1
|
Knecht H, Petrogiannis-Haliotis T, Louis S, Mai S. 3D-Q-FISH/Telomere/TRF2 Nanotechnology Identifies a Progressively Disturbed Telomere/Shelterin/Lamin AC Complex as the Common Pathogenic, Molecular/Spatial Denominator of Classical Hodgkin Lymphoma. Cells 2024; 13:1748. [PMID: 39513855 PMCID: PMC11545283 DOI: 10.3390/cells13211748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The bi- or multinucleated Reed-Sternberg cell (RS) is the diagnostic cornerstone of Epstein-Barr Virus (EBV)-positive and EBV-negative classical Hodgkin lymphoma (cHL). cHL is a germinal center (GC)-derived B-cell disease. Hodgkin cells (H) are the mononuclear precursors of RS. An experimental model has to fulfill three conditions to qualify as common pathogenic denominator: (i) to be of GC-derived B-cell origin, (ii) to be EBV-negative to avoid EBV latency III expression and (iii) to support permanent EBV-encoded oncogenic latent membrane protein (LMP1) expression upon induction. These conditions are unified in the EBV-, diffuse large B-Cell lymphoma (DLBCL) cell line BJAB-tTA-LMP1. 3D reconstructive nanotechnology revealed spatial, quantitative and qualitative disturbance of telomere/shelterin interactions in mononuclear H-like cells, with further progression during transition to RS-like cells, including progressive complexity of the karyotype with every mitotic cycle, due to BBF (breakage/bridge/fusion) events. The findings of this model were confirmed in diagnostic patient samples and correlate with clinical outcomes. Moreover, in vitro, significant disturbance of the lamin AC/telomere interaction progressively occurred. In summary, our research over the past three decades identified cHL as the first lymphoid malignancy driven by a disturbed telomere/shelterin/lamin AC interaction, generating the diagnostic RS. Our findings may act as trailblazer for tailored therapies in refractory cHL.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Hematology, Department of Medicine, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | | | - Sherif Louis
- Telo Genomics Corp., Ontario, ON M5G 1L7, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
2
|
Brankiewicz-Kopcinska W, Kallingal A, Krzemieniecki R, Baginski M. Targeting shelterin proteins for cancer therapy. Drug Discov Today 2024; 29:104056. [PMID: 38844065 DOI: 10.1016/j.drudis.2024.104056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
As a global health challenge, cancer prompts continuous exploration for innovative therapies that are also based on new targets. One promising avenue is targeting the shelterin protein complex, a safeguard for telomeres crucial in preventing DNA damage. The role of shelterin in modulating ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) kinases, key players in the DNA damage response (DDR), establishes its significance in cancer cells. Disrupting these defence mechanisms of shelterins, especially in cancer cells, renders telomeres vulnerable, potentially leading to genomic instability and hindering cancer cell survival. In this review, we outline recent approaches exploring shelterins as potential anticancer targets, highlighting the prospect of developing selective molecules to exploit telomere vulnerabilities toward new innovative cancer treatments.
Collapse
Affiliation(s)
- Wioletta Brankiewicz-Kopcinska
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland; Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Radoslaw Krzemieniecki
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
3
|
Zhao Y, Zhang Q, Zhang B, Dai Y, Gao Y, Li C, Yu Y, Li C. Epstein-Barr Viruses: Their Immune Evasion Strategies and Implications for Autoimmune Diseases. Int J Mol Sci 2024; 25:8160. [PMID: 39125729 PMCID: PMC11311853 DOI: 10.3390/ijms25158160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, is one of the most prevalent and persistent human viruses, infecting up to 90% of the adult population globally. EBV's life cycle includes primary infection, latency, and lytic reactivation, with the virus primarily infecting B cells and epithelial cells. This virus has evolved sophisticated strategies to evade both innate and adaptive immune responses, thereby maintaining a lifelong presence within the host. This persistence is facilitated by the expression of latent genes such as EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), which play crucial roles in viral latency and oncogenesis. In addition to their well-known roles in several types of cancer, including nasopharyngeal carcinoma and B-cell lymphomas, recent studies have identified the pathogenic roles of EBV in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review highlights the intricate interactions between EBV and the host immune system, underscoring the need for further research to develop effective therapeutic and preventive strategies against EBV-associated diseases.
