1
|
Chen Y, Li Z, Jiang H, Wang L, Zhang Y, Zhang X, Jiang W, Wang F. Biological evaluation of curdlan sulfate-based nanoparticles in trained immunity enhancement: In vitro and in vivo approaches. Int J Biol Macromol 2024; 281:136208. [PMID: 39362439 DOI: 10.1016/j.ijbiomac.2024.136208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVES Recently, more and more evidences suggest that β-glucans can induce trained immunity and non-specific protections against pathogens. However, most of the reports evaluated the immunological activities of β-glucans through injection route but no nasal inhalation. In this study, the effects of curdlan sulfate-based nanoparticles, CS/O-HTCC on trained immunity through intranasal administration were evaluated. METHODS Macrophages were treated with CS/O-HTCC and the metabolisms of the macrophages were detected. Mice were intranasal administered with CS/O-HTCC for 3 times with a 14 days interval, then the antitumor or infection prevention effects were assessed. RESULTS In vitro, CS/O-HTCC enhanced the macrophage metabolism significantly through upregulating glycolysis (26.1 ± 4.3 mpH/min) and oxidative phosphorylation (36.0 ± 9.0 pmol/min) compared with that of negative group (7.5 ± 2.3 mpH/min and 19.5 ± 4.9 pmol/min). In vivo, CS/O-HTCC inhibited lung metastasis of B16F10 tumor cells and improved the survival time (26.5 days) of the nmice compared with negative group (19.5 days). Moreover, CS/O-HTCC prevented the lung infections by Escherichia coli or Streptococcus pneumoniae (less bacterial residual) and reduced lung damages. CONCLUSIONS CS/O-HTCC can induce trained immunity through enhancing the metabolism of macrophages and enhance the non-specific protection against pathogens through intranasal immunization.
Collapse
Affiliation(s)
- Yipan Chen
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Zuyi Li
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Honglei Jiang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Longkun Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Yuhe Zhang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Xinke Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjie Jiang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
2
|
Sánchez-Morales L, Porras N, García-Seco T, Pérez-Sancho M, Cruz F, Chinchilla B, Barroso-Arévalo S, Diaz-Frutos M, Buendía A, Moreno I, Briones V, Risalde MDLÁ, de la Fuente J, Juste R, Garrido J, Balseiro A, Gortázar C, Rodríguez-Bertos A, Domínguez M, Domínguez L. Neuropathological lesions in intravenous BCG-stimulated K18-hACE2 mice challenged with SARS-CoV-2. Vet Res 2024; 55:71. [PMID: 38822398 PMCID: PMC11143641 DOI: 10.1186/s13567-024-01325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/27/2024] [Indexed: 06/03/2024] Open
Abstract
In the wake of the COVID-19 pandemic caused by SARS-CoV-2, questions emerged about the potential effects of Bacillus Calmette-Guérin (BCG) vaccine on the immune response to SARS-CoV-2 infection, including the neurodegenerative diseases it may contribute to. To explore this, an experimental study was carried out in BCG-stimulated and non-stimulated k18-hACE2 mice challenged with SARS-CoV-2. Viral loads in tissues determined by RT-qPCR, histopathology in brain and lungs, immunohistochemical study in brain (IHC) as well as mortality rates, clinical signs and plasma inflammatory and coagulation biomarkers were assessed. Our results showed BCG-SARS-CoV-2 challenged mice presented higher viral loads in the brain and an increased frequency of neuroinvasion, with the greatest differences observed between groups at 3-4 days post-infection (dpi). Histopathological examination showed a higher severity of brain lesions in BCG-SARS-CoV-2 challenged mice, mainly consisting of neuroinflammation, increased glial cell population and neuronal degeneration, from 5 dpi onwards. This group also presented higher interstitial pneumonia and vascular thrombosis in lungs (3-4 dpi), BCG-SARS-CoV-2 mice showed higher values for TNF-α and D-dimer values, while iNOS values were higher in SARS-CoV-2 mice at 3-4 dpi. Results presented in this study indicate that BCG stimulation could have intensified the inflammatory and neurodegenerative lesions promoting virus neuroinvasion and dissemination in this experimental model. Although k18-hACE2 mice show higher hACE2 expression and neurodissemination, this study suggests that, although the benefits of BCG on enhancing heterologous protection against pathogens and tumour cells have been broadly demonstrated, potential adverse outcomes due to the non-specific effects of BCG should be considered.
Collapse
Affiliation(s)
- Lidia Sánchez-Morales
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Néstor Porras
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain.
