1
|
Sáez-Peñataro J, Calvo G, Bascuas J, Mosquera MM, Marcos MÁ, Egri N, Torres F. Association between Reactogenicity and Immunogenicity in a Vaccinated Cohort with Two mRNA SARS-CoV-2 Vaccines at a High-Complexity Reference Hospital: A Post Hoc Analysis on Immunology Aspects of a Prospective Cohort Study. Vaccines (Basel) 2024; 12:665. [PMID: 38932394 PMCID: PMC11209257 DOI: 10.3390/vaccines12060665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Enhancing our comprehension of mRNA vaccines may facilitate the future design of novel vaccines aimed at augmenting immune protection while minimising reactogenic responses. Before this design is carried out, it is important to determine whether adaptive immunity correlates with the reactogenicity profile of vaccines. We studied a large cohort that was vaccinated with mRNA vaccines to answer this question. This was an observational study with real-world data. Reactogenicity data were obtained from the VigilVacCOVID study. Immunogenicity (humoral and cellular) data were retrieved from health records. One main population (n = 215) and two subpopulations were defined (subpopulation 1, n = 3563; subpopulation 2, n = 597). Sensitivity analyses were performed with subpopulations 1 and 2 to explore the consistency of results. We analysed the association of the intensity and types of adverse reactions with the development and quantity of elicited antibody titres. As an exploratory analysis in subpopulation 1, we assessed the association between reactogenicity and cellular immunogenicity. A higher incidence of fever, malaise, and myalgia including severe cases was significantly associated with the development and quantity of positive antibody titres. No significant findings were observed with cellular immunity. We observed a positive association between immunogenicity and reactogenicity. These findings can be relevant for the future development of our understanding of how mRNA vaccines function.
Collapse
Affiliation(s)
- Joaquín Sáez-Peñataro
- Medicines Division, Department of Clinical Pharmacology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (G.C.); (J.B.)
| | - Gonzalo Calvo
- Medicines Division, Department of Clinical Pharmacology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (G.C.); (J.B.)
| | - Juan Bascuas
- Medicines Division, Department of Clinical Pharmacology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (G.C.); (J.B.)
| | - Maria Mar Mosquera
- Microbiology Department, Hospital Clinic, Institute for Global Health, University of Barcelona, 08036 Barcelona, Spain; (M.M.M.); (M.Á.M.)
| | - Maria Ángeles Marcos
- Microbiology Department, Hospital Clinic, Institute for Global Health, University of Barcelona, 08036 Barcelona, Spain; (M.M.M.); (M.Á.M.)
- CIBERINF, 28029 Madrid, Spain
| | - Natalia Egri
- Immunology Department, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Ferran Torres
- Department of Biostatistics, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| |
Collapse
|
2
|
Speletas M, Voulgaridi I, Bogogiannidou Z, Sarrou S, Kyritsi MA, Theodoridou A, Dadouli K, Matziri A, Vontas A, Pappa D, Konstantinou AK, Tsigalou C, Kalala F, Mouchtouri VA, Hadjichristodoulou C. Dynamics of Anti-SARS-CoV-2 IgA and IgG Responses and Their Protective Effect against Fatal Disease after Booster COVID-19 Vaccination. Vaccines (Basel) 2023; 12:12. [PMID: 38276671 PMCID: PMC10819547 DOI: 10.3390/vaccines12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
During the post-coronavirus disease (COVID-19) era, a primary question is whether booster vaccination is effective against severe COVID-19 and should be recommended, particularly to individuals at high risk for severe disease (i.e., the elderly or those with additional severe comorbidities). From December 2020 to February 2023, a cohort study was conducted to estimate IgG and IgA immunogenicity and the dynamics of booster mono- and bivalent COVID-19 mRNA vaccines in 260 individuals (male/female: 114/146, median age: 68 years, interquartile range (IQR) = 31) who initially received either mRNA (218) or adenovirus-vector-based vaccines (42). Participants were followed until the 90th day after the third booster dose. Our cohort study indicated a beneficial effect of booster vaccination on the magnitude of IgG and IgA severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies. We found that second and third booster doses were more protective than one against fatal disease (p = 0.031, OR 0.08). In conclusion, booster COVID-19 vaccination should be strongly recommended, especially to individuals at high risk for severe/fatal disease.