Collapse
Affiliation(s)
- Yuehong Zhao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Qi Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Botian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yihao Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yifei Gao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Chenzhong Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
4
|
Lopez-Garcia A, Solan L, Alvarez B, Caballero JC, Cornago J, Pardo L, Diaz de la Pinta FJ, Cordoba R, Rodriguez-Pinilla M. Hemophagocytic Lymphohistiocytosis Secondary to Hodgkin's Lymphoma with Isolated Bone Marrow Involvement in a Newly Diagnosed HIV Patient. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1274. [PMID: 37512086 PMCID: PMC10383783 DOI: 10.3390/medicina59071274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Human immunodeficiency virus (HIV) infection is known to be associated with the development of Hodgkin's lymphoma (HL). Exclusive extranodal bone marrow involvement is less common. Co-infection by other viruses, such as the Epstein-Barr virus (EBV), increases the incidence of a frequent complication denominated by hemophagocytic lymphohistocytosis (HLH). We present the case of a 50-year-old patient with the above clinical spectrum who develops several serious complications during treatment.
Collapse
Affiliation(s)
- Alberto Lopez-Garcia
- Department of Hematology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Instituto de Investigacion Sanitaria, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Laura Solan
- Department of Hematology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Instituto de Investigacion Sanitaria, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Beatriz Alvarez
- Department of Infectious Diseases, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Juan Carlos Caballero
- Department of Hematology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Javier Cornago
- Department of Hematology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Laura Pardo
- Department of Hematology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | | | - Raul Cordoba
- Department of Hematology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Instituto de Investigacion Sanitaria, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Maria Rodriguez-Pinilla
- Instituto de Investigacion Sanitaria, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Department of Pathology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| |
Collapse
|
5
|
Nguyen LNT, Nguyen LN, Zhao J, Schank M, Dang X, Cao D, Khanal S, Wu XY, Zhang Y, Zhang J, Ning S, Wang L, El Gazzar M, Moorman JP, Yao ZQ. TRF2 inhibition rather than telomerase disruption drives CD4T cell dysfunction during chronic viral infection. J Cell Sci 2022; 135:jcs259481. [PMID: 35660868 PMCID: PMC9377711 DOI: 10.1242/jcs.259481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of telomerase and telomere repeat-binding factor 2 (TRF2 or TERF2) in T-cell dysfunction in chronic viral infection. We found that the expression and activity of telomerase in CD4+ T (CD4T) cells from patients with hepatitis C virus (HCV) infections or people living with HIV (PLWH) were intact, but TRF2 expression was significantly inhibited at the post-transcriptional level, suggesting that TRF2 inhibition is responsible for the CD4T cell dysfunction observed during chronic viral infection. Silencing TRF2 expression in CD4T cells derived from healthy subjects induced telomeric DNA damage and CD4T cell dysfunction without affecting telomerase activity or translocation - similar to what we observed in CD4T cells from HCV patients and PLWH. These findings indicate that premature T-cell aging and dysfunction during chronic HCV or HIV infection are primarily caused by chronic immune stimulation and T-cell overactivation and/or proliferation that induce telomeric DNA damage due to TRF2 inhibition, rather than telomerase disruption. This study suggests that restoring TRF2 presents a novel approach to prevent telomeric DNA damage and premature T-cell aging, thus rejuvenating T-cell functions during chronic viral infection.
