1
|
Camilleri-Robles C, Amador R, Tiebe M, Teleman A, Serras F, Guigó R, Corominas M. Long non-coding RNAs involved in Drosophila development and regeneration. NAR Genom Bioinform 2024; 6:lqae091. [PMID: 39157585 PMCID: PMC11327875 DOI: 10.1093/nargab/lqae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
The discovery of functional long non-coding RNAs (lncRNAs) changed their initial concept as transcriptional noise. LncRNAs have been identified as regulators of multiple biological processes, including chromatin structure, gene expression, splicing, mRNA degradation, and translation. However, functional studies of lncRNAs are hindered by the usual lack of phenotypes upon deletion or inhibition. Here, we used Drosophila imaginal discs as a model system to identify lncRNAs involved in development and regeneration. We examined a subset of lncRNAs expressed in the wing, leg, and eye disc development. Additionally, we analyzed transcriptomic data from regenerating wing discs to profile the expression pattern of lncRNAs during tissue repair. We focused on the lncRNA CR40469, which is upregulated during regeneration. We generated CR40469 mutant flies that developed normally but showed impaired wing regeneration upon cell death induction. The ability of these mutants to regenerate was restored by the ectopic expression of CR40469. Furthermore, we found that the lncRNA CR34335 has a high degree of sequence similarity with CR40469 and can partially compensate for its function during regeneration in the absence of CR40469. Our findings point to a potential role of the lncRNA CR40469 in trans during the response to damage in the wing imaginal disc.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Raziel Amador
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marcel Tiebe
- German Cancer Research Center (DKFZ) Heidelberg, Division B140, 69120 Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ) Heidelberg, Division B140, 69120 Heidelberg, Germany
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Ho S, Theurkauf W, Rice N. piRNA-Guided Transposon Silencing and Response to Stress in Drosophila Germline. Viruses 2024; 16:714. [PMID: 38793595 PMCID: PMC11125864 DOI: 10.3390/v16050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Transposons are integral genome constituents that can be domesticated for host functions, but they also represent a significant threat to genome stability. Transposon silencing is especially critical in the germline, which is dedicated to transmitting inherited genetic material. The small Piwi-interacting RNAs (piRNAs) have a deeply conserved function in transposon silencing in the germline. piRNA biogenesis and function are particularly well understood in Drosophila melanogaster, but some fundamental mechanisms remain elusive and there is growing evidence that the pathway is regulated in response to genotoxic and environmental stress. Here, we review transposon regulation by piRNAs and the piRNA pathway regulation in response to stress, focusing on the Drosophila female germline.
Collapse
Affiliation(s)
- Samantha Ho
- Program in Molecular Medicine, University Campus, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA;
| | | | - Nicholas Rice
- Program in Molecular Medicine, University Campus, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA;
| |
Collapse
|
3
|
Brown JC, McMichael BD, Vandadi V, Mukherjee A, Salzler HR, Matera AG. Lysine-36 of Drosophila histone H3.3 supports adult longevity. G3 (BETHESDA, MD.) 2024; 14:jkae030. [PMID: 38366796 PMCID: PMC10989886 DOI: 10.1093/g3journal/jkae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/16/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Aging is a multifactorial process that disturbs homeostasis, increases disease susceptibility, and ultimately results in death. Although the definitive set of molecular mechanisms responsible for aging remain to be discovered, epigenetic change over time is proving to be a promising piece of the puzzle. Several post-translational histone modifications have been linked to the maintenance of longevity. Here, we focus on lysine-36 of the replication-independent histone protein, H3.3 (H3.3K36). To interrogate the role of this residue in Drosophila developmental gene regulation, we generated a lysine-to-arginine mutant that blocks the activity of its cognate-modifying enzymes. We found that an H3.3BK36R mutation causes a significant reduction in adult lifespan, accompanied by dysregulation of the genomic and transcriptomic architecture. Transgenic co-expression of wild-type H3.3B completely rescues the longevity defect. Because H3.3 is known to accumulate in nondividing tissues, we carried out transcriptome profiling of young vs aged adult fly heads. The data show that loss of H3.3K36 results in age-dependent misexpression of NF-κB and other innate immune target genes, as well as defects in silencing of heterochromatin. We propose H3.3K36 maintains the postmitotic epigenomic landscape, supporting longevity by regulating both pericentric and telomeric retrotransposons and by suppressing aberrant immune signaling.
Collapse
Affiliation(s)
- John C Brown
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Benjamin D McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aadit Mukherjee
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Harmony R Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- RNA Discovery Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Mota APZ, Koutsovoulos GD, Perfus-Barbeoch L, Despot-Slade E, Labadie K, Aury JM, Robbe-Sermesant K, Bailly-Bechet M, Belser C, Péré A, Rancurel C, Kozlowski DK, Hassanaly-Goulamhoussen R, Da Rocha M, Noel B, Meštrović N, Wincker P, Danchin EGJ. Unzipped genome assemblies of polyploid root-knot nematodes reveal unusual and clade-specific telomeric repeats. Nat Commun 2024; 15:773. [PMID: 38316773 PMCID: PMC10844300 DOI: 10.1038/s41467-024-44914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Using long-read sequencing, we assembled and unzipped the polyploid genomes of Meloidogyne incognita, M. javanica and M. arenaria, three of the most devastating plant-parasitic nematodes. We found the canonical nematode telomeric repeat to be missing in these and other Meloidogyne genomes. In addition, we find no evidence for the enzyme telomerase or for orthologs of C. elegans telomere-associated proteins, suggesting alternative lengthening of telomeres. Instead, analyzing our assembled genomes, we identify species-specific composite repeats enriched mostly at one extremity of contigs. These repeats are G-rich, oriented, and transcribed, similarly to canonical telomeric repeats. We confirm them as telomeric using fluorescent in situ hybridization. These repeats are mostly found at one single end of chromosomes in these species. The discovery of unusual and specific complex telomeric repeats opens a plethora of perspectives and highlights the evolutionary diversity of telomeres despite their central roles in senescence, aging, and chromosome integrity.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France.
| | - Georgios D Koutsovoulos
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Laetitia Perfus-Barbeoch
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Evelin Despot-Slade
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Karine Robbe-Sermesant
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Marc Bailly-Bechet
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Arthur Péré
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Corinne Rancurel
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Djampa K Kozlowski
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
- Université Côte d'Azur, Center of Modeling, Simulation, and Interactions, 28 Avenue Valrose, 06000, Nice, France
| | - Rahim Hassanaly-Goulamhoussen
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Martine Da Rocha
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Nevenka Meštrović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France.
| |
Collapse
|
5
|
Brown JC, McMichael BD, Vandadi V, Mukherjee A, Salzler HR, Matera AG. Lysine-36 of Drosophila histone H3.3 supports adult longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559962. [PMID: 38196611 PMCID: PMC10775331 DOI: 10.1101/2023.09.28.559962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Aging is a multifactorial process that disturbs homeostasis, increases disease susceptibility, and ultimately results in death. Although the definitive set of molecular mechanisms responsible for aging remain to be discovered, epigenetic change over time is proving to be a promising piece of the puzzle. Several posttranslational histone modifications (PTMs) have been linked to the maintenance of longevity. Here, we focus on lysine-36 of the replication-independent histone protein, H3.3 (H3.3K36). To interrogate the role of this residue in Drosophila developmental gene regulation, we generated a lysine to arginine mutant that blocks the activity of its cognate modifying enzymes. We found that an H3.3BK36R mutation causes a significant reduction in adult lifespan, accompanied by dysregulation of the genomic and transcriptomic architecture. Transgenic co-expression of wild-type H3.3B completely rescues the longevity defect. Because H3.3 is known to accumulate in non-dividing tissues, we carried out transcriptome profiling of young vs aged adult fly heads. The data show that loss of H3.3K36 results in age-dependent misexpression of NF-κB and other innate immune target genes, as well as defects in silencing of heterochromatin. We propose H3.3K36 maintains the postmitotic epigenomic landscape, supporting longevity by regulating both pericentric and telomeric retrotransposons and by suppressing aberrant immune signaling.