Collapse
Affiliation(s)
- Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (M.S.); (S.S.); (A.T.); (F.K.)
| | - Ioanna Voulgaridi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (Z.B.); (M.A.K.); (K.D.); (A.M.); (A.V.); (V.A.M.)
| | - Zacharoula Bogogiannidou
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (Z.B.); (M.A.K.); (K.D.); (A.M.); (A.V.); (V.A.M.)
| | - Styliani Sarrou
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (M.S.); (S.S.); (A.T.); (F.K.)
| | - Maria A. Kyritsi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (Z.B.); (M.A.K.); (K.D.); (A.M.); (A.V.); (V.A.M.)
| | - Aikaterini Theodoridou
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (M.S.); (S.S.); (A.T.); (F.K.)
| | - Katerina Dadouli
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (Z.B.); (M.A.K.); (K.D.); (A.M.); (A.V.); (V.A.M.)
| | - Alexia Matziri
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (Z.B.); (M.A.K.); (K.D.); (A.M.); (A.V.); (V.A.M.)
| | - Alexandros Vontas
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (Z.B.); (M.A.K.); (K.D.); (A.M.); (A.V.); (V.A.M.)
| | - Dimitra Pappa
- Department of Pathology, Faculty of Medicine, University Hospital of Larissa, 41500 Larissa, Greece;
| | | | - Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece;
| | - Fani Kalala
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (M.S.); (S.S.); (A.T.); (F.K.)
| | - Varvara A. Mouchtouri
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (Z.B.); (M.A.K.); (K.D.); (A.M.); (A.V.); (V.A.M.)
| | - Christos Hadjichristodoulou
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (Z.B.); (M.A.K.); (K.D.); (A.M.); (A.V.); (V.A.M.)
| |
Collapse
|
3
|
Galanopoulos AP, Bogogiannidou Z, Sarrou S, Voulgaridi I, Mouchtouri VA, Hadjichristodoulou C, Speletas M. Molecular Analysis of Hot-Spot Regions of ACE2 and TMPRSS2 in SARS-CoV-2 "Invulnerable" Individuals. Cureus 2023; 15:e43344. [PMID: 37700940 PMCID: PMC10493175 DOI: 10.7759/cureus.43344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is characterized by a wide clinical variability, ranging from acute illness that may require hospitalization and intensive care unit management to mild and even asymptomatic disease. A more exciting phenomenon is the presence of individuals who came into close contact with COVID-19 patients without prophylaxis but were never infected by SARS-CoV-2, even as an asymptomatic disease. Aims We describe four such "invulnerable" individuals and explore if they carry genetic defects in hot-spot regions of ACE2 and TMPRSS2 genes, which are responsible for virus entry into the host cells. Materials and methods Anti-S humoral and cellular immune responses were evaluated in the study participants through chemiluminescent microparticle immunoassay (CMIA) and enzyme-linked immunosorbent assay (ELISA) and interferon (IFN-γ) secretion measurement, respectively. Moreover, the hot-spot locations of ACE2 and TMPRSS2 were analyzed by polymerase chain reaction (PCR) sequencing in order to investigate potential genetic defects. Results No pathogenic genetic defects in ACE2 and TMPRSS2 were identified in the study participants. However, a functional polymorphism (rs12329760) located in exon 6 of the TMPRSS2 gene was detected in two of the four participants. In addition, it is worth noting that two individuals displayed adequate humoral and cellular immune responses after COVID-19 vaccination several months after their initial exposure to SARS-CoV-2. Conclusions We suggest that ACE2 and TMPRSS2 genes are not responsible for the "invulnerable" phenotype against COVID-19.
