological characteristic analysis revealed that Phage_Pae01 could maintain stable activity in the temperature range of 4~ 60°C and pH range of 4 ~ 10. According to the in vitro lysis kinetics of the phage, Phage_Pae01 demonstrated strong antibacterial activity. The optimal multiplicity of infection was 0.01. The genome of Phage_Pae01 has a total length of 93,182 bp and contains 176 open reading frames (ORFs). The phage genome does not contain genes related to virulence or antibiotic resistance. In addition, Phage_Pae01 effectively prevented the formation of biofilms and eliminated established biofilms. When Phage_Pae01 was combined with gentamicin, it significantly disrupted established P. aeruginosa biofilms. Conclusion We identified a novel P. aeruginosa phage and demonstrated its effective antimicrobial properties against P. aeruginosa in both the floating and biofilm states. These findings offer a promising approach for the treatment of drug-resistant bacterial infections in clinical settings.
Collapse
Affiliation(s)
- Zhixin Shi
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- National Key Clinical Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zexuan Li
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Meijuan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jun Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, Nanjing, China
| | - Shengfeng Qiu
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Genyan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- National Key Clinical Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Chuksina TA, Fatkulin AA, Sorokina NP, Smykov IT, Kuraeva EV, Masagnaya ES, Smagina KA, Shkurnikov MY. Genome Characterization of Two Novel Lactococcus lactis Phages vL_296 and vL_20A. Acta Naturae 2024; 16:102-109. [PMID: 39555173 PMCID: PMC11569839 DOI: 10.32607/actanaturae.27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 11/19/2024] Open
Abstract
Fermented dairy products are produced using starter cultures. They ferment milk to create products with a certain texture, aroma, and taste. However, the lactic acid bacteria used in this production are prone to bacteriophage infection. We examined the genomes of two newly discovered bacteriophage species that were isolated from cheese whey during the cheesemaking process. We have determined the species and the lytic spectrum of these bacteriophages. Phages vL_20A and vL_296 were isolated using lactococcal indicator cultures. They have unique lytic spectra: of the 21 possible identified host bacteria, only four are shared amongst them. The vL_20A and vL_296 genomes comprise linear double-stranded DNA lengths with 21,909 and 22,667 nucleotide pairs, respectively. Lactococcus phage bIL67 (ANI 93.3 and 92.6, respectively) is the closest to the phages vL_20A and vL_296. The analysis of the CRISPR spacers in the genomes of starter cultures did not reveal any phage-specific vL_20A or vL_296 among them. This study highlights the biodiversity of L. lactis phages, their widespread presence in dairy products, and their virulence. However, the virulence of phages is balanced by the presence of a significant number of bacterial strains with different sensitivities to phages in the starter cultures due to the bacterial immune system.
Collapse
Affiliation(s)
- T. A. Chuksina
- Department of Biology and Biotechnology, HSE University, Moscow, 101000 Russian Federation
| | - A. A. Fatkulin
- Department of Biology and Biotechnology, HSE University, Moscow, 101000 Russian Federation
| | - N. P. Sorokina
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - I. T. Smykov
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - E. V. Kuraeva
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - E. S. Masagnaya
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - K. A. Smagina
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - M. Yu. Shkurnikov
- Department of Biology and Biotechnology, HSE University, Moscow, 101000 Russian Federation
| |
Collapse
|
27
|
Meidaninikjeh S, Mohammadi P, Elikaei A. A simplified method of bacteriophage preparation for transmission electron microscope. J Virol Methods 2024; 328:114951. [PMID: 38750823 DOI: 10.1016/j.jviromet.2024.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Bacteriophages are viruses that infect bacteria. Researchers use different methods to study the characteristics of bacteriophages. Transmission electron microscope (TEM) is considered the best method to analyze these characteristics. However, the quality of TEM micrographs is significantly influenced by the preparation methods used to prepare the bacteriophages sample. In this study, researchers compared two different methods for preparing the bacteriophage samples. In one method was used SM buffer, while in the other used deionized water. The results were analyzed by TEM and compared with each other. Additionally, the viability of bacteriophage in deionized water and SM buffer at 4°C was determined through plaque assay within 72 hours. TEM micrographs showed that the quality of bacteriophage sample prepared with deionized water is superior to those prepared with SM buffer. Furthermore, the titer of the bacteriophages did not show a significant reduction during 72 hours in both SM and deionized water. In conclusion, the results suggested that preparation method can significantly impact the quality of TEM micrographs. Using sterile deionized water for the preparation of bacteriophages is a simple way to improve the quality of TEM micrographs and it is advisable to send the samples to the laboratory within 72 hours.
Collapse
Affiliation(s)
- Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran
| |
Collapse
|
28
|
Guzel M, Yucefaydali A, Yetiskin S, Deniz A, Yaşar Tel O, Akçelik M, Soyer Y. Genomic analysis of Salmonella bacteriophages revealed multiple endolysin ORFs and importance of ligand-binding site of receptor-binding protein. FEMS Microbiol Ecol 2024; 100:fiae079. [PMID: 38816206 PMCID: PMC11180984 DOI: 10.1093/femsec/fiae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Salmonella is a prevalent foodborne pathogen causing millions of global cases annually. Antimicrobial resistance is a growing public health concern, leading to search for alternatives like bacteriophages. A total of 97 bacteriophages, isolated from cattle farms (n = 48), poultry farms (n = 37), and wastewater (n = 5) samples in Türkiye, were subjected to host-range analysis using 36 Salmonella isolates with 18 different serotypes. The broadest host range belonged to an Infantis phage (MET P1-091), lysing 28 hosts. A total of 10 phages with the widest host range underwent further analysis, revealing seven unique genomes (32-243 kb), including a jumbophage (>200 kb). Except for one with lysogenic properties, none of them harbored virulence or antibiotic resistance genes, making them potential Salmonella reducers in different environments. Examining open reading frames (ORFs) of endolysin enzymes revealed surprising findings: five of seven unique genomes contained multiple endolysin ORFs. Despite sharing same endolysin sequences, phages exhibited significant differences in host range. Detailed analysis unveiled diverse receptor-binding protein sequences, with similar structures but distinct ligand-binding sites. These findings emphasize the importance of ligand-binding sites of receptor-binding proteins. Additionally, bacterial reduction curve and virulence index revealed that Enteritidis phages inhibit bacterial growth even at low concentrations, unlike Infantis and Kentucky phages.