Collapse
Affiliation(s)
- John C. Brown
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Aadit Mukherjee
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- RNA Discovery Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Kalmykova A. Telomere Checkpoint in Development and Aging. Int J Mol Sci 2023; 24:15979. [PMID: 37958962 PMCID: PMC10647821 DOI: 10.3390/ijms242115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The maintenance of genome integrity through generations is largely determined by the stability of telomeres. Increasing evidence suggests that telomere dysfunction may trigger changes in cell fate, independently of telomere length. Telomeric multiple tandem repeats are potentially highly recombinogenic. Heterochromatin formation, transcriptional repression, the suppression of homologous recombination and chromosome end protection are all required for telomere stability. Genetic and epigenetic defects affecting telomere homeostasis may cause length-independent internal telomeric DNA damage. Growing evidence, including that based on Drosophila research, points to a telomere checkpoint mechanism that coordinates cell fate with telomere state. According to this scenario, telomeres, irrespective of their length, serve as a primary sensor of genome instability that is capable of triggering cell death or developmental arrest. Telomeric factors released from shortened or dysfunctional telomeres are thought to mediate these processes. Here, we discuss a novel signaling role for telomeric RNAs in cell fate and early development. Telomere checkpoint ensures genome stability in multicellular organisms but aggravates the aging process, promoting the accumulation of damaged and senescent cells.
Collapse
Affiliation(s)
- Alla Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Kalmykova AI, Sokolova OA. Retrotransposons and Telomeres. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1739-1753. [PMID: 38105195 DOI: 10.1134/s0006297923110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 12/19/2023]
Abstract
Transposable elements (TEs) comprise a significant part of eukaryotic genomes being a major source of genome instability and mutagenesis. Cellular defense systems suppress the TE expansion at all stages of their life cycle. Piwi proteins and Piwi-interacting RNAs (piRNAs) are key elements of the anti-transposon defense system, which control TE activity in metazoan gonads preventing inheritable transpositions and developmental defects. In this review, we discuss various regulatory mechanisms by which small RNAs combat TE activity. However, active transposons persist, suggesting these powerful anti-transposon defense mechanisms have a limited capacity. A growing body of evidence suggests that increased TE activity coincides with genome reprogramming and telomere lengthening in different species. In the Drosophila fruit fly, whose telomeres consist only of retrotransposons, a piRNA-mediated mechanism is required for telomere maintenance and their length control. Therefore, the efficacy of protective mechanisms must be finely balanced in order not only to suppress the activity of transposons, but also to maintain the proper length and stability of telomeres. Structural and functional relationship between the telomere homeostasis and LINE1 retrotransposon in human cells indicates a close link between selfish TEs and the vital structure of the genome, telomere. This relationship, which permits the retention of active TEs in the genome, is reportedly a legacy of the retrotransposon origin of telomeres. The maintenance of telomeres and the execution of other crucial roles that TEs acquired during the process of their domestication in the genome serve as a type of payment for such a "service."
Collapse
Affiliation(s)
- Alla I Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Olesya A Sokolova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
8
|
Ujvari B, Raven N, Madsen T, Klaassen M, Dujon AM, Schultz AG, Nunney L, Lemaître J, Giraudeau M, Thomas F. Telomeres, the loop tying cancer to organismal life-histories. Mol Ecol 2022; 31:6273-6285. [PMID: 35510763 PMCID: PMC9790343 DOI: 10.1111/mec.16488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Recent developments in telomere and cancer evolutionary ecology demonstrate a very complex relationship between the need of tissue repair and controlling the emergence of abnormally proliferating cells. The trade-off is balanced by natural and sexual selection and mediated via both intrinsic and environmental factors. Here, we explore the effects of telomere-cancer dynamics on life history traits and strategies as well as on the cumulative effects of genetic and environmental factors. We show that telomere-cancer dynamics constitute an incredibly complex and multifaceted process. From research to date, it appears that the relationship between telomere length and cancer risk is likely nonlinear with good evidence that both (too) long and (too) short telomeres can be associated with increased cancer risk. The ability and propensity of organisms to respond to the interplay of telomere dynamics and oncogenic processes, depends on the combination of its tissue environments, life history strategies, environmental challenges (i.e., extreme climatic conditions), pressure by predators and pollution, as well as its evolutionary history. Consequently, precise interpretation of telomere-cancer dynamics requires integrative and multidisciplinary approaches. Finally, incorporating information on telomere dynamics and the expression of tumour suppressor genes and oncogenes could potentially provide the synergistic overview that could lay the foundations to study telomere-cancer dynamics at ecosystem levels.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Nynke Raven
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Thomas Madsen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Marcel Klaassen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Aaron G. Schultz
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Leonard Nunney
- Department of Evolution, Ecology and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Jean‐François Lemaître
- Université de LyonLyonFrance,Laboratoire de Biométrie et Biologie ÉvolutiveUniversité Lyon 1CNRSUMR5558VilleurbanneFrance
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance,LIENSsUMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | - Frédéric Thomas
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| |
Collapse
|
9
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
10
|
Modzelewski AJ, Gan Chong J, Wang T, He L. Mammalian genome innovation through transposon domestication. Nat Cell Biol 2022; 24:1332-1340. [PMID: 36008480 PMCID: PMC9729749 DOI: 10.1038/s41556-022-00970-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/27/2022] [Indexed: 01/13/2023]
Abstract
Since the discovery of transposons, their sheer abundance in host genomes has puzzled many. While historically viewed as largely harmless 'parasitic' DNAs during evolution, transposons are not a mere record of ancient genome invasion. Instead, nearly every element of transposon biology has been integrated into host biology. Here we review how host genome sequences introduced by transposon activities provide raw material for genome innovation and document the distinct evolutionary path of each species.