Collapse
Affiliation(s)
- Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37684, USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37684, USA
| |
Collapse
|
6
|
Wyżewski Z, Mielcarska MB, Gregorczyk-Zboroch KP, Myszka A. Virus-Mediated Inhibition of Apoptosis in the Context of EBV-Associated Diseases: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137265. [PMID: 35806271 PMCID: PMC9266970 DOI: 10.3390/ijms23137265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Epstein-Barr virus (EBV), the representative of the Herpesviridae family, is a pathogen extensively distributed in the human population. One of its most characteristic features is the capability to establish latent infection in the host. The infected cells serve as a sanctuary for the dormant virus, and therefore their desensitization to apoptotic stimuli is part of the viral strategy for long-term survival. For this reason, EBV encodes a set of anti-apoptotic products. They may increase the viability of infected cells and enhance their resistance to chemotherapy, thereby contributing to the development of EBV-associated diseases, including Burkitt’s lymphoma (BL), Hodgkin’s lymphoma (HL), gastric cancer (GC), nasopharyngeal carcinoma (NPC) and several other malignancies. In this paper, we have described the molecular mechanism of anti-apoptotic actions of a set of EBV proteins. Moreover, we have reviewed the pro-survival role of non-coding viral transcripts: EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs), in EBV-carrying malignant cells. The influence of EBV on the expression, activity and/or intracellular distribution of B-cell lymphoma 2 (Bcl-2) protein family members, has been presented. Finally, we have also discussed therapeutic perspectives of targeting viral anti-apoptotic products or their molecular partners.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
- Correspondence: ; Tel.: +48-728-208-338
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | | - Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
| |
Collapse
|
7
|
Patel PD, Alghareeb R, Hussain A, Maheshwari MV, Khalid N. The Association of Epstein-Barr Virus With Cancer. Cureus 2022; 14:e26314. [PMID: 35911302 PMCID: PMC9314235 DOI: 10.7759/cureus.26314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 12/02/2022] Open
Abstract
Epstein-Barr virus (EBV) is classified as a herpesvirus and is known for being one of the few viruses that can lead to the development of cancer. This study has gathered several studies to provide evidence as to this association as well as some of the mechanisms specific to EBV that allow this to happen. The development of EBV into cancer as well as the proteins involved in this oncogenesis play a crucial role in understanding this problem as well as creating a solution for mitigating this disease process in the future. This study summarized three of the most common malignancies caused by EBV in order to consolidate information about each of them. Additional emphasis was placed on finding which EBV serum markers were seen to be most indicative of prognosis and likelihood of developing malignancy. Higher serum EBV viral DNA loads were seen to be a useful indicator in assessing the risk of various cancers and should be studied further in relation to cancers that were not mentioned in this review.
Collapse
|
8
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
9
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
10
|
Herbein G, Nehme Z. Polyploid Giant Cancer Cells, a Hallmark of Oncoviruses and a New Therapeutic Challenge. Front Oncol 2020; 10:567116. [PMID: 33154944 PMCID: PMC7591763 DOI: 10.3389/fonc.2020.567116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Tumors are renowned as intricate systems that harbor heterogeneous cancer cells with distinctly diverse molecular signatures, sizes and genomic contents. Among those various genomic clonal populations within the complex tumoral architecture are the polyploid giant cancer cells (PGCC). Although described for over a century, PGCC are increasingly being recognized for their prominent role in tumorigenesis, metastasis, therapy resistance and tumor repopulation after therapy. A shared characteristic among all tumors triggered by oncoviruses is the presence of polyploidy. Those include Human Papillomaviruses (HPV), Epstein Barr Virus (EBV), Hepatitis B and C viruses (HBV and HCV, respectively), Human T-cell lymphotropic virus-1 (HTLV-1), Kaposi's sarcoma herpesvirus (KSHV) and Merkel polyomavirus (MCPyV). Distinct viral proteins, for instance Tax for HTLV-1 or HBx for HBV have demonstrated their etiologic role in favoring the appearance of PGCC. Different intriguing biological mechanisms employed by oncogenic viruses, in addition to viruses with high oncogenic potential such as human cytomegalovirus, could support the generation of PGCC, including induction of endoreplication, inactivation of tumor suppressors, development of hypoxia, activation of cellular senescence and others. Interestingly, chemoresistance and radioresistance have been reported in the context of oncovirus-induced cancers, for example KSHV and EBV-associated lymphomas and high-risk HPV-related cervical cancer. This points toward a potential linkage between the previously mentioned players and highlights PGCC as keystone cancer cells in virally-induced tumors. Subsequently, although new therapeutic approaches are actively needed to fight PGCC, attention should also be drawn to reveal the relationship between PGCC and oncoviruses, with the ultimate goal of establishing effective therapeutic platforms for treatment of virus-associated cancers. This review discusses the presence of PGCCs in tumors induced by oncoviruses, biological mechanisms potentially favoring their appearance, as well as their consequent implication at the clinical and therapeutic level.
Collapse
Affiliation(s)
- Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Department of Virology, CHRU Besancon, Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Faculty of Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
11
|
Molecular Pathogenesis of Hodgkin Lymphoma: Past, Present, Future. Int J Mol Sci 2020; 21:ijms21186623. [PMID: 32927751 PMCID: PMC7554683 DOI: 10.3390/ijms21186623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the tumorigenesis of classical Hodgkin lymphoma (cHL) and the formation of Reed–Sternberg cells (RS-cells) has evolved drastically in the last decades. More recently, a better characterization of the signaling pathways and the cellular interactions at play have paved the way for new targeted therapy in the hopes of improving outcomes. However, important gaps in knowledge remain that may hold the key for significant changes of paradigm in this lymphoma. Here, we discuss the past, present, and future of cHL, and review in detail the more recent discoveries pertaining to genetic instability, anti-apoptotic signaling pathways, the tumoral microenvironment, and host-immune system evasion in cHL.