Collapse
Affiliation(s)
- Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Food Engineering, Hitit University, Corum 19030, Türkiye
| | - Aysenur Yucefaydali
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Segah Yetiskin
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysu Deniz
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Osman Yaşar Tel
- Faculty of Veterinary Medicine, Harran University, Şanlıurfa 63300, Türkiye
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Ankara 06100, Türkiye
| | - Yeşim Soyer
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| |
Collapse
|
29
|
Wannasrichan W, Krobthong S, Morgan CJ, Armbruster EG, Gerovac M, Yingchutrakul Y, Wongtrakoongate P, Vogel J, Aonbangkhen C, Nonejuie P, Pogliano J, Chaikeeratisak V. A phage nucleus-associated protein from the jumbophage Churi inhibits bacterial growth through protein translation interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599175. [PMID: 38915640 PMCID: PMC11195228 DOI: 10.1101/2024.06.15.599175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Antibacterial proteins inhibiting Pseudomonas aeruginosa have been identified in various phages and explored as antibiotic alternatives. Here, we isolated a phiKZ-like phage, Churi, which encodes 364 open reading frames. We examined 15 early-expressed phage proteins for their ability to inhibit bacterial growth, and found that gp335, closely related to phiKZ-gp14, exhibits antibacterial activity. Similar to phiKZ-gp14, recently shown to form a complex with the P. aeruginosa ribosome, we predict experimentally that gp335 interacts with ribosomal proteins, suggesting its involvement in protein translation. GFP-tagged gp335 clusters around the phage nucleus as early as 15 minutes post-infection and remains associated with it throughout the infection, suggesting its role in protein expression in the cell cytoplasm. CRISPR-Cas13-mediated deletion of gp355 reveals that the mutant phage has a prolonged latent period. Altogether, we demonstrate that gp335 is an antibacterial protein of nucleus-forming phages that associates with the ribosomes at the phage nucleus.
Collapse
|
30
|
Li L, Zhang H, Jin H, Guo J, Liu P, Yang J, Wang Z, Zhang E, Yu B, Shi L, He J, Wang P, Wei J, Zhong Y, Li W. Identification and characterization of two Bacillus anthracis bacteriophages. Arch Virol 2024; 169:134. [PMID: 38834736 PMCID: PMC11150296 DOI: 10.1007/s00705-024-06005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/05/2024] [Indexed: 06/06/2024]
Abstract
Anthrax is an acute infectious zoonotic disease caused by Bacillus anthracis, a bacterium that is considered a potential biological warfare agent. Bacillus bacteriophages shape the composition and evolution of bacterial communities in nature and therefore have important roles in the ecosystem community. B. anthracis phages are not only used in etiological diagnostics but also have promising prospects in clinical therapeutics or for disinfection in anthrax outbreaks. In this study, two temperate B. anthracis phages, vB_BanS_A16R1 (A16R1) and vB_BanS_A16R4 (A16R4), were isolated and showed siphovirus-like morphological characteristics. Genome sequencing showed that the genomes of phages A16R1 and A16R4 are 36,569 bp and 40,059 bp in length, respectively. A16R1 belongs to the genus Wbetavirus, while A16R4 belongs to the genus Hubeivirus and is the first phage of that genus found to lyse B. anthracis. Because these two phages can comparatively specifically lyse B. anthracis, they could be used as alternative diagnostic tools for identification of B. anthracis infections.
Collapse
Affiliation(s)
- Lun Li
- Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Dali, China
- School of Public Health, Dali University, Dali, China
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Huijuan Zhang
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Haixiao Jin
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Jin Guo
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Pan Liu
- Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Jiao Yang
- Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Zijian Wang
- Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Enmin Zhang
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Binbin Yu
- Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Liyuan Shi
- Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Jinrong He
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Peng Wang
- Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Jianchun Wei
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Youhong Zhong
- Yunnan Institute for Endemic Disease Control and Prevention, Dali, China.
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Dali, China.
| | - Wei Li
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Beijing, China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China.
| |
Collapse
|
31
|
Jhandai P, Mittal D, Gupta R, Kumar M, Khurana R. Therapeutics and prophylactic efficacy of novel lytic Escherichia phage vB_EcoS_PJ16 against multidrug-resistant avian pathogenic E. coli using in vivo study. Int Microbiol 2024; 27:673-687. [PMID: 37632591 DOI: 10.1007/s10123-023-00420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis, which causes significant economic losses to the poultry industry. The growing resistance of bacteria to antibiotics is a major global public health concern. However, there is limited data on the efficacy of phage therapy in effectively controlling and treating APEC infections. In this study, a novel lytic Escherichia phage, vB_EcoS_PJ16, was isolated from poultry farm wastewater and characterized in both in vitro and in vivo conditions. Transmission electron microscopy analysis revealed the presence of an icosahedral head and a long non-contractile tail, classifying the phage under the Caudoviricetes class. Host range determination showed that Escherichia phage vB_EcoS_PJ16 exhibited lytic activity against multiple strains of pathogenic E. coli, while no significant signs of lysis for Klebsiella pneumoniae, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. Biophysical characterization revealed that the isolated phage was sturdy, as it remained viable for up to 300 days at temperatures of 30 °C, 37 °C, and 42 °C and for up to 24 h at pH 5 to 11, with only minor changes in titer. Kinetic analysis at multiplicity of infection (MOI) 0.1 showed a latency period of about 20 min and a burst size of 26.5 phage particles per infected cell for phage vB_EcoS_PJ16. Whole genome sequencing unveiled that the phage vB_EcoS_PJ16 genome consists of a double-stranded linear DNA molecule with 57,756 bp and a GC content of 43.58%. The Escherichia phage vB_EcoS_PJ16 genome consisted of 98 predicted putative ORFs, with no transfer RNA identified in the genome. Among these 98 genes, 34 genes were predicted to have known functions. A significant reduction in APEC viability was observed at MOI 100 during in vitro bacterial challenge tests conducted at different MOIs (0.01, 1, and 100). In vivo oral evaluation of the isolated phage to limit E. coli infections in day-old chicks indicated a decrease in mortality within both the therapeutic (20%) and prophylactic (30%) groups, when compared to the control group. The findings of this study contribute to our current knowledge of Escherichia phages and suggest a potentially effective role of phages in the therapeutic and prophylactic control of antibiotic-resistant APEC strains.