Collapse
Affiliation(s)
- Andrew J Modzelewski
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, CA, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johnny Gan Chong
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, CA, USA
| | - Ting Wang
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Lin He
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Mustafin RN. Molecular genetics of idiopathic pulmonary fibrosis. Vavilovskii Zhurnal Genet Selektsii 2022; 26:308-318. [PMID: 35795226 PMCID: PMC9170936 DOI: 10.18699/vjgb-22-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe progressive interstitial lung disease with a prevalence of 2 to 29 per 100,000 of the world’s population. Aging is a significant risk factor for IPF, and the mechanisms of aging (telomere depletion, genomic instability, mitochondrial dysfunction, loss of proteostasis) are involved in the pathogenesis of IPF. The pathogenesis of IPF consists of TGF-β activation, epithelial-mesenchymal transition, and SIRT7 expression decrease. Genetic studies have shown a role of mutations and polymorphisms in mucin genes (MUC5B), in the genes responsible for the integrity of telomeres (TERC, TERC, TINF2, DKC1, RTEL1, PARN), in surfactant-related genes (SFTPC, SFTPCA, SFTPA2, ABCA3, SP-A2), immune system genes (IL1RN, TOLLIP), and haplotypes of HLA genes (DRB1*15:01, DQB1*06:02) in IPF pathogenesis. The investigation of the influence of reversible epigenetic factors on the development of the disease, which can be corrected by targeted therapy, shows promise. Among them, an association of a number of specific microRNAs and long noncoding RNAs was revealed with IPF. Therefore, dysregulation of transposons, which serve as key sources of noncoding RNA and affect mechanisms of aging, may serve as a driver for IPF development. This is due to the fact that pathological activation of transposons leads to violation of the regulation of genes, in the epigenetic control of which microRNA originating from these transposons are involved (due to the complementarity of nucleotide sequences). Analysis of the MDTE database (miRNAs derived from Transposable Elements) allowed the detection of 12 different miRNAs derived in evolution
from transposons and associated with IPF (miR-31, miR-302, miR-326, miR-335, miR-340, miR-374, miR-487, miR-493,
miR-495, miR-630, miR-708, miR-1343). We described the relationship of transposons with TGF-β, sirtuins and
telomeres, dysfunction of which is involved in the pathogenesis of IPF. New data on IPF epigenetic mechanisms can
become the basis for improving results of targeted therapy of the disease using noncoding RNAs.
Collapse
|
12
|
Puzakov MV, Puzakova LV. Prevalence, Diversity, and Evolution of L18 (DD37E) Transposons in the Genomes of Cnidarians. Mol Biol 2022. [DOI: 10.1134/s0026893322030104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
14
|
Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements. Cells 2022; 11:cells11050761. [PMID: 35269383 PMCID: PMC8909793 DOI: 10.3390/cells11050761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are abundant components of constitutive heterochromatin of the most diverse evolutionarily distant organisms. TEs enrichment in constitutive heterochromatin was originally described in the model organism Drosophila melanogaster, but it is now considered as a general feature of this peculiar portion of the genomes. The phenomenon of TE enrichment in constitutive heterochromatin has been proposed to be the consequence of a progressive accumulation of transposable elements caused by both reduced recombination and lack of functional genes in constitutive heterochromatin. However, this view does not take into account classical genetics studies and most recent evidence derived by genomic analyses of heterochromatin in Drosophila and other species. In particular, the lack of functional genes does not seem to be any more a general feature of heterochromatin. Sequencing and annotation of Drosophila melanogaster constitutive heterochromatin have shown that this peculiar genomic compartment contains hundreds of transcriptionally active genes, generally larger in size than that of euchromatic ones. Together, these genes occupy a significant fraction of the genomic territory of heterochromatin. Moreover, transposable elements have been suggested to drive the formation of heterochromatin by recruiting HP1 and repressive chromatin marks. In addition, there are several pieces of evidence that transposable elements accumulation in the heterochromatin might be important for centromere and telomere structure. Thus, there may be more complexity to the relationship between transposable elements and constitutive heterochromatin, in that different forces could drive the dynamic of this phenomenon. Among those forces, preferential transposition may be an important factor. In this article, we present an overview of experimental findings showing cases of transposon enrichment into the heterochromatin and their positive evolutionary interactions with an impact to host genomes.
Collapse
|
15
|
Shining Light on the Dark Side of the Genome. Cells 2022; 11:cells11030330. [PMID: 35159140 PMCID: PMC8834555 DOI: 10.3390/cells11030330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Heterochromatin has historically been considered the dark side of the genome. In part, this reputation derives from its concentration near centromeres and telomeres, regions of the genome repressive to nuclear functions such as DNA replication and transcription. The repetitive nature of heterochromatic DNA has only added to its “darkness”, as sequencing of these DNA regions has been only recently achieved. Despite such obstacles, research on heterochromatin blossomed over the past decades. Success in this area benefitted from efforts of Sergio Pimpinelli and colleagues who made landmark discoveries and promoted the growth of an international community of researchers. They discovered complexities of heterochromatin, demonstrating that a key component, Heterochromatin Protein 1a (HP1a), uses multiple mechanisms to associate with chromosomes and has positive and negative effects on gene expression, depending on the chromosome context. In addition, they updated the work of Carl Waddington using molecular tools that revealed how environmental stress promotes genome change due to transposable element movement. Collectively, their research and that of many others in the field have shined a bright light on the dark side of the genome and helped reveal many mysteries of heterochromatin.
Collapse
|
16
|
Morgunova V, Sukhova MM, Kalmykova A. Whole-Mount RNA FISH Combined with Immunofluorescence for the Analysis of the Telomeric Ribonucleoproteins in the Drosophila Germline. Methods Mol Biol 2022; 2509:157-169. [PMID: 35796963 DOI: 10.1007/978-1-0716-2380-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The RNA fluorescence in situ hybridization (FISH) technique combined with immunostaining is a powerful method to visualize a specific transcript and a protein of interest simultaneously. Although whole-mount RNA FISH is routinely used to determine RNA intracellular localization, a detailed picture of RNA distribution in complex tissues remains a challenge. The main problem is the various permeability of morphologically different cells within a tissue. We overcome this challenge by developing an approach based on differential permeabilization treatment of tissue specimens. We have tested and optimized conditions for RNA FISH combined with immunofluorescent staining (RNA FISH/IF) to detect the maternal telomeric retrotransposon HeT-A RNPs in the Drosophila ovaries and syncytial embryos. Methods described here are applicable to a broad variety of biological tissue specimens.
