1
|
da Silva Neto AM, Wander Montalvão R, Bruneska Gondim Martins D, de Lima Filho JL, Castelletti CHM. A model of key residues interactions for HPVs E1 DNA binding domain-DNA interface based on HPVs residues conservation profiles and molecular dynamics simulations. J Biomol Struct Dyn 2020; 38:3720-3729. [DOI: 10.1080/07391102.2019.1659185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
2
|
Recombination Between High-Risk Human Papillomaviruses and Non-Human Primate Papillomaviruses: Evidence of Ancient Host Switching Among Alphapapillomaviruses. J Mol Evol 2020; 88:453-462. [PMID: 32385625 PMCID: PMC7222169 DOI: 10.1007/s00239-020-09946-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
We use all the currently known 405 Papillomavirus (PV) sequences, 343 curated PV sequences from both humans and animals from the PAVE data base, to analyse the recombination dynamics of these viruses at the whole genome levels. After showing some evidence of human and non-human primate PV recombination, we report a comprehensive recombination analysis of all currently known 82 Alphapapillomaviruses (Alpha-PVs). We carried out an exploratory study and found novel recombination events between High-Risk HPV Types and Macaca fascicularis PV1 (MfPV1), Macaca Fuscata PV2 (MfuPV2) and Pan Paniscus PV1 (PpPV1) Papillomaviruses. This is the first evidence of interactions between PVs from different hosts and hence postulates the likelihood of ancient host switching among Alpha-PVs. Notwithstanding these results should be interpreted with caution because the major and minor parents indicated by RDP4 program are simply the sequences in the alignment that most closely resemble the actual parents. We found statistically significant differences between the phylogenies of the PV sequences with recombination regions and PV sequences without recombination regions using the Shimodaira–Hasegawa phylogenetic incongruence testing. We show that not more than 76MYA Alpha-PVs were in the same biological niche, a pre-requisite for recombination, and as the hosts evolved and diversified, the viruses adapted to specific host niches which eventually led to coevolution with specific hosts before speciation of primate species. Thus providing evidence that in ancient times no earlier than the Cretaceous period of the Mesozoic age, Alpha-PVs recombined and switched hosts, but whether this host switching is occurring currently is unknown. However, a clearer picture of the PVs evolutionary landscape can only be achieved with the incremental discovery of PV sequences, especially from the animal kingdom.
Collapse
|
3
|
Willemsen A, Félez-Sánchez M, Bravo IG. Genome Plasticity in Papillomaviruses and De Novo Emergence of E5 Oncogenes. Genome Biol Evol 2019; 11:1602-1617. [PMID: 31076746 PMCID: PMC6557308 DOI: 10.1093/gbe/evz095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
The clinical presentations of papillomavirus (PV) infections come in many different flavors. While most PVs are part of a healthy skin microbiota and are not associated to physical lesions, other PVs cause benign lesions, and only a handful of PVs are associated to malignant transformations linked to the specific activities of the E5, E6, and E7 oncogenes. The functions and origin of E5 remain to be elucidated. These E5 open reading frames (ORFs) are present in the genomes of a few polyphyletic PV lineages, located between the early and the late viral gene cassettes. We have computationally assessed whether these E5 ORFs have a common origin and whether they display the properties of a genuine gene. Our results suggest that during the evolution of Papillomaviridae, at least four events lead to the presence of a long noncoding DNA stretch between the E2 and the L2 genes. In three of these events, the novel regions evolved coding capacity, becoming the extant E5 ORFs. We then focused on the evolution of the E5 genes in AlphaPVs infecting primates. The sharp match between the type of E5 protein encoded in AlphaPVs and the infection phenotype (cutaneous warts, genital warts, or anogenital cancers) supports the role of E5 in the differential oncogenic potential of these PVs. In our analyses, the best-supported scenario is that the five types of extant E5 proteins within the AlphaPV genomes may not have a common ancestor. However, the chemical similarities between E5s regarding amino acid composition prevent us from confidently rejecting the model of a common origin. Our evolutionary interpretation is that an originally noncoding region entered the genome of the ancestral AlphaPVs. This genetic novelty allowed to explore novel transcription potential, triggering an adaptive radiation that yielded three main viral lineages encoding for different E5 proteins, displaying distinct infection phenotypes. Overall, our results provide an evolutionary scenario for the de novo emergence of viral genes and illustrate the impact of such genotypic novelty in the phenotypic diversity of the viral infections.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS IRD Uni Montpellier), Centre National de la Recherche Scientique (CNRS), Montpellier, France
| | - Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Ignacio G Bravo
- Laboratory MIVEGEC (UMR CNRS IRD Uni Montpellier), Centre National de la Recherche Scientique (CNRS), Montpellier, France
| |
Collapse
|
4
|
Murahwa AT, Nindo F, Onywera H, Meiring TL, Martin DP, Williamson AL. Evolutionary dynamics of ten novel Gamma-PVs: insights from phylogenetic incongruence, recombination and phylodynamic analyses. BMC Genomics 2019; 20:368. [PMID: 31088349 PMCID: PMC6518707 DOI: 10.1186/s12864-019-5735-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Human papillomaviruses (HPVs) are genetically diverse, belonging to five distinct genera: Alpha, Beta, Gamma, Mu and Nu. All papillomaviruses have double stranded DNA genomes that are thought to evolve slowly because they co-opt high-fidelity host cellular DNA polymerases for their replication. Despite extensive efforts to catalogue all the HPV species that infect humans, it is likely that many still remain undiscovered. Here we use the sequences of ten novel Gammapapillomaviruses (Gamma-PVs) characterized in previous studies and related HPVs to analyse the evolutionary dynamics of these viruses at the whole genome and individual gene scales. Results We found statistically significant incongruences between the phylogenetic trees of different genes which imply gene-to-gene variation in the evolutionary processes underlying the diversification of Gamma-PVs. We were, however, only able to detect convincing evidence of a single recombination event which, on its own, cannot explain the observed incongruences between gene phylogenies. The divergence times of the last common ancestor (LCA) of the Alpha, Beta, Mu, Nu and Gamma genera was predicted to have existed between 49.7–58.5 million years ago, before splitting into the five main lineages. The LCA of the Gamma-PVs at this time was predicted to have existed between 45.3 and 67.5 million years ago: approximately at the time when the simian and tarsier lineages of the primates diverged. Conclusion Consequently, we report here phylogenetic tree incongruence without strong evidence of recombination.
Collapse
Affiliation(s)
- Alltalents T Murahwa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fredrick Nindo
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Harris Onywera
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Tracy L Meiring
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Computational Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa. .,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa. .,SAMRC Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
5
|
McBride AA, Münger K. Expert Views on HPV Infection. Viruses 2018; 10:v10020094. [PMID: 29495253 PMCID: PMC5850401 DOI: 10.3390/v10020094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, 33 North Drive, MSC3209, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karl Münger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|