1
|
Valcarce V, Stafford LS, Neu J, Parker L, Vicuna V, Cross T, D'Agati O, Diakite S, Haley A, Feigenbaum J, Al Mahmoud MY, Visvalingam A, Cacho N, Kosik I, Yewdell JW, Larkin J. COVID-19 booster enhances IgG mediated viral neutralization by human milk in vitro. Front Nutr 2024; 11:1289413. [PMID: 38406184 PMCID: PMC10884187 DOI: 10.3389/fnut.2024.1289413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Background Facilitated by the inability to vaccinate, and an immature immune system, COVID-19 remains a leading cause of death among children. Vaccinated lactating mothers produce specific SARS-CoV-2 antibodies in their milk, capable of neutralizing the virus in vitro. Our objective for this study is to assess the effect of COVID-19 booster dose on SARS-CoV-2 antibody concentration and viral neutralization in milk, plasma, and infant stool. Methods Thirty-nine mothers and 25 infants were enrolled from December 2020 to May 2022. Milk, maternal plasma, and infants' stool were collected at various time-points up to 12 months following mRNA COVID-19 vaccination. A subgroup of 14 mothers received a booster dose. SARS-CoV-2 antibody levels and their neutralization capacities were assessed. Results Booster vaccination led to significantly higher IgG levels within human milk and breastfed infants' stool. In vitro neutralization of VSV-gfp-SARS-CoV-2-S-gp, a laboratory safe SARS-CoV-2 like pseudovirus, improved following the booster, with a 90% increase in plasma neutralization and a 60% increase in milk neutralization. We found that post-booster neutralization by human milk was highly correlated to SARS-CoV-2 IgG level. In support of our correlation result, Protein G column depletion of IgG in milk yielded a significant reduction in viral neutralization (p = 0.04). Discussion The substantial increase in neutralizing IgG levels in milk and breastfed infants' stool post-booster, coupled with the decrease in milk neutralization capabilities upon IgG depletion, underscores the efficacy of booster doses in augmenting the immune response against SARS-CoV-2 in human milk.
Collapse
Affiliation(s)
- Vivian Valcarce
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lauren Stewart Stafford
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Leslie Parker
- College of Nursing, University of Florida, Gainesville, FL, United States
| | - Valeria Vicuna
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Tyler Cross
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Olivia D'Agati
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Sisse Diakite
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Addison Haley
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jake Feigenbaum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Mahmoud Y. Al Mahmoud
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Anjali Visvalingam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Nicole Cacho
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, University of California Davis, Sacramento, CA, United States
| | - Ivan Kosik
- Laboratory of Viral Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Ismail S, Unger S, Budylowski P, Poutanen S, Yau Y, Jenkins C, Anwer S, Christie-Holmes N, Kiss A, Mazzulli T, Johnstone J, McGeer A, Whittle W, Parvez B, Gray-Owen SD, Stone D, O'Connor DL. SARS-CoV-2 antibodies and their neutralizing capacity against live virus in human milk after COVID-19 infection and vaccination: prospective cohort studies. Am J Clin Nutr 2024; 119:485-495. [PMID: 38309831 DOI: 10.1016/j.ajcnut.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND There is limited understanding of the impact of coronavirus disease 2019 (COVID-19) infection and vaccination type and interval on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human milk antibodies and their neutralizing capacity. OBJECTIVES These cohort studies aimed to determine the presence of antibodies and live virus neutralizing capacity in milk from females infected with COVID-19, unexposed milk bank donors, and vaccinated females and examine impacts of vaccine interval and type. METHODS Milk was collected from participants infected with COVID-19 during pregnancy or lactation (Cohort-1) and milk bank donors (Cohort-2) from March 2020-July 2021 at 3 sequential 4-wk intervals and COVID-19 vaccinated participants with varying dose intervals (Cohort-3) (January-October 2021). Cohort-1 and Cohort-3 were recruited from Sinai Health (patients) and through social media. Cohort-2 included Ontario Milk Bank donors. Milk was examined for SARS-CoV-2 antibodies and live virus neutralization. RESULTS Of females with COVID-19, 53% (Cohort-1, n = 55) had anti-SARS-CoV-2 IgA antibodies in ≥1 milk sample. IgA+ samples (40%) were more likely neutralizing than IgA- samples (odds ratio [OR]: 2.18; 95% confidence interval [CI]: 1.03, 4.60; P = 0.04); however, 25% of IgA- samples were neutralizing. Both IgA positivity and neutralization decreased ∼6 mo after symptom onset (0-100 compared with 201+ d: IgA OR: 14.30; 95% CI: 1.08, 189.89; P = 0.04; neutralizing OR: 4.30; 95% CI: 1.55, 11.89; P = 0.005). Among milk bank donors (Cohort-2, n = 373), 4.3% had IgA antibodies; 23% of IgA+ samples were neutralizing. Vaccination (Cohort-3, n = 60) with mRNA-1273 and shorter vaccine intervals (3 to <6 wk) resulted in higher IgA and IgG than BNT162b2 (P < 0.04) and longer intervals (6 to <16 wk) (P≤0.02), respectively. Neutralizing capacity increased postvaccination (P = 0.04) but was not associated with antibody positivity. CONCLUSIONS SARS-CoV-2 infection and vaccination (type and interval) impacted milk antibodies; however, antibody presence did not consistently predict live virus neutralization. Although human milk is unequivocally the best way to nourish infants, guidance on protection to infants following maternal infection/vaccination may require more nuanced messaging. This study was registered at clinicaltrials.gov as NCT04453969 and NCT04453982.