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Fátima Cruz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
| | - Blanca Chinchilla
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Animal Production, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Marta Diaz-Frutos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Aránzazu Buendía
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
| | - Inmaculada Moreno
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda km 2, Majadahonda, 28220, Madrid, Spain
| | - Víctor Briones
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - María de Los Ángeles Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Córdoba, Spain
| | - José de la Fuente
- SaBio Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ramón Juste
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Joseba Garrido
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda km 2, Majadahonda, 28220, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
- Real Academia de Doctores de España, C. de San Bernardo, 49, 28015, Madrid, Spain
| |
Collapse
|
3
|
Baydemir I, Dulfer EA, Netea MG, Domínguez-Andrés J. Trained immunity-inducing vaccines: Harnessing innate memory for vaccine design and delivery. Clin Immunol 2024; 261:109930. [PMID: 38342415 DOI: 10.1016/j.clim.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
While the efficacy of many current vaccines is well-established, various factors can diminish their effectiveness, particularly in vulnerable groups. Amidst emerging pandemic threats, enhancing vaccine responses is critical. Our review synthesizes insights from immunology and epidemiology, focusing on the concept of trained immunity (TRIM) and the non-specific effects (NSEs) of vaccines that confer heterologous protection. We elucidate the mechanisms driving TRIM, emphasizing its regulation through metabolic and epigenetic reprogramming in innate immune cells. Notably, we explore the extended protective scope of vaccines like BCG and COVID-19 vaccines against unrelated infections, underscoring their role in reducing neonatal mortality and combating diseases like malaria and yellow fever. We also highlight novel strategies to boost vaccine efficacy, incorporating TRIM inducers into vaccine formulations to enhance both specific and non-specific immune responses. This approach promises significant advancements in vaccine development, aiming to improve global public health outcomes, especially for the elderly and immunocompromised populations.
Collapse
Affiliation(s)
- Ilayda Baydemir
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, the Netherlands
| | - Elisabeth A Dulfer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, the Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, the Netherlands
| |
Collapse
|
5
|
Kowalewicz-Kulbat M, Locht C. Recombinant BCG to Enhance Its Immunomodulatory Activities. Vaccines (Basel) 2022; 10:827. [PMID: 35632582 PMCID: PMC9143156 DOI: 10.3390/vaccines10050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-induced innate and adaptive immune responses. Most studies limited their investigations to the description of T cell immune responses that were modified by the genetic modifications of BCG. Some studies also reported improved protection by recombinant BCG against tuberculosis or enhanced therapeutic efficacy against various cancer forms or allergies. However, so far, these investigations have been limited to mouse models, and the prophylactic or therapeutic potential of recombinant BCG strains has not yet been illustrated in other species, including humans, with the exception of a genetically modified BCG strain that is now in late-stage clinical development as a vaccine against tuberculosis. In this review, we provide an overview of the different molecular engineering strategies adopted over the last three decades in order to enhance the immune-modulatory potential of BCG.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University Lille, CNRS, Inserm, F-59000 Lille, France
| |
Collapse
|
6
|
Moraes L, Trentini MM, Fousteris D, Eto SF, Chudzinski-Tavassi AM, Leite LCDC, Kanno AI. CRISPR/Cas9 Approach to Generate an Auxotrophic BCG Strain for Unmarked Expression of LTAK63 Adjuvant: A Tuberculosis Vaccine Candidate. Front Immunol 2022; 13:867195. [PMID: 35432328 PMCID: PMC9005855 DOI: 10.3389/fimmu.2022.867195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis is one of the deadliest infectious diseases and a huge healthcare burden in many countries. New vaccines, including recombinant BCG-based candidates, are currently under evaluation in clinical trials. Our group previously showed that a recombinant BCG expressing LTAK63 (rBCG-LTAK63), a genetically detoxified subunit A of heat-labile toxin (LT) from Escherichia coli, induces improved protection against Mycobacterium tuberculosis (Mtb) in mouse models. This construct uses a traditional antibiotic resistance marker to enable heterologous expression. In order to avoid the use of these markers, not appropriate for human vaccines, we used CRISPR/Cas9 to generate unmarked mutations in the lysA gene, thus obtaining a lysine auxotrophic BCG strain. A mycobacterial vector carrying lysA and ltak63 gene was used to complement the auxotrophic BCG which co-expressed the LTAK63 antigen (rBCGΔ-LTAK63) at comparable levels to the original construct. The intranasal challenge with Mtb confirmed the superior protection induced by rBCGΔ-LTAK63 compared to wild-type BCG. Furthermore, mice immunized with rBCGΔ-LTAK63 showed improved lung function. In this work we showed the practical application of CRISPR/Cas9 in the tuberculosis vaccine development field.
Collapse
Affiliation(s)
- Luana Moraes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan (USP-IPT-IB), São Paulo, Brazil
| | | | - Dimitrios Fousteris
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Silas Fernandes Eto
- Development and Innovation Laboratory, Instituto Butantan, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Development and Innovation Laboratory, Instituto Butantan, São Paulo, Brazil.,Center of Excellence in New Target Discovery (CENTD) Special Laboratory, Instituto Butantan, São Paulo, Brazil
| | | | - Alex Issamu Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|