Collapse
Affiliation(s)
- Achilleas P Galanopoulos
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, GRC
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, GRC
| | - Zacharoula Bogogiannidou
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, GRC
| | - Styliani Sarrou
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, GRC
| | - Ioanna Voulgaridi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, GRC
| | - Varvara A Mouchtouri
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, GRC
| | | | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, GRC
| |
Collapse
|
4
|
Neutralizing Antibody Responses Elicited by Inactivated Whole Virus and Genetic Vaccines against Dominant SARS-CoV-2 Variants during the Four Epidemic Peaks of COVID-19 in Colombia. Vaccines (Basel) 2022; 10:vaccines10122144. [PMID: 36560554 PMCID: PMC9786731 DOI: 10.3390/vaccines10122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Several SARS-CoV-2 variants of concern (VOC) and interest (VOI) co-circulate in Colombia, and determining the neutralizing antibody (nAb) responses is useful to improve the efficacy of COVID-19 vaccination programs. Thus, nAb responses against SARS-CoV-2 isolates from the lineages B.1.111, P.1 (Gamma), B.1.621 (Mu), AY.25.1 (Delta), and BA.1 (Omicron), were evaluated in serum samples from immunologically naïve individuals between 9 and 13 weeks after receiving complete regimens of CoronaVac, BNT162b2, ChAdOx1, or Ad26.COV2.S, using microneutralization assays. An overall reduction of the nAb responses against Mu, Delta, and Omicron, relative to B.1.111 and Gamma was observed in sera from vaccinated individuals with BNT162b2, ChAdOx1, and Ad26.COV2.S. The seropositivity rate elicited by all the vaccines against B.1.111 and Gamma was 100%, while for Mu, Delta, and Omicron ranged between 32 to 87%, 65 to 96%, and 41 to 96%, respectively, depending on the vaccine tested. The significant reductions in the nAb responses against the last three dominant SARS-CoV-2 lineages in Colombia indicate that booster doses should be administered following complete vaccination schemes to increase the nAb titers against emerging SARS-CoV-2 lineages.
Collapse
|
5
|
Comparison of the Immune Response in Vaccinated People Positive and Negative to SARS-CoV-2 Employing FTIR Spectroscopy. Cells 2022; 11:cells11233884. [PMID: 36497139 PMCID: PMC9740721 DOI: 10.3390/cells11233884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Various immunopathological events characterize the systemic acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Moreover, it has been reported that coronavirus disease 2019 (COVID-19) vaccination and infection by SARS-CoV-2 induce humoral immunity mediated by B-cell-derived antibodies and cellular immunity mediated by T cells and memory B cells. Immunoglobulins, cytokines, and chemokines play an important role in shaping immunity in response to infection and vaccination. Furthermore, different vaccines have been developed to prevent COVID-19. Therefore, this research aimed to analyze and compare Fourier-transform infrared (FTIR) spectra of vaccinated people with a positive (V-COVID-19 group) or negative (V-Healthy group) real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) test, evaluating the immunoglobulin and cytokine content as an immunological response through FTIR spectroscopy. Most individuals that integrated the V-Healthy group (88.1%) were asymptomatic; on the contrary, only 28% of the V-COVID-19 group was asymptomatic. Likewise, 68% of the V-COVID-19 group had at least one coexisting illness. Regarding the immunological response analyzed through FTIR spectroscopy, the V-COVID-19 group showed a greater immunoglobulins G, A, and M (IgG, IgA, and IgM) content, as well as the analyzed cytokines interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-ɑ), and interleukins 1β, 6, and 10 (IL-1β, IL-6, and IL-10). Therefore, we can state that it was possible to detect biochemical changes through FTIR spectroscopy associated with COVID-19 immune response in vaccinated people.