Collapse
Affiliation(s)
- Punit Jhandai
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India.
| | - Renu Gupta
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Manesh Kumar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Rajesh Khurana
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| |
Collapse
|
32
|
Ha EJ, Hong SM, Kim TE, Cho SH, Ko DS, Kim JH, Choi KS, Kwon HJ. Strategic combination of bacteriophages with highly susceptible cells for enhanced intestinal settlement and resistant cell killing. Biochem Biophys Res Commun 2024; 709:149823. [PMID: 38569245 DOI: 10.1016/j.bbrc.2024.149823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Avian pathogenic Escherichia coli (APEC) causes enormous economic losses and is a primary contributor to the emergence of multidrug resistance (MDR)-related problems in the poultry industry. Bacteriophage (phage) therapy has been successful in controlling MDR, but phage-resistant variants have rapidly emerged through the horizontal transmission of diverse phage defense systems carried on mobile genetic elements. Consequently, while multiple phage cocktails are recommended for phage therapy, there is a growing need to explore simpler and more cost-effective phage treatment alternatives. In this study, we characterized two novel O78-specific APEC phages, φWAO78-1 and φHAO78-1, in terms of their morphology, genome, physicochemical stability and growth kinetics. Additionally, we assessed the susceptibility of thirty-two O78 APEC strains to these phages. We analyzed the roles of highly susceptible cells in intestinal settlement and fecal shedding (susceptible cell-assisted intestinal settlement and shedding, SAIS) of phages in chickens via coinoculation with phages. Furthermore, we evaluated a new strategy, susceptible cell-assisted resistant cell killing (SARK), by comparing phage susceptibility between resistant cells alone and a mixture of resistant and highly susceptible cells in vitro. As expected, high proportions of O78 APEC strains had already acquired multiple phage defense systems, exhibiting considerable resistance to φWAO78-1 and φHAO78-1. Coinoculation of highly susceptible cells with phages prolonged phage shedding in feces, and the coexistence of susceptible cells markedly increased the phage susceptibility of resistant cells. Therefore, the SAIS and SARK strategies were demonstrated to be promising both in vivo and in vitro.
Collapse
Affiliation(s)
- Eun-Jin Ha
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, South Korea
| | - Seung-Min Hong
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, South Korea
| | - Tae-Eun Kim
- BioPOA Co. Hwaseong-si 18469, Gyeonggi-do, South Korea
| | - Sun-Hee Cho
- BioPOA Co. Hwaseong-si 18469, Gyeonggi-do, South Korea
| | - Dae-Sung Ko
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, South Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, South Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, South Korea.
| | - Hyuk-Joon Kwon
- BioPOA Co. Hwaseong-si 18469, Gyeonggi-do, South Korea; Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, South Korea; Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Pyeongchang 25354, South Korea; GeNiner Inc., Seoul 08826, South Korea.
| |
Collapse
|
33
|
Manley R, Fitch C, Francis V, Temperton I, Turner D, Fletcher J, Phil M, Michell S, Temperton B. Resistance to bacteriophage incurs a cost to virulence in drug-resistant Acinetobacter baumannii. J Med Microbiol 2024; 73:001829. [PMID: 38743467 PMCID: PMC11170128 DOI: 10.1099/jmm.0.001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Robyn Manley
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Christian Fitch
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Vanessa Francis
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Isaac Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Julie Fletcher
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Mitchelmore Phil
- University of Exeter, College of Medicine and Health, Department of Respiratory Medicine, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Steve Michell
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Ben Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| |
Collapse
|
34
|
Quinones-Olvera N, Owen SV, McCully LM, Marin MG, Rand EA, Fan AC, Martins Dosumu OJ, Paul K, Sanchez Castaño CE, Petherbridge R, Paull JS, Baym M. Diverse and abundant phages exploit conjugative plasmids. Nat Commun 2024; 15:3197. [PMID: 38609370 PMCID: PMC11015023 DOI: 10.1038/s41467-024-47416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Phages exert profound evolutionary pressure on bacteria by interacting with receptors on the cell surface to initiate infection. While the majority of phages use chromosomally encoded cell surface structures as receptors, plasmid-dependent phages exploit plasmid-encoded conjugation proteins, making their host range dependent on horizontal transfer of the plasmid. Despite their unique biology and biotechnological significance, only a small number of plasmid-dependent phages have been characterized. Here we systematically search for new plasmid-dependent phages targeting IncP and IncF plasmids using a targeted discovery platform, and find that they are common and abundant in wastewater, and largely unexplored in terms of their genetic diversity. Plasmid-dependent phages are enriched in non-canonical types of phages, and all but one of the 65 phages we isolated were non-tailed, and members of the lipid-containing tectiviruses, ssDNA filamentous phages or ssRNA phages. We show that plasmid-dependent tectiviruses exhibit profound differences in their host range which is associated with variation in the phage holin protein. Despite their relatively high abundance in wastewater, plasmid-dependent tectiviruses are missed by metaviromic analyses, underscoring the continued importance of culture-based phage discovery. Finally, we identify a tailed phage dependent on the IncF plasmid, and find related structural genes in phages that use the orthogonal type 4 pilus as a receptor, highlighting the evolutionarily promiscuous use of these distinct contractile structures by multiple groups of phages. Taken together, these results indicate plasmid-dependent phages play an under-appreciated evolutionary role in constraining horizontal gene transfer via conjugative plasmids.