Collapse
Affiliation(s)
- Valeriya Morgunova
- Institute of Molecular Genetics of National Research Centre, "Kurchatov Institute", Moscow, Russia
| | - Maria M Sukhova
- Institute of Molecular Genetics of National Research Centre, "Kurchatov Institute", Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alla Kalmykova
- Institute of Molecular Genetics of National Research Centre, "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
17
|
Mustafin RN. Relationship of Peptides and Long Non-Coding RNAs with Aging. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Cui M, Bai Y, Li K, Rong YS. Taming active transposons at Drosophila telomeres: The interconnection between HipHop's roles in capping and transcriptional silencing. PLoS Genet 2021; 17:e1009925. [PMID: 34813587 PMCID: PMC8651111 DOI: 10.1371/journal.pgen.1009925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Drosophila chromosomes are elongated by retrotransposon attachment, a process poorly understood. Here we characterized a mutation affecting the HipHop telomere-capping protein. In mutant ovaries and the embryos that they produce, telomere retrotransposons are activated and transposon RNP accumulates. Genetic results are consistent with that this hiphop mutation weakens the efficacy of HP1-mediated silencing while leaving piRNA-based mechanisms largely intact. Remarkably, mutant females display normal fecundity suggesting that telomere de-silencing is compatible with germline development. Moreover, unlike prior mutants with overactive telomeres, the hiphop stock does not over-accumulate transposons for hundreds of generations. This is likely due to the loss of HipHop’s abilities both to silence transcription and to recruit transposons to telomeres in the mutant. Furthermore, embryos produced by mutant mothers experience a checkpoint activation, and a further loss of maternal HipHop leads to end-to-end fusion and embryonic arrest. Telomeric retroelements fulfill an essential function yet maintain a potentially conflicting relationship with their Drosophila host. Our study thus showcases a possible intermediate in this arm race in which the host is adapting to over-activated transposons while maintaining genome stability. Our results suggest that the collapse of such a relationship might only occur when the selfish element acquires the ability to target non-telomeric regions of the genome. HipHop is likely part of this machinery restricting the elements to the gene-poor region of telomeres. Lastly, our hiphop mutation behaves as a recessive suppressor of PEV that is mediated by centric heterochromatin, suggesting its broader effect on chromatin not limited to telomeres. Transposons are selfish elements that multiply by inserting extra copies of themselves into the host genome. Active transposons thus threaten the stability of the host genome, while the host responses by transcriptionally silencing the selfish elements or targeting their insertions towards gene-poor regions of the genome. Chromosome ends (telomeres) in the fruit fly Drosophila are elongated by active transposition of retrotransposons. Although much is known about how these elements are silenced, little is known about the remarkable accuracy by which they are targeted to telomeres. Prime candidates through which the host mounts such defenses are members of the protein complexes that protect telomeres. Here we characterized a hypomorphic mutation of the HipHop protein, and showed that active telomeric transcription in the mutant germline persists for generations without leading to runaway telomere elongation, that embryos laid by the mutant female suffer rampant end-to-end fusions, and that telomeric targeting of the transposon machinery is defective in the mutant soma. Collectively our data suggest that HipHop is essential for preventing telomere fusions, silencing telomeric transposons, and recruiting transposon machinery to telomeres. Our study thus identifies a factor essential for the host control over active transposons and a paradigm for studying such control mechanisms.
Collapse
Affiliation(s)
- Min Cui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yaofu Bai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hengyang College of Medicine, University of South China, Hengyang, China
| | - Kaili Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yikang S. Rong
- Hengyang College of Medicine, University of South China, Hengyang, China
- * E-mail:
| |
Collapse
|
19
|
Viviani A, Ventimiglia M, Fambrini M, Vangelisti A, Mascagni F, Pugliesi C, Usai G. Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 2021; 210:104566. [PMID: 34718084 DOI: 10.1016/j.biosystems.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Transposable elements (TEs) contribute to genomic innovations, as well as genome instability, across a wide variety of species. Popular designations such as 'selfish DNA' and 'junk DNA,' common in the 1980s, may be either inaccurate or misleading, while a more enlightened view of the TE-host relationship covers a range from parasitism to mutualism. Both plant and animal hosts have evolved epigenetic mechanisms to reduce the impact of TEs, both by directly silencing them and by reducing their ability to transpose in the genome. However, TEs have also been co-opted by both plant and animal genomes to perform a variety of physiological functions, ranging from TE-derived proteins acting directly in normal biological functions to innovations in transcription factor activity and also influencing gene expression. Their presence, in fact, can affect a range of features at genome, phenotype, and population levels. The impact TEs have had on evolution is multifaceted, and many aspects still remain unexplored. In this review, the epigenetic control of TEs is contextualized according to the evolution of complex living systems.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy.
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| |
Collapse
|
20
|
Vedelek B, Kovács Á, Boros IM. Evolutionary mode for the functional preservation of fast-evolving Drosophila telomere capping proteins. Open Biol 2021; 11:210261. [PMID: 34784790 PMCID: PMC8596017 DOI: 10.1098/rsob.210261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
DNA end protection is fundamental for the long-term preservation of the genome. In vertebrates the Shelterin protein complex protects telomeric DNA ends, thereby contributing to the maintenance of genome integrity. In the Drosophila genus, this function is thought to be performed by the Terminin complex, an assembly of fast-evolving subunits. Considering that DNA end protection is fundamental for successful genome replication, the accelerated evolution of Terminin subunits is counterintuitive, as conservation is supposed to maintain the assembly and concerted function of the interacting partners. This problem extends over Drosophila telomere biology and provides insight into the evolution of protein assemblies. In order to learn more about the mechanistic details of this phenomenon we have investigated the intra- and interspecies assemblies of Verrocchio and Modigliani, two Terminin subunits using in vitro assays. Based on our results and on homology-based three-dimensional models for Ver and Moi, we conclude that both proteins contain Ob-fold and contribute to the ssDNA binding of the Terminin complex. We propose that the preservation of Ver function is achieved by conservation of specific amino acids responsible for folding or localized in interacting surfaces. We also provide here the first evidence on Moi DNA binding.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary,Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ákos Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Imre M. Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary,Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
21
|
Loss of telomere silencing is accompanied by dysfunction of Polo kinase and centrosomes during Drosophila oogenesis and early development. PLoS One 2021; 16:e0258156. [PMID: 34624021 PMCID: PMC8500440 DOI: 10.1371/journal.pone.0258156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/18/2021] [Indexed: 12/03/2022] Open
Abstract
Telomeres are nucleoprotein complexes that protect the ends of eukaryotic linear chromosomes from degradation and fusions. Telomere dysfunction leads to cell growth arrest, oncogenesis, and premature aging. Telomeric RNAs have been found in all studied species; however, their functions and biogenesis are not clearly understood. We studied the mechanisms of development disorders observed upon overexpression of telomeric repeats in Drosophila. In somatic cells, overexpression of telomeric retrotransposon HeT-A is cytotoxic and leads to the accumulation of HeT-A Gag near centrosomes. We found that RNA and RNA-binding protein Gag encoded by the telomeric retrotransposon HeT-A interact with Polo and Cdk1 mitotic kinases, which are conserved regulators of centrosome biogenesis and cell cycle. The depletion of proteins Spindle E, Ccr4 or Ars2 resulting in HeT-A overexpression in the germline was accompanied by mislocalization of Polo as well as its abnormal stabilization during oogenesis and severe deregulation of centrosome biogenesis leading to maternal-effect embryonic lethality. These data suggest a mechanistic link between telomeric HeT-A ribonucleoproteins and cell cycle regulators that ensures the cell response to telomere dysfunction.
Collapse
|
22
|
CriTER-A: A Novel Temperature-Dependent Noncoding RNA Switch in the Telomeric Transcriptome of Chironomus riparius. Int J Mol Sci 2021; 22:ijms221910310. [PMID: 34638651 PMCID: PMC8508857 DOI: 10.3390/ijms221910310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
The telomeric transcriptome of Chironomus riparius has been involved in thermal stress response. One of the telomeric transcripts, the so-called CriTER-A variant, is highly overexpressed upon heat shock. On the other hand, its homologous variant CriTER-B, which is the most frequently encoded noncoding RNA in the telomeres of C. riparius, is only slightly affected by thermal stress. Interestingly, both transcripts show high sequence homology, but less is known about their folding and how this could influence their differential behaviour. Our study suggests that CriTER-A folds as two different conformers, whose relative proportion is influenced by temperature conditions. Meanwhile, the CriTER-B variant shows only one dominant conformer. Thus, a temperature-dependent conformational equilibrium can be established for CriTER-A, suggesting a putative functional role of the telomeric transcriptome in relation to thermal stress that could rely on the structure-function relationship of the CriTER-A transcripts.