Collapse
|
12
|
Gilbert-Girard S, Gravel A, Collin V, Wight DJ, Kaufer BB, Lazzerini-Denchi E, Flamand L. Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. PLoS Pathog 2020; 16:e1008496. [PMID: 32320442 PMCID: PMC7197865 DOI: 10.1371/journal.ppat.1008496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/04/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate the integration process. Here, we report that productive infections are associated with a massive increase in telomeric sequences of viral origin. The majority of the viral telomeric signals can be detected within viral replication compartments (VRC) that contain the viral DNA processivity factor p41 and the viral immediate-early 2 (IE2) protein. Components of the shelterin protein complex present at telomeres, including TRF1 and TRF2 are also recruited to VRC during infection. Biochemical, immunofluorescence coupled with in situ hybridization and chromatin immunoprecipitation demonstrated the binding of TRF2 to the HHV-6A/B telomeric repeats. In addition, approximately 60% of the viral IE2 protein localize at cellular telomeres during infection. Transient knockdown of TRF2 resulted in greatly reduced (13%) localization of IE2 at cellular telomeres (p<0.0001). Lastly, TRF2 knockdown reduced HHV-6A/B integration frequency (p<0.05), while no effect was observed on the infection efficiency. Overall, our study identified that HHV-6A/B IE2 localizes to telomeres during infection and highlight the role of TRF2 in HHV-6A/B infection and chromosomal integration.
Collapse
Affiliation(s)
- Shella Gilbert-Girard
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Vanessa Collin
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | - Eros Lazzerini-Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
- Department of microbiology, infectious diseases and immunology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
13
|
Hodgkin lymphoma: a review of pathological features and recent advances in pathogenesis. Pathology 2020; 52:154-165. [DOI: 10.1016/j.pathol.2019.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023]
|
14
|
Frias S, Ramos S, Salas C, Molina B, Sánchez S, Rivera-Luna R. Nonclonal Chromosome Aberrations and Genome Chaos in Somatic and Germ Cells from Patients and Survivors of Hodgkin Lymphoma. Genes (Basel) 2019; 10:genes10010037. [PMID: 30634664 PMCID: PMC6357137 DOI: 10.3390/genes10010037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
Anticancer regimens for Hodgkin lymphoma (HL) patients include highly genotoxic drugs that have been very successful in killing tumor cells and providing a 90% disease-free survival at five years. However, some of these treatments do not have a specific cell target, damaging both cancerous and normal cells. Thus, HL survivors have a high risk of developing new primary cancers, both hematologic and solid tumors, which have been related to treatment. Several studies have shown that after treatment, HL patients and survivors present persistent chromosomal instability, including nonclonal chromosomal aberrations. The frequency and type of chromosomal abnormalities appear to depend on the type of therapy and the cell type examined. For example, MOPP chemotherapy affects hematopoietic and germ stem cells leading to long-term genotoxic effects and azoospermia, while ABVD chemotherapy affects transiently sperm cells, with most of the patients showing recovery of spermatogenesis. Both regimens have long-term effects in somatic cells, presenting nonclonal chromosomal aberrations and genomic chaos in a fraction of noncancerous cells. This is a source of karyotypic heterogeneity that could eventually generate a more stable population acquiring clonal chromosomal aberrations and leading towards the development of a new cancer.
Collapse
Affiliation(s)
- Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico, Cd. De Mexico, P.O. Box 04510, Mexico.