Collapse
Affiliation(s)
- Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Siân V Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Lucy M McCully
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Maximillian G Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eleanor A Rand
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alice C Fan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Boston University, Boston, MA, 02215, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Oluremi J Martins Dosumu
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Kay Paul
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Cleotilde E Sanchez Castaño
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Rachel Petherbridge
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jillian S Paull
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
35
|
Wang T, Cheng B, Jiao R, Zhang X, Zhang D, Cheng X, Ling N, Ye Y. Characterization of a novel high-efficiency cracking Burkholderia gladiolus phage vB_BglM_WTB and its application in black fungus. Int J Food Microbiol 2024; 414:110615. [PMID: 38325260 DOI: 10.1016/j.ijfoodmicro.2024.110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Burkholderia gladiolus (B. gladiolus) is foodborne pathogenic bacteria producing bongkrekic acid (BA), which causes food poisoning and has a mortality rate of up to 40 % or more. However, no drugs have been reported in the literature for the prevention and treatment of this infection. In this study, a phage was identified to control B. gladiolus. The novel phage vB_BglM_WTB (WTB), which lyse B. gladiolus with high efficiency, was isolated from sewage of Huaihe Road Throttle Well Sewage Treatment Plant in Hefei. Transmission electron microscopy showed that WTB had an icosahedral head (69 ± 2 nm) and a long retractable tail (108 ± 2 nm). Its optimal temperature and pH ranges to control B. gladiolus were 25 °C -65 °C and 3-11 respectively. The phage WTB was identified as a linear double-stranded DNA phage of 68, 541 bp with 60.04 % G + C content, with a long latent period of 60 min. Phylogenetic analysis and comparative genetic analysis indicated that phage WTB has low identity (<50 %) with other phages, with the highest similarity to Burkholderia phage Maja (25.7 %), which showed that it does not belong to any previous genera recognized by the International Committee on Taxonomy of Viruses (ICTV) and was a candidate for a new genus within the Caudoviricetes. We have submitted a new proposal to ICTV to create a new genus, Bglawtbvirus. No transfer RNA (tRNA), virulence associated and antibiotic resistance genes were detected in phage WTB. Experimental results indicated that WTB at 4 °C and 25 °C had excellent inhibition activity against B. gladiolus in the black fungus, with an inhibition efficiency of over 99 %. The amount of B. gladiolus in the black fungus was reduced to a minimum of 89 CFU/mL when treated by WTB at 25 °C for 2 h. The inhibition rate remained at 99.97 % even after 12 h. The findings showed that the phage WTB could be applied as a food-cleaning agent for enhancing food safety and contributed to our understanding of phage biology and diversity.
Collapse
Affiliation(s)
- Ting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bin Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiyan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Diwei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
36
|
Schmidtke DT, Hickey AS, Liachko I, Sherlock G, Bhatt AS. Analysis and culturing of the prototypic crAssphage reveals a phage-plasmid lifestyle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585998. [PMID: 38562748 PMCID: PMC10983915 DOI: 10.1101/2024.03.20.585998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The prototypic crAssphage (Carjivirus communis) is one of the most abundant, prevalent, and persistent gut bacteriophages, yet it remains uncultured and its lifestyle uncharacterized. For the last decade, crAssphage has escaped plaque-dependent culturing efforts, leading us to investigate alternative lifestyles that might explain its widespread success. Through genomic analyses and culturing, we find that crAssphage uses a phage-plasmid lifestyle to persist extrachromosomally. Plasmid-related genes are more highly expressed than those implicated in phage maintenance. Leveraging this finding, we use a plaque-free culturing approach to measure crAssphage replication in culture with Phocaeicola vulgatus, Phocaeicola dorei, and Bacteroides stercoris, revealing a broad host range. We demonstrate that crAssphage persists with its hosts in culture without causing major cell lysis events or integrating into host chromosomes. The ability to switch between phage and plasmid lifestyles within a wide range of hosts contributes to the prolific nature of crAssphage in the human gut microbiome.
Collapse
Affiliation(s)
- Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | | | | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA, USA
- Senior author
| | - Ami S. Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Division of Hematology), Stanford University, Stanford, CA, USA
- Lead corresponding author
- Senior author
| |
Collapse
|
37
|
Jiang L, Xu Q, Wu Y, Zhou X, Chen Z, Sun Q, Wen J. Characterization of a Straboviridae phage vB_AbaM-SHI and its inhibition effect on biofilms of Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1351993. [PMID: 38524182 PMCID: PMC10958429 DOI: 10.3389/fcimb.2024.1351993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a popular clinical pathogen worldwide. Biofilm-associated antibiotic-resistant A. baumannii infection poses a great threat to human health. Bacteria in biofilms are highly resistant to antibiotics and disinfectants. Furthermore, inhibition or eradication of biofilms in husbandry, the food industry and clinics are almost impossible. Phages can move across the biofilm matrix and promote antibiotic penetration. In the present study, a lytic A. baumannii phage vB_AbaM-SHI, belonging to family Straboviridae, was isolated from sauce chop factory drain outlet in Wuxi, China. The DNA genome consists of 44,180 bp which contain 93 open reading frames, and genes encoding products morphogenesis are located at the end of the genome. The amino acid sequence of vB_AbaM-SHI endolysin is different from those of previously reported A. baumannii phages in NCBI. Phage vB_AbaM-SHI endolysin has two additional β strands due to the replacement of a lysine (K) (in KU510289.1, NC_041857.1, JX976549.1 and MH853786.1) with an arginine (R) (SHI) at position 21 of A. baumannii phage endolysin. Spot test showed that phage vB_AbaM-SHI is able to lyse some antibiotic-resistant bacteria, such as A. baumannii (SL, SL1, and SG strains) and E. coli BL21 strain. Additionally, phage vB_AbaM-SHI independently killed bacteria and inhibited bacterial biofilm formation, and synergistically exerted strong antibacterial effects with antibiotics. This study provided a new perspective into the potential application value of phage vB_AbaM-SHI as an antimicrobial agent.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qian Xu