Collapse
Affiliation(s)
- Samantha Ismail
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Rogers Hixon Ontario Human Milk Bank, Sinai Health System, Toronto, Canada; Paediatrics, Sinai Health System, Toronto, Canada
| | - Patrick Budylowski
- Combined Containment Level 3 Unit, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Susan Poutanen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | - Yvonne Yau
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Carleigh Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Rogers Hixon Ontario Human Milk Bank, Sinai Health System, Toronto, Canada
| | - Shaista Anwer
- Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | | | - Alex Kiss
- Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Canada; Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Canada
| | - Tony Mazzulli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | - Jennie Johnstone
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | - Allison McGeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | - Wendy Whittle
- Obstetrics and Gynecology, Sinai Health System, Toronto, Canada
| | | | - Scott D Gray-Owen
- Combined Containment Level 3 Unit, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Debbie Stone
- Rogers Hixon Ontario Human Milk Bank, Sinai Health System, Toronto, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Rogers Hixon Ontario Human Milk Bank, Sinai Health System, Toronto, Canada; Paediatrics, Sinai Health System, Toronto, Canada; The Hospital for Sick Children Research Institute, Toronto, Canada.
| |
Collapse
|
3
|
Shamabadi NS, Bagasra AB, Pawar S, Bagasra O. Potential use of endemic human coronaviruses to stimulate immunity against pathogenic SARS-CoV-2 and its variants. Libyan J Med 2023; 18:2209949. [PMID: 37186902 DOI: 10.1080/19932820.2023.2209949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes significant morbidity and mortality in humans, there is a wide range of disease outcomes following virus exposures. Some individuals are asymptomatic while others develop complications within a few days after infection that can lead to fatalities in a smaller portion of the population. In the present study, we have analyzed the factors that may influence the outcome of post-SARS-CoV-2 infection. One factor that may influence virus control is pre-existing immunity conferred by an individual's past exposures to endemic coronaviruses (eCOVIDs) which cause the common cold in humans and generally, most children are exposed to one of the four eCOVIDs before 2 years of age. Here, we have carried out protein sequence analyses to show the amino acid homologies between the four eCOVIDs (i.e. OC43, HKU1, 229E, and NL63) as well as examining the cross-reactive immune responses between SARS-CoV-2 and eCOVIDs by epidemiologic analyses. Our results show that the nations where continuous exposures to eCOVIDs are very high due to religious and traditional causes showed significantly lower cases and low mortality rates per 100,000. We hypothesize that in the areas of the globe where Muslims are in majority and due to religious practices are regularly exposed to eCOVIDs they show a significantly lower infection, as well as mortality rate, and that is due to pre-existing cross-immunity against SARS-CoV-2. This is due to cross-reactive antibodies and T-cells that recognize SARS-CoV-2 antigens. We also have reviewed the current literature that has also proposed that human infections with eCOVIDs impart protection against disease caused by subsequent exposure to SARS-CoV-2. We propose that a nasal spray vaccine consisting of selected genes of eCOVIDs would be beneficial against SARS-CoV-2 and other pathogenic coronaviruses.
Collapse
Affiliation(s)
| | - Anisah B Bagasra
- Department of Psychology, Kennesaw State University, Kennesaw, GA, USA
| | - Shrikant Pawar
- Department of Computer Science and Biology, Claflin University, SC, USA
| | - Omar Bagasra
- South Carolina Center for Biotechnology, Claflin University, Orangeburg, SC, USA
| |
Collapse
|
4
|
Lawal BJ, Gallagher KE, Kitonsa J, Tindanbil D, Kasonia K, Drammeh A, Lowe B, Mukadi-Bamuleka D, Patterson C, Greenwood B, Samai M, Leigh B, Tetteh KKA, Ruzagira E, Watson-Jones D, Kavunga-Membo H. Prevalence of immunoglobulin G and M to SARS-CoV-2 and other human coronaviruses in The Democratic Republic of Congo, Sierra Leone, and Uganda: A longitudinal study. Int J Infect Dis 2023; 131:183-192. [PMID: 37001799 PMCID: PMC10060023 DOI: 10.1016/j.ijid.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVES We assessed the prevalence of immunoglobulin G (IgG) and IgM against four endemic human coronaviruses and two SARS-CoV-2 antigens among vaccinated and unvaccinated staff at health care centers in Uganda, Sierra Leone, and the Democratic Republic of Congo. METHODS The government health facility staff who had patient contact in Goma (Democratic Republic of Congo), Kambia District (Sierra Leone), and Masaka District (Uganda) were enrolled. Questionnaires and blood samples were collected at three time points over 4 months. Blood samples were analyzed with the Luminex MAGPIXⓇ. RESULTS Among unvaccinated participants, the prevalence of IgG/IgM antibodies against SARS-CoV-2 receptor-binding domain or nucleocapsid protein at enrollment was 70% in Goma (138 of 196), 89% in Kambia (112 of 126), and 89% in Masaka (190 of 213). The IgG responses against endemic human coronaviruses at baseline were not associated with SARS-CoV-2 sero-acquisition during follow-up. Among the vaccinated participants, those who had evidence of SARS-CoV-2 IgG/IgM at baseline tended to have higher IgG responses to vaccination than those who were SARS-CoV-2 seronegative at baseline, controlling for the time of sample collection since vaccination. CONCLUSION The high levels of natural immunity and hybrid immunity should be incorporated into both vaccination policies and prediction models of the impact of subsequent waves of infection in these settings.