Collapse
|
6
|
Sarrigeorgiou I, Moschandreou D, Dimitriadis A, Tsinti G, Sotiropoulou E, Ntoukaki E, Eliadis P, Backovic M, Labropoulou S, Escriou N, Pouliakis A, Giannopoulou G, Gaitanarou E, Lazaridis K, Mentis A, Mamalaki A, Grouzi E, Lymberi P. Combined monitoring of IgG and IgA anti-Spike and anti-Receptor binding domain long term responses following BNT162b2 mRNA vaccination in Greek healthcare workers. PLoS One 2022; 17:e0277827. [PMID: 36409702 PMCID: PMC9678302 DOI: 10.1371/journal.pone.0277827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Studies on the humoral response to homologous BNT162b2 mRNA-vaccination focus mainly on IgG antibody dynamics, while long-term IgA kinetics are understudied. Herein, kinetics of IgG and IgA levels against trimeric-Spike (S) and Receptor-Binding-Domain (RBD) were evaluated by in-house ELISAs in 146 two-dose vaccinated Greek healthcare workers (HCWs) in a 9-month period at six time points (up to 270 days after the first dose). The effect of a homologous booster third dose was also studied and evaluated. The peak of immune response was observed 21 days after the second dose; 100% seroconversion rate for anti-S and anti-RBD IgG, and 99.7% and 96.3% respectively for IgA. IgG antibody levels displayed higher increase compared to IgA. Declining but persistent anti-SARS-CoV-2 antibody levels were detected 9 months after vaccination; IgG and IgA anti-S levels approached those after the first dose, while a more rapid reduction rate for anti-RBD antibodies led to significantly lower levels for both classes, supporting the need for a booster dose. Indeed, a homologous booster third dose resulted in enhanced levels of anti-S of both classes, whereas anti-RBD didn't exceed the peak levels after the second dose. Previous SARS-CoV-2 infection, flu vaccination, BMI<35 and the occurrence of an adverse event upon vaccination, were associated with higher IgG antibody levels over time, which however were negatively affected by age increase and the presence of chronic diseases. Overall, after concurrently using the S and RBD target-antigens in in-house ELISAs, we report in addition to IgG, long-term persistence of IgA antibodies. Regarding antibody levels, homologous mRNA vaccination gives rise to an effective anti-viral protection up to 9 months negatively correlated to age. Considering that COVID-19 is still a matter of public concern, booster vaccine doses remain critical to vulnerable individuals.
Collapse
Affiliation(s)
- Ioannis Sarrigeorgiou
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute (HPI), Athens, Greece
| | - Dimitra Moschandreou
- Department of Transfusion Service and Clinical Hemostasis, "Saint Savvas" Oncology Hospital, Athens, Greece
| | | | - Gerasimina Tsinti
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute (HPI), Athens, Greece
| | | | - Eleni Ntoukaki
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute (HPI), Athens, Greece
| | - Petros Eliadis
- Biotechnology Unit, HPI, Athens, Greece
- Laboratory of Molecular Biology and Immunobiotechnology, HPI, Athens, Greece
| | - Marija Backovic
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, 75015, France
| | | | - Nicolas Escriou
- Innovation Lab, Vaccines, Department of Virology, Institut Pasteur, Paris, 75015, France
| | - Abraham Pouliakis
- Second Department of Pathology, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Athens, Greece
| | - Georgia Giannopoulou
- Department of Transfusion Service and Clinical Hemostasis, "Saint Savvas" Oncology Hospital, Athens, Greece
| | - Eleni Gaitanarou
- Department of Transfusion Service and Clinical Hemostasis, "Saint Savvas" Oncology Hospital, Athens, Greece
| | - Konstantinos Lazaridis
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute (HPI), Athens, Greece
| | | | - Avgi Mamalaki
- Biotechnology Unit, HPI, Athens, Greece
- Laboratory of Molecular Biology and Immunobiotechnology, HPI, Athens, Greece
| | - Elisavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, "Saint Savvas" Oncology Hospital, Athens, Greece
| | - Peggy Lymberi
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute (HPI), Athens, Greece
| |
Collapse
|
7
|
The rs1883832 Polymorphism (CD40-1C>T) Affects the Intensity of IgA Responses after BNT162b2 Vaccination. Int J Mol Sci 2022; 23:ijms232214056. [PMID: 36430533 PMCID: PMC9697403 DOI: 10.3390/ijms232214056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of coronavirus disease 2019 (COVID-19) vaccination strategies is affected by several factors, including the genetic background of the host. In our study, we evaluated the contribution of the functional polymorphism rs1883832 affecting the Kozak sequence of the TNFSF5 gene (c.-1C>T), encoding CD40, to humoral immune responses after vaccination with the spike protein of SARS-CoV-2. The rs1883832 polymorphism was analyzed by PCR-RFLP in 476 individuals (male/female: 216/260, median age: 55.0 years, range: 20−105) of whom 342 received the BNT162b2 mRNA vaccine and 134 received the adenovirus-based vector vaccines (67 on ChAdOx1-nCoV-19 vaccine, 67 on Ad.26.COV2.S vaccine). The IgG and IgA responses were evaluated with chemiluminescent microparticle and ELISA assays on days 21, 42, and 90 after the first dose. The T allele of the rs1883832 polymorphism (allele frequency: 32.8%) was significantly associated with lower IgA levels and represented, as revealed by multivariable analysis, an independent risk factor for reduced anti-spike protein IgA levels on days 42 and 90 following BNT162b2 mRNA vaccination. Similar to serum anti-spike IgA levels, a trend of lower anti-spike IgA concentrations in saliva was found in individuals with the T allele of rs1883832. Finally, the intensity of IgA and IgG responses on day 42 significantly affected the prevalence of COVID-19 after vaccination. The rs1883832 polymorphism may be used as a molecular predictor of the intensity of anti-spike IgA responses after BNT162b2 mRNA vaccination.