- Department of Blood Transfusion, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Ying Wu
- Department of Rheumatology Immunology, The First People’s Hospital of Hefei, Hefei, Anhui, China
| | - Xianglian Zhou
- Department of Rheumatology Immunology, The First People’s Hospital of Hefei, Hefei, Anhui, China
| | - Zhu Chen
- Department of Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
38
|
Liu Y, Wang J, Zhao R, Liu X, Dong Y, Shi W, Jiang H, Guan X. Bacterial isolation and genome analysis of a novel Klebsiella quasipneumoniae phage in southwest China's karst area. Virol J 2024; 21:56. [PMID: 38448926 PMCID: PMC10916049 DOI: 10.1186/s12985-024-02321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Southwest China is one of the largest karst regions in the world. Karst environment is relatively fragile and vulnerable to human activities. Due to the discharge of sewage and domestic garbage, the karst system may be polluted by pathogenic bacteria. The detection of bacterial distribution and identification of phage capable of infecting them is an important approach for environmental assessment and resource acquisition. METHODS Bacteria and phages were isolated from karst water in southwest China using the plate scribing and double plate method, respectively. Isolated phage was defined by transmission electron microscopy, one-step growth curve and optimal multiplicity of infection (MOI). Genomic sequencing, phylogenetic analysis, comparative genomic and proteomic analysis were performed. RESULTS A Klebsiella quasipneumoniae phage was isolated from 32 isolates and named KL01. KL01 is morphologically identified as Caudoviricetes with an optimal MOI of 0.1, an incubation period of 10 min, and a lysis period of 60 min. The genome length of KL01 is about 45 kb, the GC content is 42.5%, and it contains 59 open reading frames. The highest average nucleotide similarity between KL01 and a known Klebsiella phage 6939 was 83.04%. CONCLUSIONS KL01 is a novel phage, belonging to the Autophagoviridae, which has strong lytic ability. This study indicates that there were not only some potential potentially pathogenic bacteria in the karst environment, but also phage resources for exploration and application.
Collapse
Affiliation(s)
- Yanju Liu
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Ruoyu Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Xiaoping Liu
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Yang Dong
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Wenyu Shi
- College of Food Science & Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Hongchen Jiang
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| |
Collapse
|
39
|
Whiteley LE, Whiteley M. Characterization of a new Pseudomonas aeruginosa Queuovirinae bacteriophage. Microbiol Spectr 2024; 12:e0371923. [PMID: 38345389 PMCID: PMC10913419 DOI: 10.1128/spectrum.03719-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
The ESKAPEE pathogen Pseudomonas aeruginosa is a common cause of chronic wound and cystic fibrosis lung infections, as well as acute burn and nosocomial infections. Many of these infections are recalcitrant to conventional antibiotic therapies due to both traditional antibiotic resistance mechanisms and antimicrobial tolerance. Recent successes with bacteriophage (phage) therapy to treat chronic human P. aeruginosa infections have led to a renewed interest in isolating and characterizing new P. aeruginosa phages. Here, we isolated and characterized a new lytic phage (termed PIP, pili-infecting phage) capable of infecting P. aeruginosa PA14. PIP is a tailed phage with an icosahedral head and flexible tail containing a genome that is 57,462 bp in length. Phylogenetic analysis reveals that PIP belongs to the subfamily Queuovirinae and genus Nipunavirus but is highly divergent in gene content from known Nipunaviruses. By isolating and characterizing a P. aeruginosa strain that spontaneously evolved resistance to PIP, we show that the receptor for PIP is Type IV pili. In summary, we isolated a new P. aeruginosa phage species with a unique genome, thus increasing the diversity of phages known to infect this important human pathogen.IMPORTANCEThe opportunistic pathogen Pseudomonas aeruginosa causes both acute and chronic human infections. These infections are notoriously difficult to treat due to both antibiotic resistance and antibiotic tolerance. The increasing frequency of antibiotic failure in P. aeruginosa infections has led scientists to explore other treatment options, including bacteriophage (phage) therapy. To this end, there has been a significant effort to identify new Pseudomonas phages. Here, we isolated and characterized a bacteriophage (termed PIP, pili-infecting phage) that infects P. aeruginosa PA14. Examination of the PIP genome revealed that this phage represents a new species in the subclass Queuovirinae. The isolation and characterization of spontaneous PA14 mutants that are resistant to PIP infection revealed Type IV pili as the PIP receptor. Ultimately, this study characterizes a new species of Pseudomonas phage, thus enhancing the known diversity of phages that infect this important pathogen.
Collapse
Affiliation(s)
- Lauren E. Whiteley
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
40
|
Malik S, Nehra K, Mann A, Jagdish R, Rana JS. Characterization and synergy studies of Caudoviricete Escherichia phage FS2B infecting multi-drug resistant uropathogenic Escherichia coli isolates. Int Microbiol 2024; 27:155-166. [PMID: 37247084 DOI: 10.1007/s10123-023-00381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Escherichia coli is one of the most common causes of urinary tract infections. However, a recent upsurge in antibiotic resistance among uropathogenic E. coli (UPEC) strains has provided an impetus to explore alternative antibacterial compounds to encounter this major issue. In this study, a lytic phage against multi-drug-resistant (MDR) UPEC strains was isolated and characterized. The isolated Escherichia phage FS2B of class Caudoviricetes exhibited high lytic activity, high burst size, and a small adsorption and latent time. The phage also exhibited a broad host range and inactivated 69.8% of the collected clinical, and 64.8% of the identified MDR UPEC strains. Further, whole genome sequencing revealed that the phage was 77,407 bp long, having a dsDNA with 124 coding regions. Annotation studies confirmed that the phage carried all the genes associated with lytic life cycle and all lysogeny related genes were absent in the genome. Further, synergism studies of the phage FS2B with antibiotics demonstrated a positive synergistic association among them. The present study therefore concluded that the phage FS2B possesses an immense potential to serve as a novel candidate for treatment of MDR UPEC strains.