| | - Sandra Ramos
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Consuelo Salas
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Bertha Molina
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Silvia Sánchez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Roberto Rivera-Luna
- Subdirección de Hemato-Oncología, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| |
Collapse
|
15
|
Vrzalikova K, Sunmonu T, Reynolds G, Murray P. Contribution of Epstein⁻Barr Virus Latent Proteins to the Pathogenesis of Classical Hodgkin Lymphoma. Pathogens 2018; 7:pathogens7030059. [PMID: 29954084 PMCID: PMC6161176 DOI: 10.3390/pathogens7030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Pathogenic viruses have evolved to manipulate the host cell utilising a variety of strategies including expression of viral proteins to hijack or mimic the activity of cellular functions. DNA tumour viruses often establish latent infection in which no new virions are produced, characterized by the expression of a restricted repertoire of so-called latent viral genes. These latent genes serve to remodel cellular functions to ensure survival of the virus within host cells, often for the lifetime of the infected individual. However, under certain circumstances, virus infection may contribute to transformation of the host cell; this event is not a usual outcome of infection. Here, we review how the Epstein–Barr virus (EBV), the prototypic oncogenic human virus, modulates host cell functions, with a focus on the role of the EBV latent genes in classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Katerina Vrzalikova
- Institute for Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Taofik Sunmonu
- Institute for Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Gary Reynolds
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Paul Murray
- Institute for Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
16
|
M'kacher R, Cuceu C, Al Jawhari M, Morat L, Frenzel M, Shim G, Lenain A, Hempel WM, Junker S, Girinsky T, Colicchio B, Dieterlen A, Heidingsfelder L, Borie C, Oudrhiri N, Bennaceur-Griscelli A, Moralès O, Renaud S, Van de Wyngaert Z, Jeandidier E, Delhem N, Carde P. The Transition between Telomerase and ALT Mechanisms in Hodgkin Lymphoma and Its Predictive Value in Clinical Outcomes. Cancers (Basel) 2018; 10:E169. [PMID: 29848986 PMCID: PMC6025489 DOI: 10.3390/cancers10060169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022] Open
Abstract
Background: We analyzed telomere maintenance mechanisms (TMMs) in lymph node samples from HL patients treated with standard therapy. The TMMs correlated with clinical outcomes of patients. Materials and Methods: Lymph node biopsies obtained from 38 HL patients and 24 patients with lymphadenitis were included in this study. Seven HL cell lines were used as in vitro models. Telomerase activity (TA) was assessed by TRAP assay and verified through hTERT immunofluorescence expression; alternative telomere lengthening (ALT) was also assessed, along with EBV status. Results: Both TA and ALT mechanisms were present in HL lymph nodes. Our findings were reproduced in HL cell lines. The highest levels of TA were expressed in CD30-/CD15- cells. Small cells were identified with ALT and TA. Hodgkin and Reed Sternberg cells contained high levels of PML bodies, but had very low hTERT expression. There was a significant correlation between overall survival (p < 10-3), event-free survival (p < 10-4), and freedom from progression (p < 10-3) and the presence of an ALT profile in lymph nodes of EBV+ patients. Conclusion: The presence of both types of TMMs in HL lymph nodes and in HL cell lines has not previously been reported. TMMs correlate with the treatment outcome of EBV+ HL patients.
Collapse
Affiliation(s)
- Radhia M'kacher
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
- Cell Environment, DNA Damages R&D, Oncology Section, 75020 Paris, France.
| | - Corina Cuceu
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Mustafa Al Jawhari
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Luc Morat
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Monika Frenzel
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Grace Shim
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Aude Lenain
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - William M Hempel
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | - Theodore Girinsky
- Department of Radiation Therapy, Gustave Roussy Cancer Campus, 94808 Villejuif, France.
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | | | - Claire Borie
- Université Paris Sud, Service d'hématologie moléculaire et cytogénétique Paul brousse CHU paris Sud, Inserm UMRS935, 94800 Villejuif, France.
| | - Noufissa Oudrhiri
- Université Paris Sud, Service d'hématologie moléculaire et cytogénétique Paul brousse CHU paris Sud, Inserm UMRS935, 94800 Villejuif, France.
| | - Annelise Bennaceur-Griscelli
- Université Paris Sud, Service d'hématologie moléculaire et cytogénétique Paul brousse CHU paris Sud, Inserm UMRS935, 94800 Villejuif, France.
| | - Olivier Moralès
- CNRS, Institut Pasteur de Lille, UMR 8161-Immunoregulation of Virus-induced Cancers Team, F-59000 Lille, France.
| | - Sarah Renaud
- CNRS, Institut Pasteur de Lille, UMR 8161-Immunoregulation of Virus-induced Cancers Team, F-59000 Lille, France.
| | - Zoé Van de Wyngaert
- CHRU Lille Service des Maladies du Sang, Hopital Huriez, 59000 Lille, France.
| | - Eric Jeandidier
- Service de génétique, Groupe hospitalier de la région de Mulhouse Sud-Alsace, 68093 Mulhouse, France.
| | - Nadira Delhem
- CNRS, Institut Pasteur de Lille, UMR 8161-Immunoregulation of Virus-induced Cancers Team, F-59000 Lille, France.
| | - Patrice Carde
- Department of Medicine, Gustave Roussy Cancer Campus, 94808 Villejuif, France.
| |
Collapse
|