Collapse
|
23
|
Logeswaran D, Li Y, Podlevsky JD, Chen JJL. Monophyletic Origin and Divergent Evolution of Animal Telomerase RNA. Mol Biol Evol 2021; 38:215-228. [PMID: 32770221 PMCID: PMC8480181 DOI: 10.1093/molbev/msaa203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Telomerase RNA (TR) is a noncoding RNA essential for the function of telomerase ribonucleoprotein. TRs from vertebrates, fungi, ciliates, and plants exhibit extreme diversity in size, sequence, secondary structure, and biogenesis pathway. However, the evolutionary pathways leading to such unusual diversity among eukaryotic kingdoms remain elusive. Within the metazoan kingdom, the study of TR has been limited to vertebrates and echinoderms. To understand the origin and evolution of TR across the animal kingdom, we employed a phylogeny-guided, structure-based bioinformatics approach to identify 82 novel TRs from eight previously unexplored metazoan phyla, including the basal-branching sponges. Synthetic TRs from two representative species, a hemichordate and a mollusk, reconstitute active telomerase in vitro with their corresponding telomerase reverse transcriptase components, confirming that they are authentic TRs. Comparative analysis shows that three functional domains, template-pseudoknot (T-PK), CR4/5, and box H/ACA, are conserved between vertebrate and the basal metazoan lineages, indicating a monophyletic origin of the animal TRs with a snoRNA-related biogenesis mechanism. Nonetheless, TRs along separate animal lineages evolved with divergent structural elements in the T-PK and CR4/5 domains. For example, TRs from echinoderms and protostomes lack the canonical CR4/5 and have independently evolved functionally equivalent domains with different secondary structures. In the T-PK domain, a P1.1 stem common in most metazoan clades defines the template boundary, which is replaced by a P1-defined boundary in vertebrates. This study provides unprecedented insight into the divergent evolution of detailed TR secondary structures across broad metazoan lineages, revealing ancestral and later-diversified elements.
Collapse
Affiliation(s)
| | - Yang Li
- School of Molecular Sciences, Arizona State University, Tempe, AZ
| | | | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
24
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
25
|
Comprehensive mapping of transposable elements reveals distinct patterns of element accumulation on chromosomes of wild beetles. Chromosome Res 2021; 29:203-218. [PMID: 33638119 DOI: 10.1007/s10577-021-09655-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Over the past decades, transposable elements (TEs) have been shown to play important roles shaping genome architecture and as major promoters of genetic diversification and evolution of species. Likewise, TE accumulation is tightly linked to heterochromatinization and centromeric dynamics, which can ultimately contribute to speciation. Despite growing efforts to characterize the repeat landscape of species, few studies have focused on mapping the accumulation profiles of TEs on chromosomes. The few studies on repeat accumulation profiles in populations are biased towards model organisms and inbred lineages. Here, we present a cytomolecular analysis of six mobilome-extracted elements on multiple individuals from a population of a species of wild-captured beetle, Dichotomius schiffleri, aiming to investigate patterns of TE accumulation and uncover possible trends of their chromosomal distribution. Compiling TE distribution data from several individuals allowed us to make generalizations regarding variation of TEs at the gross chromosome level unlikely to have been achieved using a single individual, or even from a whole-genome assembly. We found that (1) transposable elements have differential accumulation profiles on D. schiffleri chromosomes and (2) specific chromosomes have their own TE accumulation landscape. The remarkable variability of their genomic distribution suggests that TEs are likely candidates to contribute to the evolution of heterochromatin architecture and promote high genetic variability in species that otherwise display conserved karyotypes. Therefore, this variation likely contributed to genome evolution and species diversification in Dichotomius.
Collapse
|
26
|
Fabian DK, Dönertaş HM, Fuentealba M, Partridge L, Thornton JM. Transposable Element Landscape in Drosophila Populations Selected for Longevity. Genome Biol Evol 2021; 13:6141024. [PMID: 33595657 PMCID: PMC8355499 DOI: 10.1093/gbe/evab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) inflict numerous negative effects on health and fitness as they replicate by integrating into new regions of the host genome. Even though organisms employ powerful mechanisms to demobilize TEs, transposons gradually lose repression during aging. The rising TE activity causes genomic instability and was implicated in age-dependent neurodegenerative diseases, inflammation, and the determination of lifespan. It is therefore conceivable that long-lived individuals have improved TE silencing mechanisms resulting in reduced TE expression relative to their shorter-lived counterparts and fewer genomic insertions. Here, we test this hypothesis by performing the first genome-wide analysis of TE insertions and expression in populations of Drosophila melanogaster selected for longevity through late-life reproduction for 50–170 generations from four independent studies. Contrary to our expectation, TE families were generally more abundant in long-lived populations compared with nonselected controls. Although simulations showed that this was not expected under neutrality, we found little evidence for selection driving TE abundance differences. Additional RNA-seq analysis revealed a tendency for reducing TE expression in selected populations, which might be more important for lifespan than regulating genomic insertions. We further find limited evidence of parallel selection on genes related to TE regulation and transposition. However, telomeric TEs were genomically and transcriptionally more abundant in long-lived flies, suggesting improved telomere maintenance as a promising TE-mediated mechanism for prolonging lifespan. Our results provide a novel viewpoint indicating that reproduction at old age increases the opportunity of TEs to be passed on to the next generation with little impact on longevity.
Collapse
Affiliation(s)
- Daniel K Fabian
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, United Kingdom
- Corresponding author: E-mail:
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Matías Fuentealba
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
27
|
On K, Crevel G, Cotterill S, Itoh M, Kato Y. Drosophila telomere capping protein HOAP interacts with DSB sensor proteins Mre11 and Nbs. Genes Cells 2021; 26:219-229. [PMID: 33556205 DOI: 10.1111/gtc.12836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
In eukaryotes, specific DNA-protein structures called telomeres exist at linear chromosome ends. Telomere stability is maintained by a specific capping protein complex. This capping complex is essential for the inhibition of the DNA damage response (DDR) at telomeres and contributes to genome integrity. In Drosophila, the central factors of telomere capping complex are HOAP and HipHop. Furthermore, a DDR protein complex Mre11-Rad50-Nbs (MRN) is known to be important for the telomere association of HOAP and HipHop. However, whether MRN interacts with HOAP and HipHop, and the telomere recognition mechanisms of HOAP and HipHop are poorly understood. Here, we show that Nbs interacts with Mre11 and transports the Mre11-Rad50 complex from the cytoplasm to the nucleus. In addition, we report that HOAP interacts with both Mre11 and Nbs. The N-terminal region of HOAP is essential for its co-localization with HipHop. Finally, we reveal that Nbs interacts with the N-terminal region of HOAP.