Collapse
Affiliation(s)
- Shikha Malik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| | - Kiran Nehra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India.
| | - Avantika Mann
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| | - Renu Jagdish
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| | - J S Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| |
Collapse
|
41
|
Bird JT, Burke KA, Urick CD, Braverman JL, Mzhavia N, Ellison DW, Nikolich MP, Filippov AA. Genome sequence of the Klebsiella quasipneumoniae bacteriophage EKq1 with activity against Klebsiella pneumoniae. Microbiol Resour Announc 2024; 13:e0095423. [PMID: 38032190 DOI: 10.1128/mra.00954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
We describe the genome of a lytic phage EKq1 isolated on Klebsiella quasipneumoniae, with activity against Klebsiella pneumoniae. EKq1 is an unclassified representative of the class Caudoviricetes, similar to Klebsiella phages VLCpiS8c, phiKp_7-2, and vB_KleS-HSE3. The 48,244-bp genome has a GC content of 56.43% and 63 predicted protein-coding genes.
Collapse
Affiliation(s)
- Jordan T Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas , Little Rock, Arkansas, USA
| | - Kevin A Burke
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Caitlin D Urick
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Jamie L Braverman
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Nino Mzhavia
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Damon W Ellison
- Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Mikeljon P Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Andrey A Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| |
Collapse
|
42
|
Foxall RL, Means J, Marcinkiewicz AL, Schillaci C, DeRosia-Banick K, Xu F, Hall JA, Jones SH, Cooper VS, Whistler CA. Inoviridae prophage and bacterial host dynamics during diversification, succession, and Atlantic invasion of Pacific-native Vibrio parahaemolyticus. mBio 2024; 15:e0285123. [PMID: 38112441 PMCID: PMC10790759 DOI: 10.1128/mbio.02851-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE An understanding of the processes that contribute to the emergence of pathogens from environmental reservoirs is critical as changing climate precipitates pathogen evolution and population expansion. Phylogeographic analysis of Vibrio parahaemolyticus hosts combined with the analysis of their Inoviridae phage resolved ambiguities of diversification dynamics which preceded successful Atlantic invasion by the epidemiologically predominant ST36 lineage. It has been established experimentally that filamentous phage can limit host recombination, but here, we show that phage loss is linked to rapid bacterial host diversification during epidemic spread in natural ecosystems alluding to a potential role for ubiquitous inoviruses in the adaptability of pathogens. This work paves the way for functional analyses to define the contribution of inoviruses in the evolutionary dynamics of environmentally transmitted pathogens.
Collapse
Affiliation(s)
- Randi L. Foxall
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Jillian Means
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Graduate Program in Microbiology, University of New Hampshire, Durham, New Hampshire, USA
| | - Ashely L. Marcinkiewicz
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Graduate Program in Microbiology, University of New Hampshire, Durham, New Hampshire, USA
| | - Christopher Schillaci
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Kristin DeRosia-Banick
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
| | - Feng Xu
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Jeffrey A. Hall
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA
| | - Stephen H. Jones
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Vaughn S. Cooper
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cheryl A. Whistler
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
43
|
Ramos-Barbero MD, Aldeguer-Riquelme B, Viver T, Villamor J, Carrillo-Bautista M, López-Pascual C, Konstantinidis KT, Martínez-García M, Santos F, Rossello-Mora R, Antón J. Experimental evolution at ecological scales allows linking of viral genotypes to specific host strains. THE ISME JOURNAL 2024; 18:wrae208. [PMID: 39579348 PMCID: PMC11631230 DOI: 10.1093/ismejo/wrae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Viruses shape microbial community structure and activity through the control of population diversity and cell abundances. Identifying and monitoring the dynamics of specific virus-host pairs in nature is hampered by the limitations of culture-independent approaches such as metagenomics, which do not always provide strain-level resolution, and culture-based analyses, which eliminate the ecological background and in-situ interactions. Here, we have explored the interaction of a specific "autochthonous" host strain and its viruses within a natural community. Bacterium Salinibacter ruber strain M8 was spiked into its environment of isolation, a crystallizer pond from a coastal saltern, and the viral and cellular communities were monitored for one month using culture, metagenomics, and microscopy. Metagenome sequencing indicated that the M8 abundance decreased sharply after being added to the pond, likely due to forces other than viral predation. However, the presence of M8 selected for two species of a new viral genus, Phoenicisalinivirus, for which 120 strains were isolated. During this experiment, an assemblage of closely related viral genomic variants was replaced by a single population with the ability to infect M8, a scenario which was compatible with the selection of a genomic variant from the rare biosphere. Further analysis implicated a viral genomic region putatively coding for a tail fiber protein to be responsible for M8 specificity. Our results indicate that low abundance viral genotypes provide a viral seed bank that allows for a highly specialized virus-host response within a complex ecological background.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, Barcelona E-08028, Spain
| | - Borja Aldeguer-Riquelme
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, GA, United States
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles 07190, Spain
| | - Judith Villamor
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Miryam Carrillo-Bautista
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Cristina López-Pascual
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | | | - Manuel Martínez-García
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles 07190, Spain
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Multidisciplinary Institute of Environmental Studies Ramon Margalef, Alicante 03690, Spain
| |
Collapse
|
44
|
Ramos-Barbero MD, Gómez-Gómez C, Vique G, Sala-Comorera L, Rodríguez-Rubio L, Muniesa M. Recruitment of complete crAss-like phage genomes reveals their presence in chicken viromes, few human-specific phages, and lack of universal detection. THE ISME JOURNAL 2024; 18:wrae192. [PMID: 39361891 PMCID: PMC11475920 DOI: 10.1093/ismejo/wrae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