Collapse
Affiliation(s)
| | - Katherine E Gallagher
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom; KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | | | - Daniel Tindanbil
- LSHTM-COMAHS Research Partnership, Kambia District, Sierra Leone
| | - Kambale Kasonia
- LSHTM-INRB Research Partnership, Goma, Democratic Republic of the Congo
| | - Abdoulie Drammeh
- LSHTM-COMAHS Research Partnership, Kambia District, Sierra Leone
| | - Brett Lowe
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Daniel Mukadi-Bamuleka
- Laboratoire Rodolphe Merieux-Institute National Research biomedical (INRB), Goma, Democratic Republic of the Congo
| | - Catriona Patterson
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Brian Greenwood
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Mohamed Samai
- University of Sierra Leone College of Medicine and Allied Health Sciences (COMAHS), Freetown, Sierra Leone
| | - Bailah Leigh
- University of Sierra Leone College of Medicine and Allied Health Sciences (COMAHS), Freetown, Sierra Leone
| | - Kevin K A Tetteh
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | | | - Deborah Watson-Jones
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Hugo Kavunga-Membo
- Laboratoire Rodolphe Merieux-Institute National Research biomedical (INRB), Goma, Democratic Republic of the Congo
| |
Collapse
|
5
|
Davis SK, Selva KJ, Lopez E, Haycroft ER, Lee WS, Wheatley AK, Juno JA, Adair A, Pymm P, Redmond SJ, Gherardin NA, Godfrey DI, Tham W, Kent SJ, Chung AW. Heterologous SARS-CoV-2 IgA neutralising antibody responses in convalescent plasma. Clin Transl Immunology 2022; 11:e1424. [PMID: 36299410 PMCID: PMC9588388 DOI: 10.1002/cti2.1424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/21/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Following infection with SARS-CoV-2, virus-specific antibodies are generated, which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. By comparison, other antibody isotypes including IgA have been poorly characterised. METHODS Here, we characterised plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. RESULTS Convalescent plasma IgA from > 60% of the cohort had the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated ACE2 inhibition than matched IgG when tested at equivalent concentrations. Plasma IgA and IgG from this cohort broadly recognised similar RBD epitopes and had similar capacities to inhibit ACE2 from binding to 22 of the 23 prevalent RBD mutations assessed. However, plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison with plasma IgG. CONCLUSION Overall, convalescent plasma IgA contributed to the neutralising antibody response of wild-type SARS-CoV-2 RBD and various RBD mutations. However, this response displayed large heterogeneity and was less potent than IgG.
Collapse
Affiliation(s)
- Samantha K Davis
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Kevin John Selva
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Ester Lopez
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Ebene R Haycroft
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Wen Shi Lee
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia,The Walter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Jennifer A Juno
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Amy Adair
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Phillip Pymm
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Samuel J Redmond
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Nicholas A Gherardin
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Dale I Godfrey
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Wai‐Hong Tham
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia,Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Amy W Chung
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
6
|
Correa VA, Portilho AI, De Gaspari E. Vaccines, Adjuvants and Key Factors for Mucosal Immune Response. Immunology 2022; 167:124-138. [PMID: 35751397 DOI: 10.1111/imm.13526] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are the most effective tool to control infectious diseases, which provoke significant morbidity and mortality. Most vaccines are administered through the parenteral route and can elicit a robust systemic humoral response, but they induce a weak T-cell-mediated immunity and are poor inducers of mucosal protection. Considering that most pathogens enter the body through mucosal surfaces, a vaccine that elicits protection in the first site of contact between the host and the pathogen is promising. However, despite the advantages of mucosal vaccines as good options to confer protection on the mucosal surface, only a few mucosal vaccines are currently approved. In this review, we discuss the impact of vaccine administration in different mucosal surfaces; how appropriate adjuvants enhance the induction of protective mucosal immunity and other factors that can influence the mucosal immune response to vaccines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Victor Araujo Correa
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Amanda Izeli Portilho
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| |
Collapse
|