Collapse
Affiliation(s)
- Kinyo On
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Gilles Crevel
- Department of Basic Medical Sciences, St Georges, University of London, London, UK
| | - Sue Cotterill
- Department of Basic Medical Sciences, St Georges, University of London, London, UK
| | - Masanobu Itoh
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
28
|
McGurk MP, Dion-Côté AM, Barbash DA. Rapid evolution at the Drosophila telomere: transposable element dynamics at an intrinsically unstable locus. Genetics 2021; 217:iyaa027. [PMID: 33724410 PMCID: PMC8045721 DOI: 10.1093/genetics/iyaa027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila telomeres have been maintained by three families of active transposable elements (TEs), HeT-A, TAHRE, and TART, collectively referred to as HTTs, for tens of millions of years, which contrasts with an unusually high degree of HTT interspecific variation. While the impacts of conflict and domestication are often invoked to explain HTT variation, the telomeres are unstable structures such that neutral mutational processes and evolutionary tradeoffs may also drive HTT evolution. We leveraged population genomic data to analyze nearly 10,000 HTT insertions in 85 Drosophila melanogaster genomes and compared their variation to other more typical TE families. We observe that occasional large-scale copy number expansions of both HTTs and other TE families occur, highlighting that the HTTs are, like their feral cousins, typically repressed but primed to take over given the opportunity. However, large expansions of HTTs are not caused by the runaway activity of any particular HTT subfamilies or even associated with telomere-specific TE activity, as might be expected if HTTs are in strong genetic conflict with their hosts. Rather than conflict, we instead suggest that distinctive aspects of HTT copy number variation and sequence diversity largely reflect telomere instability, with HTT insertions being lost at much higher rates than other TEs elsewhere in the genome. We extend previous observations that telomere deletions occur at a high rate, and surprisingly discover that more than one-third do not appear to have been healed with an HTT insertion. We also report that some HTT families may be preferentially activated by the erosion of whole telomeres, implying the existence of HTT-specific host control mechanisms. We further suggest that the persistent telomere localization of HTTs may reflect a highly successful evolutionary strategy that trades away a stable insertion site in order to have reduced impact on the host genome. We propose that HTT evolution is driven by multiple processes, with niche specialization and telomere instability being previously underappreciated and likely predominant.
Collapse
Affiliation(s)
- Michael P McGurk
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Anne-Marie Dion-Côté
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
29
|
Castillo-González C, Shippen DE. Change and HOAP for the best. eLife 2020; 9:e64945. [PMID: 33350935 PMCID: PMC7755383 DOI: 10.7554/elife.64945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
HOAP is a telomere-binding protein that has a conserved role in Drosophila, but it also needs to evolve quickly to restrict telomeric retrotransposons.
Collapse
Affiliation(s)
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
30
|
A structurally conserved human and Tetrahymena telomerase catalytic core. Proc Natl Acad Sci U S A 2020; 117:31078-31087. [PMID: 33229538 DOI: 10.1073/pnas.2011684117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex that counteracts the shortening of chromosome ends due to incomplete replication. Telomerase contains a catalytic core of telomerase reverse transcriptase (TERT) and telomerase RNA (TER). However, what defines TERT and separates it from other reverse transcriptases remains a subject of debate. A recent cryoelectron microscopy map of Tetrahymena telomerase revealed the structure of a previously uncharacterized TERT domain (TRAP) with unanticipated interactions with the telomerase essential N-terminal (TEN) domain and roles in telomerase activity. Both TEN and TRAP are absent in the putative Tribolium TERT that has been used as a model for telomerase for over a decade. To investigate the conservation of TRAP and TEN across species, we performed multiple sequence alignments and statistical coupling analysis on all identified TERTs and find that TEN and TRAP have coevolved as telomerase-specific domains. Integrating the data from bioinformatic analysis and the structure of Tetrahymena telomerase, we built a pseudoatomic model of human telomerase catalytic core that accounts for almost all of the cryoelectron microscopy density in a published map, including TRAP in previously unassigned density as well as telomerase RNA domains essential for activity. This more complete model of the human telomerase catalytic core illustrates how domains of TER and TERT, including the TEN-TRAP complex, can interact in a conserved manner to regulate telomere synthesis.
Collapse
|
31
|
Schrumpfová PP, Fajkus J. Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules 2020; 10:biom10101425. [PMID: 33050064 PMCID: PMC7658794 DOI: 10.3390/biom10101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase—a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase—its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component—were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Correspondence:
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
32
|
Asif‐Laidin A, Conesa C, Bonnet A, Grison C, Adhya I, Menouni R, Fayol H, Palmic N, Acker J, Lesage P. A small targeting domain in Ty1 integrase is sufficient to direct retrotransposon integration upstream of tRNA genes. EMBO J 2020; 39:e104337. [PMID: 32677087 PMCID: PMC7459421 DOI: 10.15252/embj.2019104337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
Integration of transposable elements into the genome is mutagenic. Mechanisms targeting integrations into relatively safe locations, hence minimizing deleterious consequences for cell fitness, have emerged during evolution. In budding yeast, integration of the Ty1 LTR retrotransposon upstream of RNA polymerase III (Pol III)-transcribed genes requires interaction between Ty1 integrase (IN1) and AC40, a subunit common to Pol I and Pol III. Here, we identify the Ty1 targeting domain of IN1 that ensures (i) IN1 binding to Pol I and Pol III through AC40, (ii) IN1 genome-wide recruitment to Pol I- and Pol III-transcribed genes, and (iii) Ty1 integration only at Pol III-transcribed genes, while IN1 recruitment by AC40 is insufficient to target Ty1 integration into Pol I-transcribed genes. Swapping the targeting domains between Ty5 and Ty1 integrases causes Ty5 integration at Pol III-transcribed genes, indicating that the targeting domain of IN1 alone confers Ty1 integration site specificity.
Collapse
Affiliation(s)
- Amna Asif‐Laidin
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Christine Conesa
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Amandine Bonnet
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Camille Grison
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Indranil Adhya
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Rachid Menouni
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Hélène Fayol
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Noé Palmic
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Joël Acker
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Pascale Lesage
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| |
Collapse
|
33
|
|
34
|
Cacchione S, Cenci G, Raffa GD. Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements. J Mol Biol 2020; 432:4305-4321. [PMID: 32512004 DOI: 10.1016/j.jmb.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023]
Abstract
The maintenance of chromosome ends in Drosophila is an exceptional phenomenon because it relies on the transposition of specialized retrotransposons rather than on the activity of the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the recruitment of telomere capping proteins favors proper telomere function. However, how this coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms underlying the regulation of HTT transcription and transposition and will discuss the possibility of a crosstalk between piRNA-mediated regulation, telomeric chromatin establishment, and telomere protection.
Collapse
Affiliation(s)
- Stefano Cacchione
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| | - Giovanni Cenci
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy; Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy.
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
35
|
Essential factors involved in the precise targeting and insertion of telomere-specific non-LTR retrotransposon, SART1Bm. Sci Rep 2020; 10:8963. [PMID: 32488018 PMCID: PMC7265360 DOI: 10.1038/s41598-020-65925-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
Telomere length maintenance is essential for most eukaryotes to ensure genome stability and integrity. A non-long terminal repeat (LTR) retrotransposon, SART1Bm, targets telomeric repeats (TTAGG)n of the silkworm Bombyx mori and is presumably involved in telomere length maintenance. However, how many telomeric repeats are required for its retrotransposition and how reverse transcription is initiated at the target site are not well understood. Here, using an ex vivo and trans-in vivo recombinant baculovirus retrotransposition system, we demonstrated that SART1Bm requires at least three (TTAGG) telomeric repeats and a longer poly(A) tail for its accurate retrotransposition. We found that SART1Bm retrotransposed only in the third (TTAGG) tract of three repeats and that the A residue of the (TTAGG) unit was essential for its retrotransposition. Interestingly, SART1Bm also retrotransposed into telomeric repeats of other species, such as human (TTAGGG)n repeats, albeit with low retrotransposition efficiency. We further showed that the reverse transcription of SART1Bm occurred inaccurately at the internal site of the 3' untranslated region (UTR) when using a short poly(A) tail but at the accurate site when using a longer poly(A) tail. These findings promote our understanding of the general mechanisms of site-specific retrotransposition and aid the development of a site-specific gene knock-in tool.