The order Crassvirales, which includes the prototypical crAssphage (p-crAssphage), is predominantly associated with humans, rendering it the most abundant and widely distributed group of DNA phages in the human gut. The reported human specificity and wide global distribution of p-crAssphage makes it a promising human fecal marker. However, the specificity for the human gut as well as the geographical distribution around the globe of other members of the order Crassvirales remains unknown. To determine this, a recruitment analysis using 91 complete, non-redundant genomes of crAss-like phages in human and animal viromes revealed that only 13 crAss-like phages among the 91 phages analyzed were highly specific to humans, and p-crAssphage was not in this group. Investigations to elucidate whether any characteristic of the phages was responsible for their prevalence in humans showed that the 13 human crAss-like phages do not share a core genome. Phylogenomic analysis placed them in three independent families, indicating that within the Crassvirales group, human specificity is likely not a feature of a common ancestor but rather was introduced on separate/independent occasions in their evolutionary history. The 13 human crAss-like phages showed variable geographical distribution across human metagenomes worldwide, with some being more prevalent in certain countries than in others, but none being universally identified. The varied geographical distribution and the absence of a phylogenetic relationship among the human crAss-like phages are attributed to the emergence and dissemination of their bacterial host, the symbiotic human strains of Bacteroides, across various human populations occupying diverse ecological niches worldwide.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Gloria Vique
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| |
Collapse
|
45
|
Quinones-Olvera N, Owen SV, McCully LM, Marin MG, Rand EA, Fan AC, Martins Dosumu OJ, Paul K, Sanchez Castaño CE, Petherbridge R, Paull JS, Baym M. Diverse and abundant phages exploit conjugative plasmids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.532758. [PMID: 36993299 PMCID: PMC10055259 DOI: 10.1101/2023.03.19.532758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Phages exert profound evolutionary pressure on bacteria by interacting with receptors on the cell surface to initiate infection. While the majority of phages use chromosomally-encoded cell surface structures as receptors, plasmid-dependent phages exploit plasmid-encoded conjugation proteins, making their host range dependent on horizontal transfer of the plasmid. Despite their unique biology and biotechnological significance, only a small number of plasmid-dependent phages have been characterized. Here we systematically search for new plasmid-dependent phages targeting IncP and IncF plasmids using a targeted discovery platform, and find that they are common and abundant in wastewater, and largely unexplored in terms of their genetic diversity. Plasmid-dependent phages are enriched in non-canonical types of phages, and all but one of the 64 phages we isolated were non-tailed, and members of the lipid-containing tectiviruses, ssDNA filamentous phages or ssRNA phages. We show that plasmid-dependent tectiviruses exhibit profound differences in their host range which is associated with variation in the phage holin protein. Despite their relatively high abundance in wastewater, plasmid-dependent tectiviruses are missed by metaviromic analyses, underscoring the continued importance of culture-based phage discovery. Finally, we identify a tailed phage dependent on the IncF plasmid, and find related structural genes in phages that use the orthogonal type 4 pilus as a receptor, highlighting the promiscuous use of these distinct contractile structures by multiple groups of phages. Taken together, these results indicate plasmid-dependent phages play an under-appreciated evolutionary role in constraining horizontal gene transfer via conjugative plasmids.
Collapse
Affiliation(s)
- Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lucy M. McCully
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maximillian G. Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Eleanor A. Rand
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice C. Fan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Boston University, Boston, MA 02215, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Oluremi J. Martins Dosumu
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Kay Paul
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Cleotilde E. Sanchez Castaño
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Rachel Petherbridge
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jillian S. Paull
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
46
|
Liu Y, Meng X, Zheng H, Cai L, Wei S, He M, He J, Hao Y, Ge C, Liu J, Chen F, Xu Y. A novel long-tailed myovirus represents a new T4-like cyanophage cluster. Front Microbiol 2023; 14:1293846. [PMID: 38029084 PMCID: PMC10665884 DOI: 10.3389/fmicb.2023.1293846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Cyanophages affect the abundance, diversity, metabolism, and evolution of picocyanobacteria in marine ecosystems. Here we report an estuarine Synechococcus phage, S-CREM2, which represents a novel viral genus and leads to the establishment of a new T4-like cyanophage clade named cluster C. S-CREM2 possesses the longest tail (~418 nm) among isolated cyanomyoviruses and encodes six tail-related proteins that are exclusively homologous to those predicted in the cluster C cyanophages. Furthermore, S-CREM2 may carry three regulatory proteins in the virion, which may play a crucial role in optimizing the host intracellular environment for viral replication at the initial stage of infection. The cluster C cyanophages lack auxiliary metabolic genes (AMGs) that are commonly found in cyanophages of the T4-like clusters A and B and encode unique AMGs like an S-type phycobilin lyase gene. A variation in the composition of tRNA and cis-regulatory RNA genes was observed between the marine and freshwater phage strains in cluster C, reflecting their different modes of coping with hosts and habitats. The cluster C cyanophages are widespread in estuarine and coastal regions and exhibit equivalent or even higher relative abundance compared to those of clusters A and B cyanophages in certain estuarine regions. The isolation of cyanophage S-CREM2 provides new insights into the phage-host interactions mediated by both newly discovered AMGs and virion-associated proteins and emphasizes the ecological significance of cluster C cyanophages in estuarine environments.
Collapse
Affiliation(s)
- Yuanfang Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xue Meng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Hongrui Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Minglu He
- School of Information Science and Engineering, Shandong University, Qingdao, China
| | - Jiale He
- School of Life Science, Shandong University, Qingdao, China
| | - Yue Hao
- School of Life Science, Shandong University, Qingdao, China
| | - Chang Ge
- School of Life Science, Shandong University, Qingdao, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| |
Collapse
|
47
|
Grigson SR, Giles SK, Edwards RA, Papudeshi B. Knowing and Naming: Phage Annotation and Nomenclature for Phage Therapy. Clin Infect Dis 2023; 77:S352-S359. [PMID: 37932119 PMCID: PMC10627814 DOI: 10.1093/cid/ciad539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Bacteriophages, or phages, are viruses that infect bacteria shaping microbial communities and ecosystems. They have gained attention as potential agents against antibiotic resistance. In phage therapy, lytic phages are preferred for their bacteria killing ability, while temperate phages, which can transfer antibiotic resistance or toxin genes, are avoided. Selection relies on plaque morphology and genome sequencing. This review outlines annotating genomes, identifying critical genomic features, and assigning functional labels to protein-coding sequences. These annotations prevent the transfer of unwanted genes, such as antimicrobial resistance or toxin genes, during phage therapy. Additionally, it covers International Committee on Taxonomy of Viruses (ICTV)-an established phage nomenclature system for simplified classification and communication. Accurate phage genome annotation and nomenclature provide insights into phage-host interactions, replication strategies, and evolution, accelerating our understanding of the diversity and evolution of phages and facilitating the development of phage-based therapies.