Collapse
|
8
|
Mancuso R, Agostini S, Citterio LA, Chiarini D, Santangelo MA, Clerici M. Systemic and Mucosal Humoral Immune Response Induced by Three Doses of the BNT162b2 SARS-CoV-2 mRNA Vaccines. Vaccines (Basel) 2022; 10:vaccines10101649. [PMID: 36298514 PMCID: PMC9610882 DOI: 10.3390/vaccines10101649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
BNT162b2 (BioNTech/Pfizer) was the first SARS-CoV-2 mRNA vaccine approved by the European Medicines Agency. We monitored the long-term humoral responses of healthcare workers (HCWs) who received three vaccine doses. A total of 59 healthcare workers were studied: 47 were never SARS-CoV-2-infected (naïve-HCWs), and 12 (infected-HCWs) recovered from COVID-19 before the first vaccine. Serum and saliva were collected at baseline (before the first dose), just before the second dose, 1, 3, 6, and 9 months after the second dose, and 10 days after the third vaccine. SARS-CoV-2-specific IgG and IgA were evaluated in serum and saliva, respectively, and the presence of neutralizing antibodies (NAb) was analyzed in serum. SARS-CoV-2-specific IgG peaked one month after the second vaccine in naïve-HCWs but right before this timepoint in infected-HCWs. IgG titers significantly decreased during follow-up and at month 9 were still detectable in 50% of naïve-HCWs and 90% of infected-HCWs. NAb were significantly decreased 6 months after the second vaccine in naïve-HCWs and 9 months after this dose in infected-HCWs. Salivary SARS-CoV-2-specific IgA titers were significantly higher in infected-HCWs and were undetectable 9 months after the second vaccine in 43% of the naïve-HCWs alone. The third vaccine greatly increased humoral IgG and mucosal IgA in both groups. Two BNT162b2 doses induced strong systemic and humoral immune responses; to note, these responses weakened over time, although they are more prolonged in individuals who had recovered from COVID-19. The third vaccine dose quickly boosts systemic and mucosal humoral responses.
Collapse
Affiliation(s)
- Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Simone Agostini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Correspondence: ; Tel.: +39-0240308375
| | | | - Debora Chiarini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
9
|
Intensity of Humoral Immune Responses, Adverse Reactions, and Post-Vaccination Morbidity after Adenovirus Vector-Based and mRNA Anti-COVID-19 Vaccines. Vaccines (Basel) 2022; 10:vaccines10081268. [PMID: 36016156 PMCID: PMC9416671 DOI: 10.3390/vaccines10081268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to compare mRNA vaccine BNT162b2 with adenovirus vector- based vaccines in terms of presence of adverse reactions, immunogenicity, and protection against COVID-19. A total of 270 individuals were enrolled, of which 135 were vaccinated with adenovirus vector-based vaccines and compared with 135 age- and sex-matched participants who received the BNT162b2 mRNA vaccine. Serum sampling was performed on all participants on days 21, 42, 90, and 180 following the first dose, to evaluate anti-spike IgG and IgA responses. Antibodies were quantified by chemiluminescent microplate and ELISA assays. We demonstrate that both mRNA and adenovirus vector-based vaccines caused mild side-effects and were effective in inducing adequate antibody responses against SARS-CoV-2, although BNT162b2 was superior concerning the intensity of antibody responses and protection against severe COVID-19. Moreover, we identify that IgG and IgA responses depended primarily on both history of previous COVID-19 infection and vaccination platform used, with individuals immunized with a single-dose vaccine having lower antibody titers over time. Lastly, all vaccine platforms had limited side-effects, with the most frequent pain at the injection site. Our results provide useful information regarding antibody responses after vaccination with different vaccine platforms, which can be useful for public health vaccination strategies.
Collapse
|