Collapse
|
36
|
Long-lived post-mitotic cell aging: is a telomere clock at play? Mech Ageing Dev 2020; 189:111256. [PMID: 32380018 DOI: 10.1016/j.mad.2020.111256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Senescence is a cellular response to stress for both dividing and post-mitotic cells. Noteworthy, long-lived post-mitotic cells (collectively named LLPMCs), which can live for decades in the organism, can exhibit a distinct type of cellular aging characterized by a progressive functional decline not associated to an overt senescence phenotype. The age-related drivers of senescence and aging in LLPMCs remain largely unknown. There is evidence that an increased production of reactive oxygen species (ROS) due to dysfunctional mitochondria, coupled with an inherent inability of cellular-degradation mechanisms to remove damaged molecules, is responsible for senescence and aging in LLPMC. Although telomeric DNA shortening, by nature linked to cell division, is generally not considered as a driver of LLPMC aging and senescence, we discuss recent reports revealing the existence of age-related telomere changes in LLPMC. These findings reveal unexpected roles for telomeres in LLPMC function and invite us to consider the hypothesis of a complex telomere clock involved in both dividing and non-dividing cell aging.
Collapse
|
37
|
Abstract
Since Barbara McClintock’s groundbreaking discovery of mobile DNA sequences some 70 years ago, transposable elements have come to be recognized as important mutagenic agents impacting genome composition, genome evolution, and human health. Transposable elements are a major constituent of prokaryotic and eukaryotic genomes, and the transposition mechanisms enabling transposon proliferation over evolutionary time remain engaging topics for study, suggesting complex interactions with the host, both antagonistic and mutualistic. The impact of transposition is profound, as over 100 human heritable diseases have been attributed to transposon insertions. Transposition can be highly mutagenic, perturbing genome integrity and gene expression in a wide range of organisms. This mutagenic potential has been exploited in the laboratory, where transposons have long been utilized for phenotypic screening and the generation of defined mutant libraries. More recently, barcoding applications and methods for RNA-directed transposition are being used towards new phenotypic screens and studies relevant for gene therapy. Thus, transposable elements are significant in affecting biology both
in vivo and in the laboratory, and this review will survey advances in understanding the biological role of transposons and relevant laboratory applications of these powerful molecular tools.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Henninger E, Teixeira MT. Telomere-driven mutational processes in yeast. Curr Opin Genet Dev 2020; 60:99-106. [DOI: 10.1016/j.gde.2020.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
|
39
|
Markova DN, Christensen SM, Betrán E. Telomere-Specialized Retroelements in Drosophila: Adaptive Symbionts of the Genome, Neutral, or in Conflict? Bioessays 2019; 42:e1900154. [PMID: 31815300 DOI: 10.1002/bies.201900154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Linear chromosomes shorten in every round of replication. In Drosophila, telomere-specialized long interspersed retrotransposable elements (LINEs) belonging to the jockey clade offset this shortening by forming head-to-tail arrays at Drosophila telomere ends. As such, these telomeric LINEs have been considered adaptive symbionts of the genome, protecting it from premature decay, particularly as Drosophila lacks a conventional telomerase holoenzyme. However, as reviewed here, recent work reveals a high degree of variation and turnover in the telomere-specialized LINE lineages across Drosophila. There appears to be no absolute requirement for LINE activity to maintain telomeres in flies, hence the suggestion that the telomere-specialized LINEs may instead be neutral or in conflict with the host, rather than adaptive.
Collapse
Affiliation(s)
- Dragomira N Markova
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
40
|
Song J, Logeswaran D, Castillo-González C, Li Y, Bose S, Aklilu BB, Ma Z, Polkhovskiy A, Chen JJL, Shippen DE. The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans. Proc Natl Acad Sci U S A 2019; 116:24542-24550. [PMID: 31754031 PMCID: PMC6900512 DOI: 10.1073/pnas.1915312116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase is essential for maintaining telomere integrity. Although telomerase function is widely conserved, the integral telomerase RNA (TR) that provides a template for telomeric DNA synthesis has diverged dramatically. Nevertheless, TR molecules retain 2 highly conserved structural domains critical for catalysis: a template-proximal pseudoknot (PK) structure and a downstream stem-loop structure. Here we introduce the authentic TR from the plant Arabidopsis thaliana, called AtTR, identified through next-generation sequencing of RNAs copurifying with Arabidopsis TERT. This RNA is distinct from the RNA previously described as the templating telomerase RNA, AtTER1. AtTR is a 268-nt Pol III transcript necessary for telomere maintenance in vivo and sufficient with TERT to reconstitute telomerase activity in vitro. Bioinformatics analysis identified 85 AtTR orthologs from 3 major clades of plants: angiosperms, gymnosperms, and lycophytes. Through phylogenetic comparisons, a secondary structure model conserved among plant TRs was inferred and verified using in vitro and in vivo chemical probing. The conserved plant TR structure contains a template-PK core domain enclosed by a P1 stem and a 3' long-stem P4/5/6, both of which resemble a corresponding structural element in ciliate and vertebrate TRs. However, the plant TR contains additional stems and linkers within the template-PK core, allowing for expansion of PK structure from the simple PK in the smaller ciliate TR during evolution. Thus, the plant TR provides an evolutionary bridge that unites the disparate structures of previously characterized TRs from ciliates and vertebrates.
Collapse
Affiliation(s)
- Jiarui Song
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | | | | | - Yang Li
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Sreyashree Bose
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Behailu Birhanu Aklilu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Zeyang Ma
- National Maize Improvement Center of China, China Agricultural University, 100193 Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China
| | - Alexander Polkhovskiy
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russian Federation
| | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287;
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
41
|
Rodriguez-Centeno J, Manguán-García C, Perona R, Sastre L. Structure of Dictyostelium discoideum telomeres. Analysis of possible replication mechanisms. PLoS One 2019; 14:e0222909. [PMID: 31550289 PMCID: PMC6759168 DOI: 10.1371/journal.pone.0222909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Telomeres are nucleo-protein structures that protect the ends of eukaryotic chromosomes. They are not completely synthesized during DNA replication and are elongated by specific mechanisms. The structure of the telomeres and the elongation mechanism have not been determined in Dictyostelium discoideum. This organism presents extrachromosomal palindromic elements containing two copies of the rDNA, also present at the end of the chromosomes. In this article the structure of the terminal region of the rDNA is shown to consist of repetitions of the A(G)n sequence where the number of Gs is variable. These repeats extend as a 3’ single stranded region. The G-rich region is preceded by four tandem repetitions of two different DNA motifs. D. discoideum telomere reverse transcriptase homologous protein (TERTHP) presented RNase-sensitive enzymatic activity and was required to maintain telomere structure since terthp-mutant strains presented reorganizations of the DNA terminal regions. These modifications were different in several terthp-mutants and changed with their prolonged culture and subcloning. However, the terthp gene is not essential for D. discoideum proliferation. Telomeres could be maintained in terthp-mutant strains by homologous recombination mechanisms such as ALT (Alternative Lengthening of Telomeres) or HAATI (heterochromatin amplification-mediated and telomerase-independent). In agreement with this hypothesis, the expression of mRNAs coding for several proteins involved in homologous recombination was induced in terthp-mutant strains. Extrachromosomal rDNA could serve as substrate in these DNA homologous recombination reactions.