Collapse
Affiliation(s)
- Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Sarah K Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
48
|
Liu M, Hu R, Xia M, He X, Jin Y. Novel broad-spectrum bacteriophages against Xanthomonas oryzae and their biocontrol potential in rice bacterial diseases. Environ Microbiol 2023; 25:2075-2087. [PMID: 37300421 DOI: 10.1111/1462-2920.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Bacterial leaf blight (BLB) and bacterial leaf streak (BLS)-caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively-are two major bacterial diseases that threaten the safe production of rice, one of the most important food crops. Bacteriophages are considered potential biocontrol agents against rice bacterial pathogens, due to their host specificity and environmental safety. It is common for BLB and BLS to occur together in fields, which highlights the need for broad-spectrum phages capable of infecting both Xoo and Xoc. In this study, two lytic broad-spectrum phages (pXoo2106 and pXoo2107) that can infect various strains of Xoo and Xoc were assessed. Both phages belong to the class Caudoviricetes and one of them to the family Autographiviridae, while the other belongs to an unclassified family. Two phages alone or combined in a phage cocktail could effectively inhibit Xoo and Xoc growth in vitro. In an in vivo biocontrol experiment, the phage cocktail reduced the total CFU and significantly eased the symptoms caused by Xoo or Xoc. Our results suggest that pXoo2106 and pXoo2107 have a broad-spectrum host range targeting different X. oryzae strains, and have strong biocontrol potential in field applications against both BLB and BLS.
Collapse
Affiliation(s)
- Mengjiao Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Ran Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Mian Xia
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
| | - Xiaoqing He
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Yi Jin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
49
|
Ye Y, Tong G, Chen G, Huang L, Huang L, Jiang X, Wei X, Lin M. The characterization and genome analysis of a novel phage phiA034 targeting multiple species of Aeromonas. Virus Res 2023; 336:199193. [PMID: 37579848 PMCID: PMC10480305 DOI: 10.1016/j.virusres.2023.199193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Aeromonas is one of the most serious pathogens in freshwater aquaculture. Overuse of antibiotics for the treatment of fish diseases has led to the frequent occurrence of drug-resistant strains. Phage therapy is an alternative approach to overcoming the multi-drug resistance associated with antibiotics. In this study, a novel phage phiA034 targeting the host A. veronii A034 was isolated. The phage could infect 14 strains of 4 species Aeromonas. The phage phiA034 displayed head-tail structure with an icosahedral head in the TEM image. At the optimal MOI of 1, it had a latent period of nearly 20 minutes and a burst size of 286 PFU/cell. Besides, the phage phiA034 exhibited high tolerance to a wide range of temperature (30-70 °C) and acid-base (pH 6.0-10.0). The whole genome of phage phiA034 was sequenced with a size of 61,443 bp and annotated with 82 ORFs, mainly related to structure, DNA replication, and lysis. Based on the analysis and comparison of the genomes and proteomes, phage phiA034 could be classified as a novel species of an existing genus Duplodnaviria Heunggongvirae, Uroviricota, Caudoviricetes, Casjensviridae, Sharonstreetvirus. These findings have expanded the species bank and genomes library of bacterial virus and will promote the application of phage therapy in Aeromonas disease.
Collapse
Affiliation(s)
- Yingying Ye
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Guixiang Tong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Gonghao Chen
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Liqiang Huang
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Xinglong Jiang
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Mao Lin
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, Fujian, China.
| |
Collapse
|
50
|
Tsai YC, Lee YP, Lin NT, Yang HH, Teh SH, Lin LC. Therapeutic effect and anti-biofilm ability assessment of a novel phage, phiPA1-3, against carbapenem-resistant Pseudomonas aeruginosa. Virus Res 2023; 335:199178. [PMID: 37490958 PMCID: PMC10430585 DOI: 10.1016/j.virusres.2023.199178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Multiple drug-resistant (MDR) Pseudomonas aeruginosa commonly causes severe hospital-acquired infections. The gradual emergence of carbapenem-resistant P. aeruginosa has recently gained attention. A wide array of P. aeruginosa-mediated pathogenic mechanisms, including its biofilm-forming ability, limits the use of effective antimicrobial treatments against it. In the present study, we isolated and characterized the phenotypic, biological, and genomic characteristics of a bacteriophage, vB_PaP_phiPA1-3 (phiPA1-3). Biofilm eradication and phage rescue from bacterial infections were assessed to demonstrate the efficacy of the application potential. Host range spectrum analysis revealed that phiPA1-3 is a moderate host range phage that infects 20% of the clinically isolated strains of P. aeruginosa tested, including carbapenem-resistant P. aeruginosa (CRPA). The phage exhibited stability at pH 7.0 and 9.0, with significantly reduced viability below pH 5.0 and beyond pH 9.0. phiPA1-3 is a lytic phage with a burst size of 619 plaque-forming units/infected cell at 37 °C and can effectively lyse bacteria in a multiplicity of infection-dependent manner. The genome size of phiPA1-3 was found to be 73,402 bp, with a G+C content of 54.7%, containing 93 open reading frames, of which 62 were annotated as hypothetical proteins and the remaining 31 had known functions. The phage possesses several proteins similar to those found in N4-like phages, including three types of RNA polymerases. This study concluded that phiPA1-3 belongs to the N4-like Schitoviridae family, can potentially eradicate P. aeruginosa biofilms, and thus, serve as a valuable tool for controlling CRPA infections.
Collapse
Affiliation(s)
- Yu-Chuan Tsai
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Yi-Pang Lee
- Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Nien-Tsung Lin
- Master Program in Biomedical Science, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC.
| | - Ling-Chun Lin
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC; Master Program in Biomedical Science, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC.
| |
Collapse
|