Collapse
Affiliation(s)
- Javier Rodriguez-Centeno
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
| | - Cristina Manguán-García
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail:
| |
Collapse
|
42
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
43
|
Brenman-Suttner DB, Yost RT, Frame AK, Robinson JW, Moehring AJ, Simon AF. Social behavior and aging: A fly model. GENES BRAIN AND BEHAVIOR 2019; 19:e12598. [PMID: 31286644 DOI: 10.1111/gbb.12598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.
Collapse
Affiliation(s)
- Dova B Brenman-Suttner
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Ryley T Yost
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Ariel K Frame
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - J Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Amanda J Moehring
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Anne F Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| |
Collapse
|
44
|
A telomerase with novel non-canonical roles: TERT controls cellular aggregation and tissue size in Dictyostelium. PLoS Genet 2019; 15:e1008188. [PMID: 31237867 PMCID: PMC6592521 DOI: 10.1371/journal.pgen.1008188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Telomerase, particularly its main subunit, the reverse transcriptase, TERT, prevents DNA erosion during eukaryotic chromosomal replication, but also has poorly understood non-canonical functions. Here, in the model social amoeba Dictyostelium discoideum, we show that the protein encoded by tert has telomerase-like motifs, and regulates, non-canonically, important developmental processes. Expression levels of wild-type (WT) tert were biphasic, peaking at 8 and 12 h post-starvation, aligning with developmental events, such as the initiation of streaming (~7 h) and mound formation (~10 h). In tert KO mutants, however, aggregation was delayed until 16 h. Large, irregular streams formed, then broke up, forming small mounds. The mound-size defect was not induced when a KO mutant of countin (a master size-regulating gene) was treated with TERT inhibitors, but anti-countin antibodies did rescue size in the tert KO. Although, conditioned medium (CM) from countin mutants failed to rescue size in the tert KO, tert KO CM rescued the countin KO phenotype. These and additional observations indicate that TERT acts upstream of smlA/countin: (i) the observed expression levels of smlA and countin, being respectively lower and higher (than WT) in the tert KO; (ii) the levels of known size-regulation intermediates, glucose (low) and adenosine (high), in the tert mutant, and the size defect's rescue by supplemented glucose or the adenosine-antagonist, caffeine; (iii) the induction of the size defect in the WT by tert KO CM and TERT inhibitors. The tert KO's other defects (delayed aggregation, irregular streaming) were associated with changes to cAMP-regulated processes (e.g. chemotaxis, cAMP pulsing) and their regulatory factors (e.g. cAMP; acaA, carA expression). Overexpression of WT tert in the tert KO rescued these defects (and size), and restored a single cAMP signaling centre. Our results indicate that TERT acts in novel, non-canonical and upstream ways, regulating key developmental events in Dictyostelium.
Collapse
|
45
|
Saint-Leandre B, Nguyen SC, Levine MT. Diversification and collapse of a telomere elongation mechanism. Genome Res 2019; 29:920-931. [PMID: 31138619 PMCID: PMC6581046 DOI: 10.1101/gr.245001.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
In most eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert exclusively at telomeres. This exchange of goods between host and mobile element-wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation-has been called a "genomic symbiosis." However, these telomere-specialized, jockey family retrotransposons may actually evolve to "selfishly" overreplicate in the genomes that they ostensibly serve. Under this model, we expect rapid diversification of telomere-specialized retrotransposon lineages and, possibly, the breakdown of this ostensibly symbiotic relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-Myr-old melanogaster species group, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this retrotransposon lineage diversity. In Drosophila biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Telomeric retrotransposon diversification and disappearance suggest that persistently "selfish" machinery shapes telomere elongation across Drosophila rather than completely domesticated, symbiotic mobile elements.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Son C Nguyen
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mia T Levine
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
46
|
Mustafin RN. Functional Dualism of Transposon Transcripts in Evolution of Eukaryotic Genomes. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360418070019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Monaghan P, Eisenberg DTA, Harrington L, Nussey D. Understanding diversity in telomere dynamics. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0435. [PMID: 29335374 DOI: 10.1098/rstb.2016.0435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Dan T A Eisenberg
- Department of Anthropology, University of Washington, 314 Denny Hall, Box 353100 Seattle, WA 98195-3100, USA
| | - Lea Harrington
- Départemente de Médecine, Institut de recherche en immunologie et en cancérologie, Université de Montréal, 2950 chemin de Polytechnique, Montréal, Québec, Canada H3T 1J4
| | - Dan Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Labs, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
48
|
Mustafin RN, Enikeeva RF, Davydova YD, Khusnutdinova EK. The Role of Epigenetic Factors in the Development of Depressive Disorders. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Abstract
Arc, a master regulator of synaptic plasticity, contains sequence elements that are evolutionarily related to retrotransposon Gag genes. Two related papers in this issue of Cell show that Arc retains retroviral-like capsid-forming ability and can transmit mRNA between cells in the nervous system, a process that may be important for synaptic function.
Collapse
Affiliation(s)
- Nicholas F Parrish
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keizo Tomonaga
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
50
|
Lidzbarsky G, Gutman D, Shekhidem HA, Sharvit L, Atzmon G. Genomic Instabilities, Cellular Senescence, and Aging: In Vitro, In Vivo and Aging-Like Human Syndromes. Front Med (Lausanne) 2018; 5:104. [PMID: 29719834 PMCID: PMC5913290 DOI: 10.3389/fmed.2018.00104] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
As average life span and elderly people prevalence in the western world population is gradually increasing, the incidence of age-related diseases such as cancer, heart diseases, diabetes, and dementia is increasing, bearing social and economic consequences worldwide. Understanding the molecular basis of aging-related processes can help extend the organism’s health span, i.e., the life period in which the organism is free of chronic diseases or decrease in basic body functions. During the last few decades, immense progress was made in the understanding of major components of aging and healthy aging biology, including genomic instability, telomere attrition, epigenetic changes, proteostasis, nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and intracellular communications. This progress has been made by three spear-headed strategies: in vitro (cell and tissue culture from various sources), in vivo (includes diverse model and non-model organisms), both can be manipulated and translated to human biology, and the study of aging-like human syndromes and human populations. Herein, we will focus on current repository of genomic “senescence” stage of aging, which includes health decline, structural changes of the genome, faulty DNA damage response and DNA damage, telomere shortening, and epigenetic alterations. Although aging is a complex process, many of the “hallmarks” of aging are directly related to DNA structure and function. This review will illustrate the variety of these studies, done in in vitro, in vivo and human levels, and highlight the unique potential and contribution of each research level and eventually the link between them.
Collapse
Affiliation(s)
| | - Danielle Gutman
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Lital Sharvit
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|